
A Tale of Two Cultures

Alex Aiken
Stanford/SLAC

Alex Aiken, Charm++ Workshop, October 2021

A Tale of Two Software Cultures

HPC

MPI +
OpenMP +

CUDA

Big Data/ML

Hadoop/MapReduce
Spark

TensorFlow
PyTorch

Alex Aiken, Charm++ Workshop, October 2021

Is There Any Relationship?

HPC Big Data

Alex Aiken, Charm++ Workshop, October 2021

Some Overlap …

HPC Big Data

Alex Aiken, Charm++ Workshop, October 2021

?

Some Difference in Size …

HPC Big Data

Alex Aiken, Charm++ Workshop, October 2021

?

Will These Communities Converge?

• The stage is set: The underlying hardware is (almost) the same

• More shortly …

Alex Aiken, Charm++ Workshop, October 2021

Are There Barriers to Convergence?

HPC Big Data

Alex Aiken, Charm++ Workshop, October 2021

Priorities

HPC

• Performance
• Productivity
• Correctness

Big Data

• Productivity
• Performance
• Correctness

Alex Aiken, Charm++ Workshop, October 2021

Creates Significant Differences In …

• Platform performance & programmer productivity
• Obviously!

• Scale of computations

• Economic model

Alex Aiken, Charm++ Workshop, October 2021

Is There Overlap Today?

HPC Big Data?

Alex Aiken, Charm++ Workshop, October 2021

Who Would Switch from Big Data to HPC?

0%
Alex Aiken, Charm++ Workshop, October 2021

Who Would Switch from HPC to Big Data?

• If performance improved by switching, everyone

• If performance were comparable or not overly harmed, some

• If performance is 10X worse, none
• And some would not switch even if performance is only 2X worse

Alex Aiken, Charm++ Workshop, October 2021

Alex Aiken, Charm++ Workshop, October 2021Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC’20

A Comparison: Minimum Task Granularity

Alex Aiken, Charm++ Workshop, October 2021Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC’20

A Comparison: Minimum Task Granularity

Alex Aiken, Charm++ Workshop, October 2021Task Bench: A Parameterized Benchmark for Evaluating Parallel Runtime Performance, Slaughter et al, SC’20

A Comparison: Minimum Task Granularity

A Brief Digression: Hardware

• The hardware platform drives the software abstractions

• The current, slow-motion revolution: accelerators
• GPUs today
• Other specialized hardware tomorrow

Alex Aiken, Charm++ Workshop, October 2021

A Key Point

• In new supercomputers, > 95% of performance is in the accelerators
• Titan, Summit, PerlMutter, Frontier, Aurora …

• The tradeoff
• Greatly complicates programming
• But switching to GPUs can greatly increase performance

• This is the ground on which any convergence will happen

Alex Aiken, Charm++ Workshop, October 2021

An Observation

• The HPC community values performance
• Unless it is too hard
• Many HPC systems perform far below their potential today

• The Big Data community values productivity
• Until the code takes forever to run
• Organizations spend inordinate amounts of time tweaking for performance

Alex Aiken, Charm++ Workshop, October 2021

The Technical Issue

• The main limiter in current and future systems is data movement
• By far the most expensive part of any computation
• And accelerators add multiple levels of memory hierarchy

• Few programming abstractions in programming models for
• Locality
• Partitioning of data
• Mapping of compute/data into a machine

Alex Aiken, Charm++ Workshop, October 2021

The Evidence

• S3D
• Production chemistry combustion code
• 7X off its potential

• Large graph analytics
• CPU-based state of the art ~10X off potential

• Machine Learning
• 10X off potential

Switching to GPUs +
good data partitioning
& placement

Improved data partitioning

Alex Aiken, Charm++ Workshop, October 2021

Where Does Productivity Come From?

• Libraries

• How many widely used parallel libraries for HPC are there?

• How many widely used libraries are there for Python?
• Not just “big data”

Alex Aiken, Charm++ Workshop, October 2021

A popular Python package for (mostly) dense array
computing

Common building block in other Python packages

Many drop-in replacements for one GPU

Numpy
In One Slide

import numpy as np

def cg_solve(A, b, tol=1e-10):
x = np.zeros(A.shape[1])
r = b - A.dot(x)
p = r
rsold = r.dot(r)
for i in xrange(b.shape[0]):

Ap = A.dot(p)
alpha = rsold / (p.dot(Ap))
x = x + alpha * p
r = r - alpha * Ap
rsnew = r.dot(r)
if np.sqrt(rsnew) < tol:

break
beta = rsnew / rsold
p = r + beta * p
rsold = rsnew

return x

import legate.numpy as np

def cg_solve(A, b, tol=1e-10):
x = np.zeros(A.shape[1])
r = b - A.dot(x)
p = r
rsold = r.dot(r)
for i in xrange(b.shape[0]):

