

Outlines

- Load Balancers Analysis
 - Prefix
 - Orthogonal recursive bisection (ORB)
 - Diffusion
- Application Characteristics
 - Iterative
 - Spatial locality with coordination
 - Well-scaled

Charm++ Load Balancing Infrastructure

Tool: migrate chare objects

Structures:

TreeLB (2-4 levels)

Charm++ Load Balancing Infrastructure

Tool: migrate chare objects

Structures:

- TreeLB (2-4 levels)
- DistributedLB
 - each PE makes individual decisions

```
    PEO
    PE1
    PE2
    PE3

    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
```


Comparison of CentralLB and DistributedLB implementations:

Stampede2 SKX

48 cores / node 6144 cores on 128 nodes

Composition of LB time:

Initialization time	Strategy time	Migration
Collect object data - Measured runtime - Communication graph	Apply LB strategy and make migration decisions	Migrate objects

Initialization time analysis:

Let

P := the number of PEs

O := the number of objects

	Reduction		
LB		Runtime	Bandwidth
PrefixLB		log P	0
DistributedPrefixLB		1	N/A

Strategy time analysis:

Migration time analysis:

Let

P := the number of PEs

O := the number of objects

M:= number of objects need migration

LB	Runtime	Bandwidth
PrefixLB	M/P	M
Distributed PrefixLB	M/P	M

Algorithm:

- Goal:
 - Partition the universe into number of PE blocks with even loads
- Centralized:
- Use selection algorithm to find a splitting coordinate along the longest dimension of the subspace
- Distibuted:
 - One partition: find a splitting coordinate

Algorithm:

- Distibuted:
 - One partition: find a splitting coordinate

subspace

leader PE

If yes, done

If no, divide the search space and repeat

May repeat too may times!

PE array

Algorithm:

- Distibuted:
 - One partition: find a splitting coordinate

subspace

leader PE

If yes, done

If the optimal bin have less that THRESHOLD objects:
Collect coordinations of those objects directly

PE array

Algorithm:

- Distibuted:
 - make number of PE partitions

Algorithm:

- Distibuted:
 - make multiple reductions with different roots

Second round

Strategy time analysis: 9478 objects 768 cores 12

Let

P := the number of PEs

V := the number of objects

LB	Runtime	Bandwidth
OrbLB	VlogP	N/A
Distributed OrbLB	V(logP)^2	VlogP

Summary

Analysis of the LB runtime with a three-stage decomposition

Initialization time	Strategy time	Migration
---------------------	---------------	-----------

- Try the DistributedLB if strategy runtime <= log(P)
- Will Improve DistrbutedOrbLB
 - ORB to the node level
 - Diffusion within each node