
How To Write A Converse Load Balancer

Terry L. Wilmarth

June 22, 2000

1 Introduction

This manual details how to write your own load balancer in Converse. A
Converse load balancer can be used by any Converse program, but also
serves as the balancer of Charm++ chare creation messages. Specifically,
to use a load balancer, you would pass messages to CldEnqueue rather than
directly to the scheduler. This is the default behavior with chare creation
message in Charm++. Thus, the primary provision of a new load balancer
is an implementation of the CldEnqueue function.

2 Existing Load Balancers and Provided Utilities

Throughout this manual, we will occasionally refer to the source code of
two provided load balancers, the random initial placement load balancer
(cldb.rand.c) and the graph-based load balancer (cldb.graph.c). The
functioning of these balancers will be described in detail later.

In addition, a special utility is provided that allows us to add and remove
load-balanced messages from the scheduler’s queue. The source code for this
is available in cldb.c. The usage of this utility will also be described here
in detail.

3 A Sample Load Balancer

This manual steps through the design of a load balancer using an example
which we will call HELP! The HELP! load balancer has each processor
periodically send half of its load to its neighbor in a ring. Specifically,
for N processors, processor K will send approximately half of its load to
(K+1)%N, every 100 milliseconds (this is an example only; we leave the
genius approaches up to you).

1

4 CLDENQUEUE 2

4 CldEnqueue

The prototype for the CldEnqueue function is as follows:
void CldEnqueue(int pe, void *msg, int infofn);
Here, pe is the intended destination of the msg. It may take on the values

of:

• Any particular processor number - the message must be sent to that
processor

• CLD ANYWHERE - the message can be placed on any processor

• CLD BROADCAST - the message must be sent to all processors excluding
the local processor

• CLD BROADCAST ALL - the message must be sent to all processors in-
cluding the local processor

CldEnqueue must handle all of these possibilities. The only case
in which the load balancer should get control of a mesage is when pe =
CLD ANYWHERE. All other messages must be sent off to their intended desti-
nations and passed on to the scheduler as if they never came in contact with
the load balancer.

The integer parameter infofn is a handler index for a user-provided
function that supplies CldEnqueue with information about the message msg.
We will describe this in more detail later.

Thus, an implementation of the CldEnqueue function might have the
following structure:

void CldEnqueue(int pe, void *msg, int infofn)
{
...
if (pe == CLD_ANYWHERE)

/* These messages can be load balanced */
else if (pe == CmiMyPe())

/* Enqueue the message in the scheduler locally */
else if (pe==CLD_BROADCAST)

/* Broadcast to all but self */
else if (pe==CLD_BROADCAST_ALL)

/* Broadcast to all plus self */
else /* Specific processor number was specified */

/* Send to specific processor */

4 CLDENQUEUE 3

}

In order to fill in the code above, we need to know more about the
message before we can send it off to a scheduler’s queue, either locally or
remotely. For this, we have the info function. The prototype of an info
function must be as follows:
void ifn(void *msg, CldPackFn *pfn, int *len, int *queueing, int
*priobits, unsigned int **prioptr);

Thus, to use the info function, we need to get the actual function via the
handler index provided to CldEnqueue. Typically, CldEnqueue would
contain the following declarations:

int len, queueing, priobits;
unsigned int *prioptr;
CldPackFn pfn;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

Subsequently, a call to ifn would look like this:

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

The info function extracts information from the message about its size,
queuing strategy and priority, and also a pack function, which will be used
when we need to send the message elsewhere. For now, consider the case
where the message is to be locally enqueued:

...
else if (pe == CmiMyPe())

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
...

Thus, we see the info function is used to extract info from the message
that is necessary to pass on to CsdEnqueueGeneral.

In order to send the message to a remote destination and enqueue it in
the scheduler, we need to pack it up with a special pack function so that it
has room for extra handler information and a reference to the info function.
Therefore, before we handle the last three cases of CldEnqueue, we have
a little extra work to do:

5 OTHER FUNCTIONS 4

...
else

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {

pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
...

Calling the info function once gets the pack function we need, if there is
one. We then call the pack function which rearranges the message leaving
space for the info function, which we will need to call on the message when it
is received at its destination, and also room for the extra handler that will be
used on the receiving side to do the actual enqueuing. CldSwitchHandler
is used to set this extra handler, and the receiving side must restore the
original handler.