Ap = A.dot(p)
alpha = rsold / (p.dot(Ap))
x = x + alpha * p
r = r - alpha * Ap
rsnew = r.dot(r)
if np.sqrt(rsnew) < tol:

break
beta = rsnew / rsold
p = r + beta * p
rsold = rsnew

return x

Legate Numpy
Accelerated and Distributed

Legate NumPy is a NumPy replacement for
transparent (weak) scaling

Requires a one line code change
Same code runs on everything

Legate NumPy: Accelerated and distributed
array computing, Bauer & Garland SC’19

A Simple Example: A Jacobi Solver

13860
(1 Sockets)

19600
(2 Sockets)

27566
(4 Sockets)

39204
(8 Sockets)

55696
(16 Sockets)

78766
(32 Sockets)

111392
(64 Sockets)

157532
(128 Sockets)

222784
(256 Sockets)

Matrix Dimension

100

101

102

103

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

Legate CPU
Legate GPU

NumPy
CuPy

import legate.numpy as np

A = np.random.rand(N,N)
b = np.random.rand(N)

x = np.zeros(A.shape[1])
d = np.diag(A)
R = A – np.diag(d)
for i in xrange(b.shape[0]):
x = (b – np.dot(R,x)) / d

400 GB
Matrix

256X Bigger1.5 GB
Matrix

Alex Aiken, Charm++ Workshop, October 2021

Legate NumPy Architecture

Legion

Data-Driven
Task-Based

Runtime

Application

Pr
og

ra
m

 o
rd

er

np.argmin

np.sort

np.add

np.dot

np.mul

np.norm

Legate NumPy translates
API calls into task launches

Legate NumPy provides
fast task implementations

Legate
Numpy
Mapper

Legate NumPy provides a
custom implementation of

the Legion mapping interface

Alex Aiken, Charm++ Workshop, October 2021

Legate NumPy architecture

Map n-D arrays to
Legion data model

Ex
ec

ut
io

n
or

de
r

CPUs GPUs
Application

Pr
og

ra
m

 o
rd

er

np.argmin

np.sort

np.add

np.dot

np.mul

np.norm

Legion
dynamically
computes

dependence
graph …

Legate
Mapper

copy

copy

copy

A B C

(0,	0)

.

.

.

(i,	j)

.

.

.

Alex Aiken, Charm++ Workshop, October 2021

Managing Data

Each N-D array maps to a field of a Legion logical region
• Legion’s collection data type

Different logical regions for different shapes
Dynamically allocated on demand and recycled when GC’d by Python

import legate.numpy as np

A = np.random.rand(N,N)
b = np.random.rand(N)

x = np.zeros(A.shape[1])
d = np.diag(A)
R = A – np.diag(d)
for i in xrange(b.shape[0]):
x = (b – np.dot(R,x)) / d

Aij Rij x0
ibi di x1

i x2
i x3

i

Region with
Index Space

(N,N)
Region with
Index Space

(N)

Alex Aiken, Charm++ Workshop, October 2021

Performance Comparison

Compare NumPy implementations:
Standard NumPy (single node)
IntelPy with MKL (single node)
Legate CPU-only
Legate CPU+GPU
Dask (CPU-only): Auto and Tuned

All plots are log-log
Experiments on a cluster of DGX-1V nodes
Weak scaling throughput on sockets

Popular Python library for parallel and distributed computing

dask.array similar to NumPy, except for specifying “chunk” sizes

import dask.array as da

A = da.random.uniform((N,N),
chunks=(C,C))

b = da.random.uniform(N,
chunks=“auto”)

x = da.zeros(A.shape[1],
chunks=b.chunks)

d = da.diag(A)
R = A – da.diag(d)
for i in xrange(b.shape[0]):
x = (b – da.dot(R,x)) / dAlex Aiken, Charm++ Workshop, October 2021

Jacobi Solver

13860
(1 Sockets)

19600
(2 Sockets)

27566
(4 Sockets)

39204
(8 Sockets)

55696
(16 Sockets)

78766
(32 Sockets)

111392
(64 Sockets)

157532
(128 Sockets)

222784
(256 Sockets)

Matrix Dimension

10°1

100

101

102

103

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

Legate CPU
Legate GPU
Dask Auto
Dask Tuned

NumPy
Intel (MKL) NumPy
CuPy

import numpy as np

A = np.random.rand(N,N)
b = np.random.rand(N)

x = np.zeros(A.shape[1])
d = np.diag(A)
R = A – np.diag(d)
for i in xrange(b.shape[0]):
x = (b – np.dot(R,x)) / d

10X 100X

Alex Aiken, Charm++ Workshop, October 2021

Black Scholes

200
(1 Sockets)

400
(2 Sockets)

800
(4 Sockets)

1600
(8 Sockets)

3200
(16 Sockets)

6400
(32 Sockets)

12800
(64 Sockets)

25600
(128 Sockets)

51200
(256 Sockets)

