A Universe of ChaNGa Applications

Thomas Quinn University of Washington

Ben Keller Isaac Backus Michael Tremmel Joachim Stadel James Wadsley Charlotte Christensen Spencer Wallace

Filippo Gioachin Pritish Jetley Lukasz Wesolowski Gengbin Zheng Harshitha Menon **Orion Lawlor** Michael Robson Jaemin Choi **Ronak Buch** Others:

Jianquo Liu, Purdue ^{en} Tim Haines, UW-Madison Phil Chang, UW-Milwaukee

Fundamental Problem: Dark Matter and Energy: What is it?

- Not baryons
- Gravitates!
- Simulations show: not known neutrinos
- Candidates:
 - Sterile Neutrinos
 - Axions
 - Lightest SUSY
 Particle (LSP)

Modeling Dark Matter

- Physics is simple: Newton's Laws
- Computation is challenging: Naively order N²
- Large spacial dynamic range: > 100 Mpc to < 1 kpc
 - Hierarchical, adaptive gravity solver is needed
- Large temporal dynamic range: 10 Gyr to < 1 Myr
 - Multiple timestep algorithm is needed
- Gravity is a long range force
 - Hierarchical information needs to go across processor domains

Gigaparsecs: the Cosmic Web

Potter & Stadel, 2017

Charm Nbody GrAvity solver

- Massively parallel Treecode
- Framework for Gravity and Neighbor Finding

 K-nearest
 - Fixed radius
- Large number of Astrophysics models

Speedups for 2 billion clustered particles

Time per Step (s)

Light vs. Matter

Smooth Particle Hydrodynamics

- Making testable predictions needs Gastrophysics
 - High Mach number
 - Large density contrasts
- Gridless, Lagrangian method
- Galilean invariant
- Monte-Carlo Method for solving Navier-Stokes equation.
- Natural extension of particle method for gravity.

Testing Dark Matter Models

Cruz et al, 2021

Black Holes!

NASA, JPL, Event Horizon Telescope

The **ROMULUS** Simulations

Certified organic, free-range, locally grown supermassive black holes

- ✓ Early Seeding in low mass halos
- Self-consistent and physically motivated dynamics, growth, and feedback
- ✓ <u>Naturally</u> produces large-scale outflows
- No unnecessary additives or assumptions

RomulusC

10¹⁴ M_{sun} Galaxy Cluster Tremmel+ submitted (stars, uvj colors)

Romulus25

25 Mpc Volume Tremmel+ 2017 (gas temp)

Wandering Black Holes?

Galaxy Cluster

Galaxy Cluster Cores

Galaxy populations

Faint Satellites of Galaxies

DC Justice League Galaxies running on Frontera

Applebaum et al 2021

Early Disk Formation

Galactic Disks form thin: Billion particle simulation on Piz Daint

Tamfal et al, 2021

MHD Protostellar Cloud Collapse

Wissing & Shen, 2020

Moving Mesh Hydrodynamics

- More accurate hydrodynamics requires Riemann solvers
- Galilean invariance: mesh needs to follow the fluid flow
- Mesh needs to have arbitrary geometry
- Need a fast Voronoi mesh generator: ChaNGa (MANGA)

Binary Stars with MaNGa

Radiation Hydrodynamics with MaNGa

Protoplanetary Disks

- Likely result of cloud collapse with conserved angular momentum
- Disks can be gravitationally unstable
- Fragmentation depends on details of gas dynamics

Dust from Collisions?

Resolution and Disks

Resolution comparison: density after 1.89 ORPs

Isaac Backus, Ph. D. Thesis

FROM DUST TO PLANETS

Image credit: Sean Raymond

ChaNGa can directly simulate accretion of planetesimals, test planetesimal formation models

- High surface density, short dynamical timescale close to star
- Does the runaway + oligarchic growth model still apply?

Wallace, in prep.

Summary

- Astrophysical simulations provide a challenges to parallel implementations
 - Non-local data dependencies
 - Hierarchical in space and time
- ChaNGa has been successful in addressing these challenges using Charm++ features
 - Computation/Communication overlap
 - Message priorities
 - Load Balancing
 - Modularity to add new Physics

Availability

- ChaNGa: http://github.com/N-bodyShop/changa
 - See the Wiki for a developer's guide
- Paratreet: http://github.com/paratreet
 - Some design discussion and sample code

User Community:

https://nbody.shop

The N-Body Shop Conference

N-Body Shop Excellence Conference 2021

A VIRTUAL COLLABORATION CONFERENCE

Acknowledgments

- NSF ITR
- NSF Astronomy
- NSF SSI
- NSF XSEDE program for computing
- BlueWaters Petascale Computing
- Frontera Petascale Computing
- NASA HST
- NASA Advanced Supercomuting