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NAMD: Nanoscale Molecular Dynamics

• Parallel molecular dynamics application written 
in C++ with Charm++ objects


• Runs on all major operating systems, on laptops 
up through supercomputers


• Specializes in parallel scaling of large 
biomolecular simulations


• Many advanced features:

- Enhanced sampling methods

- Alchemical free energy methods

- Collective variables module (Colvars)

- TCL and Python scripting


• Over 25,000 registered users


• Over 15,000 citations of our NAMD reference 
papers (Google Scholar)
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Investigations of coronavirus (SARS-CoV-2) spike dynamics.
Credit: Tianle Chen, Karan Kapoor, Emad Tajkhorshid (UIUC).
Simulations with NAMD, movie created with VMD.

https://www.ks.uiuc.edu/Research/namd/
Phillips, et al. J. Chem. Phys. 153, 044130 (2020)

https://www.ks.uiuc.edu/Research/namd/


Molecular Dynamics Simulation
• Most fundamentally, integrate Newton’s equations of motion:
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integrate for up to billions of time steps

most of the computational work
(Lennard-Jones) (electrostatics)



Parallelism for MD Simulation Limited to Each Timestep
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Computational workflow of MD:

initialize particle

positions

particle

forces

force

calculation

about 99% of 
computational work

update

 positions

about 1% of 
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional

output

aLoop millions 
of timesteps



Hybrid Decomposition of Data and Work

• Atoms are decomposed into fixed volume patches within 
the system


• Forces that move atoms are calculated in parallel at each 
step between adjacent patches


• Work decomposition into compute objects creates much 
greater amount of parallelization, facilitates measurement-
based load balancing with Charm++


• Migrate atoms to adjacent patches, updating domain 
decomposition after every cycle (e.g. 20 steps)
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Spatial decomposition of  
atoms into patches

Work decomposition of  
patch interactions

Kale et al., J. Comp. Phys. 151:283-312, 1999



NAMD Decomposes Force Terms into 
Fine-Grained Objects for Scalability
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Charge spreading

Force interpolation

Offload forces to GPU



NAMD Scaling on CPUs and GPUs
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NAMD Simulating SARS-CoV-2 on Frontera and Summit
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(A) Virion, (B) Spike, (C) Glycan shield conformations
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Scaling performance:
• ~305M atom virion
• ~8.5M atom spike

Collaboration with Amaro Lab at UCSD, images rendered by VMD
Winner of Gordon Bell Special Prize at SC20, project involved overall 1.13 Zettaflops of NAMD simulation 

strong scaling 
51% efficiency

Casalino, et al. IJHPCA, 2021 https://doi.org/10.1177%2F10943420211006452

https://doi.org/10.1177%2F10943420211006452


Original GPU-Offload Scheme

Partition work between CPU and GPU
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force 
calculation  
on GPUs

update 
coordinates 

on CPUs

Short-range non-bonded forces (90%) 

Long-range PME electrostatics (5%) 

Bonded forces (2%) 

Corrections for excluded interactions (2%) 

Integrator, rigid bond constraints (1%) 
Enhanced sampling methods: additional forces, grid potentials, collective variables

Showing approximate percentage of total work per step:



• GPUs weren’t that fast back then


• Profiling shows GPUs are fully 
occupied by forces - no idle time


• Streaming forces allows overlap of 
CPU and GPU computation
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Maxwell GPU is fully utilized

Original GPU-Offload Scheme

Good enough until Pascal (2016)
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Hardware has ~70% perf improvement!

Peak Performance in TFLOPS

0
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NAMD (in 2018) less than 20% perf improvement!

Original GPU-Offload Scheme

Benchmarking on newer GPUs revealed problems
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ApoA1 
92k atoms

Simulation details:
NVE, CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/


Original GPU-Offload Scheme

CPU-bound on Volta and beyond

• GPUs became much faster!


• Attempt to overlap CPU and GPU 
causes performance bottleneck


• Unable to fully utilize GPU
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Forces

Integration

Forces

Integration

Profile using Nsight Systems with NVTX tags to trace 
execution of CPU kernels:



• Offloading force calculation is not enough!