Options (Millions)

100

101

102

103

104

Th
ro

ug
hp

ut
(M

O
pt

io
ns

/S
oc

ke
t/s

)

Legate CPU
Legate GPU
Dask Auto
Dask Tuned

NumPy
Intel (MKL) NumPy
CuPy

No (application)
communication

Expect perfect weak scaling

Dask starts out faster…
Why? Operator Fusion

… but has to trade off
parallelism for task
granularity to scale

Alex Aiken, Charm++ Workshop, October 2021

Preconditioned CG Solver
def preconditioned_solve(A, M, b):

x = np.zeros(A.shape[1])
r = b - A.dot(x)
z = M.dot(r)
p = z
rzold = r.dot(z)
for i in xrange(b.shape[0]):

Ap = A.dot(p)
alpha = rzold / (p.dot(Ap))
x = x + alpha * p
r = r - alpha * Ap
rznew = r.dot(r)
if np.sqrt(rznew) < 1e-10:

break
z = M.dot(r)
rznew = r.dot(z)
beta = rznew / rzold
p = z + beta * p
rzold = rznew

return x 14641
(1 Sockets)

19600
(2 Sockets)

27556
(4 Sockets)

39204
(8 Sockets)

55696
(16 Sockets)

78400
(32 Sockets)

110224
(64 Sockets)

155236
(128 Sockets)

219024
(256 Sockets)

Matrix Dimension

100

101

102

103

Th
ro

ug
hp

ut
(It

er
at

io
ns

/s
)

Legate CPU
Legate GPU
Dask Auto
Dask Tuned

NumPy
Intel (MKL) NumPy
CuPy

Alex Aiken, Charm++ Workshop, October 2021

One Approach To Libraries

• Implement important Big Data libraries using HPC techniques
• Can we get more performance for the same productivity?

• Examples
• Legate
• FlexFlow, replacement for TensorFlow & PyTorch

Beyond data and model parallelism for deep neural networks, Jia et al. SysML `18

Alex Aiken, Charm++ Workshop, October 2021

Important Features

• Expressive data partitioning

• Ability to tune the mapping
• Tasks to processors
• Data to memories

• Runtime decision making
• Needed to handle dynamic nature of Python

• Legion is extreme in all three dimensions
• Sufficient, but maybe not necessary?

Alex Aiken, Charm++ Workshop, October 2021

Another Approach

• Demonstrate the ability to build general libraries for HPC applications
• That compete with the best-of-class HPC implementations
• But are more productive to write and/or use

• What are the important/novel problems in building HPC libraries?

Alex Aiken, Charm++ Workshop, October 2021

DISTAL: DIStributed Tensor ALgebra
Goals:
Compile tensor algebra kernels into efficient distributed implementations
Decouple computation, performance optimizations, and data distribution

Joint work with Rohan Yadav and Fred Kjolstad

Modeling Machines
• View machines as hyper-rectangular grids of processors
• where each processor has a local memory

• Expose any locality in the physical machine

• Structure the machine like the target computations

Distributing Data
• State abstractly how a tensor is distributed onto a machine as part of the

tensor’s format
• Describes how dimensions of a tensor map onto a machine

Name each dimension of and

Dimensions of are partitioned and mapped onto dimensions of that share the same name

Scheduling (Summary)
• Iteration spaces: hyper-rectangular grids representing points in nested loops

• Execution space: processors in x time dimension

• Scheduling commands related to distribution change mapping of iteration space
points to the execution space

• Apply scheduling commands to the computation

• Similar to Halide schedules, with extensions for distributed computing

• New commands: distribute, communicate, rotate

Experiments
• Run on Lassen
• 4 GPUs/node, 40 CPUs/node, IB interconnect)

• All systems configured to use the same BLAS / CuBLAS

• All experiments are weak-scaling (memory / node stays constant)

GEMM (CPU)

GEMM (GPU)

Higher Order Tensor Operations (CPU)

TTV TTM

InnerProd MTTKRP

2.5x

45x

1.8x

3.7x

Higher Order Tensor Operations (GPU)

TTV TTM

InnerProd MTTKRP

Lessons From DISTAL

• Expressive partitioning of data, computation and control of the
mapping into the machine are all critical

• Enables writing libraries that are polymorphic in the data distribution
• The data distribution can be different depending on the needs of the context
• Avoids stopping-the-world and doing large copies at library boundaries
• A form of polymorphism unique to distributed parallel programming

Summary

• The HPC and Big Data worlds have agreed on the hardware platform
• Parallel, accelerated, distributed (PAD) machines
• A convergence of these two worlds is likely

• Can we have both productivity and performance?
• There is some preliminary evidence the answer is ``yes”
• Through libraries built on HPC programming models
• But libraries required a degree of flexibility beyond non-library code

• Still much to be learned about how to write reusable parallel libraries

Alex Aiken, Charm++ Workshop, October 2021

