
Linda and Its Tuple Spaces
Abhinav S Bhatele (CS498lvk)



Introduction

 It is essentially a shared-memory 
programming model based on tuple-spaces

 Only cares about process creation and co-
ordination

 How and what the process computes is a 
black box to the model

 A base language with the addition of the 
tuple operations yields a parallel 
programming ‘dialect’



Tuple Spaces

 A tuple is a series of typed fields, for 
example

(“a string”, 15.01, 17, “another string”)

 Processes share a tuple space between 
them which has tuples floating in it

 A tuple can be a simple ‘data’ tuple which 
can be read and/or removed

 It can be a ‘live’ tuple which carries out 
some computation of its own



The model

 It is based on generative communication
 A process wishing to send data to 

another creates a tuple and sets it adrift 
in the tuple space

 A process looking for data tries to match 
tuples in the tuple space with its own

 If a new process is required for a 
computation, the parent process 
releases a live tuple in the tuple space



Tuple Operations

 To create/ send tuples
 out – send a data tuple into the tuple space

 eval – send a live tuple into the tuple space 
which gets evaluated into a ‘data’ tuple

 To read/ receive tuples
 in – read and remove a tuple from the tuple 

space

 rd – simply read a tuple from the tuple 
space



Implications of this model

 Communication and process creation 
are two facets of the same operation

 Data is exchanged in the form of 
persistent objects and not transient 
messages

 It promotes an uncoupled programming 
style – the senders and receivers need 
not know about each other



Examples

 Matching a tuple to get data –

out(“a string”, 15.01, 17, “another string”)

in(“a string”, ? f, ? i, “another string”)

 Creating data structures out of tuples –
(“V”, 1, FirstElt)

(“V”, 2, SecondElt)

(“V”, 3, ThirdElt)

 Change the ith element –
in(“V”, i, ? OldVal)

out(“V”, i, NewVal) 



Dining Philosopher’s Problem

phil(i)
int i;

{
while(l) {
think();
in(“room ticket”);
in(“chopstick”, i);
in(“chopstick”, (i+l)%Num);
eat();
out(“chopstick”, i);
out(“chopstick”, (i+i)%Num);
out(“room ticket”);
}

}



Server-Clients
server()
{

int index = 1;
. . .
while(1) {

in("request", index, ? req);
. . .
out("response", index++, response);

}
}

client()
{

int index;
. . .
in("server index", ? index);
out("server index", index+l);
. . .
out("request", index, request);
in("response", index, ? response);
. . .

}



References

1. Sudhir Ahuja, Nicholas Carriero and David Gelernter, 
Linda and Friends, IEEE Computer, Aug. 1986

2. Nicholas Carriero and David Gelernter, Linda in 
Context, Communications of the ACM, Vol. 32, No. 4, 
April 1989

3. L. V. Kale, Technical Correspondence on Linda in 
Context, Communications of the ACM, Vol. 32, No. 
10, Oct. 1989, pp. 1252-1253.

4. Nicholas Carriero and David Gelernter, How to Write 
Parallel Programs: A Guide to the Perplexed, ACM 
Computing Surveys, Vol. 21, No. 3, Sept. 1989

5. Nicholas Carriero and David Gelernter, How to Write 
Parallel Programs: A First Course



Thank you!