• Overall utilization of modern GPUs is limited by remaining CPU work


• We want better GPU performance


‣ Strong scaling of small- to medium-sized systems is not well served by traditional 
supercomputers


‣ Majority of MD users run system sizes < 1M atoms that are suitable for a single GPU


• Must transition from GPU-offload to GPU-resident!
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Original GPU-Offload Scheme

Performance limitations on modern GPUs



New GPU-Resident Scheme

Move integrator to GPU and maintain data between time steps
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Calculate forces

Integrate atom 
positions

Aggregate 
position data, 
copy to GPU

Integrate atom 
positions

Calculate forces

Aggregate 
position data, 
copy to GPU

Stream 
forces back 

to CPU

CPU

GPU

GPU-offload

CPU

GPU

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

Calculate forces

Fill position
buffers

Fetch force
buffers

Convert force 
to SOA form

Integrate atom 
positions

GPU-resident
(manages GPU kernels)



New GPU-Resident Scheme

Profiling shows new scheme fully utilizes GPU, no more CPU bottleneck
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Forces
Integration

Forces
Integration

Forces

Integration

Forces

Integration

Before (GPU-offload):

After (GPU-resident):



New GPU-Resident Scheme

Performance for constant energy (NVE) simulation on single GPU
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https://www.ks.uiuc.edu/Research/namd/benchmarks/
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Aggregate throughput for constant energy (NVE) simulation on GPU-dense hardware

Simulation details:
CHARMM force field uses cutoff distance 12Å,
AMBER force field uses cutoff distance 8Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/


• Extend GPU-resident implementation 
for many interconnected GPUs on a 
single-node


• Upcoming leadership class 
supercomputers will also have many 
GPUs per node
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Goal: Support GPU-Dense Architectures

Scaling a single simulation across multiple GPUs



Adapting NAMD’s Scalability to GPU-Resident Version

Apply similar decomposition of data and work among GPUs
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• Each CPU thread binds to a 
particular GPU


• Aggregate compute and patch 
data per thread to launch 
integration and force kernels


• Maintain a single thread per 
GPU to make things easier


• Exploit tightly coupled (peered) 
GPUs (NVLink, PCIe, …)



Adapting NAMD’s Scalability to GPU-Resident Version

Some communication required: multicasts and reductions
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• GPUs need to communicate 
information among themselves 
during simulation


• Update atom positions in each patch 
during integration


• Perform position multicast to 
compute objects


• Compute new forces


• Perform force reduction back to 
patches

Integration

Integration

Position Multicast

Force Eval

Force Reduction



Adapting NAMD’s Scalability to GPU-Resident Version

Rapid prototyping using NCCL for collectives
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• The multicast and reduction operations can be 
expressed as ALLREDUCE primitives


• Use NCCL (NVIDIA Collective and 
Communications Library) to get it working 
quickly


• NCCL also abstracts the underlying GPU 
topology, while still achieving high bandwidth


• However, using ALLREDUCE results in wasted 
communication


‣ Too hard to use scatter/gather because our data lacks 
regularity


‣ Better performance expected if we do our own 
communication



STMV 
1.06M atoms 
2fs timestep 

Multi-GPU Scaling on DGX-2

Using NCCL for communication collectives

22

0

10

20

30

40

50

60

70

# GPUs
1 2 4 8 16

38.4
33.9

26.1

15.7
9.7

8.59.48.77.97.6

GPU-offload GPU-resident

ns/day

Simulation details:
NVE, CHARMM force field, cutoff distance 12Å,
MTS with 2fs time step and 4fs PME, rigid bond constraints.
Performance tuning parameter “margin” set to 4Å.
https://www.ks.uiuc.edu/Research/namd/benchmarks/

https://www.ks.uiuc.edu/Research/namd/benchmarks/


Multi-GPU Scaling on DGX-2

How to improve scalability on large GPU counts?
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Force Reduction Integration Position Multicast

NCCL’s ALLREDUCE accounts for 40% of GPU kernel execution time on 8 GPUS!
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• Force sum reductions take 
longer than position 
multicasts


• Need to replace them with a 
specialized kernel for our 
problem, since not all values 
need to be reduced!


