
Dynamically Load-balanced p-adaptive 
Discontinuous Galerkin Methods 

using Charm++
Weizhao Li, Adity K. Pandare, Hong Luo, Jozsef Bakosi and Jacob Waltz

Charm++ Workshop 2021
October. 18th, 2021



Outline
• Background
• Governing Equations
• DG Discretization Formulations

• Weak formulation
• Adaptive Strategies

• Error indicator based p-adaptation
• Protective layer refinement

• Computation Process
• Numerical Results
• Conclusions



Quinoa

• Computational tools for fluid dynamics
• Written in modern C++
• Production-style, rigorously tested
• Numerical solver for single-material and 

multi-material hydrodynamics
• Asynchronous, distributed-memory 

parallel programming
• Fully unstructured tetrahedral mesh 

support
• Dynamic load balancing and automatic 

object migration using Charm++
• Open source: 

https://github.com/quinoacomputing/quinoa

https://github.com/quinoacomputing/quinoa


Governing Equations
• The compressible Euler equations can be represented as

where

• The pressure can be evaluated according to

where 𝛾𝛾 is the ratio of specific heats

𝜕𝜕𝑼𝑼
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑭𝑭𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= 0

𝑼𝑼 =
𝜌𝜌
𝜌𝜌𝑢𝑢𝑖𝑖
𝜌𝜌𝐸𝐸

, 𝐅𝐅 =
𝜌𝜌𝑢𝑢𝑘𝑘

𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑘𝑘 + 𝑝𝑝𝛿𝛿𝑖𝑖𝑘𝑘
𝑢𝑢𝑖𝑖𝑘𝑘(𝜌𝜌𝐸𝐸 + 𝑝𝑝)

𝑝𝑝 = 𝛾𝛾 − 1 𝜌𝜌 𝐸𝐸 −
1
2
𝑢𝑢𝑖𝑖𝑢𝑢𝑘𝑘



• The weak formulation can be obtained by multiplying test function 𝑊𝑊 and
performing integration by parts,

• Assume our high order solution within the cell is represented as,

• Apply the solution equation to the above formulation,

2.1 Weak formulations

Discontinuous Galerkin Formulation

𝑈𝑈ℎ 𝑥𝑥, 𝜕𝜕 = �
𝑗𝑗=1

𝑁𝑁

𝑢𝑢𝑗𝑗 𝜕𝜕 𝐵𝐵𝑗𝑗 𝑥𝑥

�
Ω𝑒𝑒
𝐵𝐵𝑖𝑖𝐵𝐵𝑗𝑗𝑑𝑑Ω

𝑑𝑑𝑢𝑢𝑗𝑗
𝑑𝑑𝜕𝜕

+ �
Γ𝑒𝑒
𝐹𝐹𝑘𝑘(𝑈𝑈ℎ)𝑛𝑛𝑘𝑘𝐵𝐵𝑖𝑖𝑑𝑑Γ − �

Ω𝑒𝑒
𝐹𝐹𝑘𝑘 𝑈𝑈ℎ

𝜕𝜕𝐵𝐵𝑖𝑖
𝜕𝜕𝑥𝑥𝑘𝑘

𝑑𝑑Ω = 0, 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁

�
Ω

𝜕𝜕𝑈𝑈ℎ
𝜕𝜕𝜕𝜕

𝑊𝑊ℎ𝑑𝑑Ω + �
Γ
𝐹𝐹𝑘𝑘(𝑈𝑈)𝑛𝑛𝑘𝑘𝑊𝑊ℎ𝑑𝑑Γ − �

Ω
𝐹𝐹𝑘𝑘 𝑈𝑈

𝜕𝜕𝑊𝑊ℎ

𝜕𝜕𝑥𝑥𝑘𝑘
𝑑𝑑Ω = 0



• The DG solution: 𝑈𝑈ℎ 𝑥𝑥, 𝜕𝜕 = ∑𝑗𝑗=1𝑁𝑁 𝑢𝑢𝑗𝑗 𝑥𝑥 𝐵𝐵𝑗𝑗 𝑥𝑥

2.1 Weak formulations

Discontinuous Galerkin Formulation



• Use a posteriori local error indicator to determine where the order of 
element solution should be refined or coarsened

• The spectral decay indicator is defined as

𝜂𝜂𝑘𝑘 =
∫Ω 𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑝𝑝−1

2𝑑𝑑Ω
∫Ω𝜌𝜌𝑝𝑝

2𝑑𝑑Ω
Where 𝜌𝜌𝑝𝑝 and 𝜌𝜌𝑝𝑝−1 represent the numerical density with the polynomial 
order of 𝑝𝑝 and 𝑝𝑝 − 1.
• After evaluating adaptive indicators, the following adaptation criterion 

is used to determine p-refinement or coarsening:

�𝜂𝜂𝑘𝑘 ≥ 𝜀𝜀𝐻𝐻 ⟹ 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛𝑅𝑅 𝑖𝑖𝑅𝑅 𝑝𝑝𝑘𝑘 < 𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚
𝜂𝜂𝑘𝑘 < 𝜀𝜀𝐿𝐿 ⟹ 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑅𝑅 𝑖𝑖𝑅𝑅 𝑝𝑝𝑘𝑘 > 𝑝𝑝𝑚𝑚𝑖𝑖𝑖𝑖

Where 𝜀𝜀𝐻𝐻 and 𝜀𝜀𝐿𝐿 are user-input thresholds (𝜀𝜀𝐻𝐻 > 𝜀𝜀𝐿𝐿). Both thresholds are 
case-dependent parameters.