• Use CUDA peer-to-peer 
functionalities for better 
performance

Multi-GPU Scaling on DGX-2

Replacing NCCL: Point-to-point force sum reductions



Multi-GPU Scaling on DGX-2

Replacing NCCL: Point-to-point position multicasts
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• Same logic as before: 
Replace ALLREDUCE with a 
specialized kernel


• Each GPU fills its positions 
by accessing its peers’ 
memories (better 
performance with NVLINK)


• Retrieve only those positions 
owned by that GPU for 
better scaling



Multi-GPU Scaling on DGX-2

Overcoming CPU thread synchronization latency with spinlock barrier
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~70% perf improvement over NCCL with condition variable barrier

https://www.ks.uiuc.edu/Research/namd/benchmarks/


Multi-GPU Scaling on DGX-A100
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https://www.ks.uiuc.edu/Research/namd/benchmarks/


Future Improvements to GPU-Resident 
Overcoming scaling bottleneck from PME long-range electrostatics
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• PME (particle-mesh Ewald) 
requires calculating FFT


- 3D FFTs for PME are too small to 
parallelize effectively with cuFFT


- Too much latency is introduced 
with slab or pencil decomposition


• Assign PME to a single device


- But over assignment can cause 
load imbalance

PME Evaluation

Idle Devices



Future Improvements to GPU-Resident 
Replacing PME with better scaling MSM algorithm
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• MSM (multilevel summation method) 
provides a better scaling alternative to PME


• Hierarchical grid calculation offers tree-like 
work decomposition, similar in structure to 
FMM (fast multipole method)


• Localized 3D convolutions involving nearest 
neighbor communication are well suited to 
GPU computation


• Coarsest level grid has 3D FFT, but it can be 
made as small as desired

Hardy, Stone, Schulten. J. Paral. Comp. (2009)

Hardy, Wu, et al. J. Chem. Theory Comput. (2015)


Hardy, Wolff, et al. J. Chem. Phys. (2016)

Kaya, Hardy, Skeel. J. Chem. Phys. (2021)



Future Improvements to GPU-Resident 
Offload domain decomposition (atom migration) to GPU

• Domain decomposition (atom migration) 
presently poses a large CPU bottleneck, 
mitigated by:


- Increasing patch margin


- Performing only when necessary


• Bypass CPU thread synchronization and 
data buffering 


• Multi-GPU implementation will require 
additional communication


• Restructure fundamental data structures 
for fast recalculation of force auxiliary 
arrays

20 MD Steps
Approx. 32 ms 1 migration step

Approx. 77 ms

Time for atom migration is equal to 48 MD steps
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NAMD’s default is 20 steps per migration

Profiling on single GPU



Future Improvements to GPU-Resident 
Multi-node scaling

• Minimize multi-node communication latency 
between GPU-resident NAMD processes running 
on different nodes


• Exploit Infiniband-connected DGX-like nodes 
using RDMA hardware acceleration


- Use fabric-based (switch, NIC) collective operations 
and reductions to avoid host CPU involvement 


• Ultimately, Charm++ will be needed for large scale 
runs


- Use GPU-direct communication


- Load balancing needs to understand GPU workloads
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Integration

Integration

Force Eval

Position Multicast

Force Reduction



Challenge: Support for New GPUs
• AMD GPU support (Josh Vermaas, Julio Maia)


- Use Hipify to translate CUDA to HIP, no need for direct HIP implementation


- Few additional tweaks required:

‣ HIP wavefront size 64 vs CUDA warp size 32

‣ Need some macro definitions in extra header file

‣ Workaround for texture memory interpolation


- GPU-offload already available, Julio is developing GPU-resident


• Intel GPU support (Tareq Malas, Jaemin Choi)

- DPC++ is significantly different from CUDA, requires its own implementation


- Assisted by a conversion tool


- Significant modifications required after conversion


- Recently have working force kernels for GPU-offload
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Challenge: GPU-Resident Feature Support
• Essential standard integration methods supported


- Constant energy, constant temperature (Langevin damping and stochastic rescaling), constant pressure 
(Langevin piston)


- Multiple time stepping


- Rigid bond constraints


• Some advanced features already supported

- Alchemical free energy methods FEP and TI (Haochuan Chen, Julio Maia) 

Chen, et al. J. Chem. Inf. Model. 60 (11), 5301-5307 (2020)


- Multi-copy simulation (e.g. replica-exchange)


- External electric field


• Other features require extensive porting to GPU

- Colvars (collective variables) module
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