3.1 Error indicator based p-adaptation

Adaptive Strategies



3.2 Protective layer refinement

Adaptive Strategies

• By adding this protective layer, refine all the nodal neighboring elements of
the refined element in Ω𝑒𝑒

Ω𝑒𝑒 Ω𝑒𝑒



Computation Process
Apply limiter

Compute time step

Advance solution in time

Output results

Communication

Add protective layer

Communication

Apply refinement

Communication
Check exit 
condition

Adaptation Process

DG 
Discretization



3.3 Sources of unbalanced load distribution

Adaptive Strategies

PE #1

DG(P0)DG (P2)

PE #2

𝒖𝒖 =

𝑢𝑢0
𝑢𝑢1
𝑢𝑢2
𝑢𝑢3
𝑢𝑢4
𝑢𝑢5

𝒖𝒖 = 𝑢𝑢0



3.3 Sources of unbalanced load distribution

Adaptive Strategies

PE #1

DG(P0)

PE #2

DG(P2)

⟹𝐷𝐷𝐷𝐷𝑛𝑛𝐶𝐶𝐷𝐷𝑖𝑖𝐷𝐷 𝐿𝐿𝐶𝐶𝐶𝐶𝑑𝑑 𝐵𝐵𝐶𝐶𝐵𝐵𝐶𝐶𝑛𝑛𝐷𝐷𝑖𝑖𝑛𝑛𝐵𝐵



• The initialization condition is given as

• The mesh with 11200 tetrahedra is used here

4.1 Sod shocktube problem

Numerical Results

𝜌𝜌,𝑝𝑝,𝑢𝑢 𝐿𝐿 = 1.0,1.0,0.0
𝜌𝜌,𝑝𝑝,𝑢𝑢 𝑅𝑅 = 1.0,1.0,0.0

Fig. 1 Mesh for sod shocktube



4.1 Sod shocktube problem

Numerical Results

Fig. 2 Numerical distribution for sod shocktube



4.1 Sod shocktube problem

Numerical Results

Fig. 3 Numerical distribution for sod shocktube in 1D



4.1 Sod shocktube problem

Numerical Results

Fig. 4 Numerical distribution for sod shocktube near discontinuities



4.1 Sod shocktube problem

Numerical Results

Table 1. Wall-clock time table for sod shocktube

Case Configuration Wall-clock time
(m:s)

Speedup relative to 
case 2

1 128 cores, 128 partitions, DG(P2) 36:44

2 128 cores, 128 partitions, p-
adaptive DG 33:52

3 128 cores, 426 partitions, p-
adaptive DG 16:56 2.0x

4 128 cores, 426 partitions, p-
adaptive DG with load balancer 16:17 2.1x



• Sedov blast testcase describes the flow with a strong spherical
shock wave.

• The initialization condition is given as

• The mesh with 29k tetrahedra is used here
• The goal of this testcase is to assess the capability to capture the

strong discontinuities.

4.2 Sedov blast problem

Numerical Results

𝑢𝑢𝑚𝑚 = 0
𝜌𝜌 𝑥𝑥𝑖𝑖 = 1

𝑝𝑝 = �783.4112 𝑖𝑖𝑅𝑅 𝑥𝑥𝑖𝑖 < 0.05
0 𝐶𝐶𝜕𝜕𝑜𝑅𝑅𝐶𝐶𝑜𝑜𝑖𝑖𝐶𝐶𝑅𝑅



4.2 Sedov blast problem

Numerical Results



4.2 Sedov blast problem

Numerical Results

Table 2. Wall-clock time table for Sedov blast at t = 0.01

Case Configuration Wall-clock time
(h:m:s)

Speedup relative to 
case 3

1 64 cores, 64 partitions, DG(P2) 5:00:29

2 64 cores, 319 partitions, DG(P2) 5:26:5

3 64 cores, 64 partitions, p-adaptive 
DG 3:13:29

4 64 cores, 319 partitions, p-adaptive 
DG 1:35:21 2.0x

5 64 cores, 319 partitions, p-adaptive 
DG with load balancer 1:21:42 2.4x



• The triple point problem is three-state two-dimensional Riemann 
problem

• The initialization condition is given as

• The mesh with 687085 tetrahedra is used here

4.3 Triple point problem

Numerical Results



4.3 Triple point problem

Numerical Results



4.3 Triple point problem

Numerical Results

Table 3. Wall-clock time table for triple point problem at t = 1

Case Configuration Wall-clock time
(h:m:s)

Speedup relative to 
case 3

1 32 cores, 32 partitions, DG(P2) 5:17:48

2 32 cores, 32 partitions, p-adaptive 
DG 6:16:12

3 32 cores, 319 partitions, p-adaptive 
DG 3:37:43 1.7x

4 32 cores, 319 partitions, p-adaptive 
DG with load balancer 2:4:29 3.0x



4.3 Triple point problem

Numerical Results

Fig. 5 Usage profile for DG(P2) with 32 cores



4.3 Triple point problem

Numerical Results

Fig. 6 Usage profile for p-adaptive DG with with 32 cores



4.3 Triple point problem

Numerical Results

Fig. 7 Usage profile for p-adaptive DG with over-decomposition



4.3 Triple point problem

Numerical Results

Fig. 8 Usage profile for p-adaptive DG with load balancer



• A p-adaptive DG method is developed.
• The developed adaptive method introduces unbalanced

load distributions.
• The adaptive scheme combined with load balancing

techniques significantly increase the computation
efficiency.

• More complex numerical methods will be implemented
within this parallel structure to maximize the benefits of
dynamic load balancing technique.

Summary


	Dynamically Load-balanced p-adaptive Discontinuous Galerkin Methods using Charm++
	Outline
	Quinoa
	Governing Equations
	2.1 Weak formulations
	2.1 Weak formulations
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27