In the above code, we call the info function again because some of the
values may have changed in the packing process.

Finally, we handle our last few cases:

...
if (pe==CLD_BROADCAST)

CmiSyncBroadcastAndFree(len, msg);
else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);
else CmiSyncSendAndFree(pe, len, msg);

}
}

5 Other Functions

A CldHandler function is necessary to receive messages forwarded by CldEn-
queue:

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)

5 OTHER FUNCTIONS 5

{
CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

Note that the CldHandler properly restores the message’s original han-
dler using CldRestoreHandler, and calls the info function to obtain the
proper parameters to pass on to the scheduler.

Also required is a CldModuleInit function:

void CldModuleInit()
{
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CldModuleGeneralInit();

/* call other init processes here */
CldGraphModuleInit();

}

Here’s an example of an additional init function:

void CldGraphModuleInit()
{
CpvInitialize(int, CldRelocatedMessages);
CpvInitialize(int, CldLoadBalanceMessages);
CpvInitialize(int, CldMessageChunks);

CpvAccess(CldRelocatedMessages) = CpvAccess(CldLoadBalanceMessages) =
CpvAccess(CldMessageChunks) = 0;

CldBalance();
}

6 THE HELP! LOAD BALANCER 6

You may want to provide the three status variables, which get initialized
in your own module init function (called CldGraphModuleInit above). These
can be used to keep track of what your LB is doing (see usage in cldb.graph.c
and itc++queens program).

CpvDeclare(int, CldRelocatedMessages);
CpvDeclare(int, CldLoadBalanceMessages);
CpvDeclare(int, CldMessageChunks);

A method for queueing balanceable messages is provided in cldb.c. That
file contains instructions for its use, and examples of its use can be found in
cldb.graph.c. Its primary function is to provide a way to retrieve messages
from the scheduler queue that have not yet been processed, so that they
may be moved to another processor.

6 The HELP! Load Balancer

The HELP! Load Balancer is available in charm/src/Common/conv-ldb/cldb.test.c.
To try out your own load balancer you can use this filename and SU-
PER INSTALL will compile it and you can link it into your Charm++
programs with -balance test. (To add your own new balancers permanently
and give them another name other than ”test” you will need to change the
Makefile used by SUPER INSTALL. Don’t worry about this for now.) The
cldb.test.c provides a good starting point for new load balancers.

Look at the code for the HELP! balancer, starting with the CldEnqueue
function. This is almost exactly as described earlier. One exception is the
handling of a few extra cases: specifically if we are running the program
on only one processor, we don’t want to do any load balancing. The other
obvious difference is in the first case: how do we handle messages that can
be load balanced? Rather than enqueuing the message directly with the
scheduler, we make use of the token queue. This means that messages can
later be removed for relocation. CldPutToken adds the message to the
token queue on the local processor.

Now look two functions up from CldEnqueue. We have an additional
handler besides the CldHandler: the CldBalanceHandler. The purpose
of this special handler is to receive messages that can be still be relocated
again in the future. Just like the first case of CldEnqueue uses CldPutTo-
ken to keep the message retrievable, CldBalanceHandler does the same
with relocatable messages it receives.

6 THE HELP! LOAD BALANCER 7

Next we look at our initialization functions to see how the process gets
started. The CldModuleInit function gets called by the common Converse
initialization code, and in turn, it calls our CldHelpModuleInit. This
function starts off the periodic load distribution process by making a call to
CldDistributeTokens. This function computes an approximation of half
of its total load (CsdLength()), and if that amount exceeds the number
of movable messages (CldCountTokens()), we attempt to move all of the
movable messages. To do this, we pass this number of messages to move and
the number of the PE to move them to, to the CldMultipleSend function.

CldMultipleSend is generally useful for any load balancer that sends
multiple messages to one processor. It takes parameters pe and numTo-
Move, and handles the packing and transmission of as many messages up to
numToMove as it can find, to the processor pe. If the number and/or size
of the messages sent is very large, CldMultipleSend will transmit them in
reasonably sized parcels.

That’s all there is to the HELP! balancer. Make the test version of
itc++queens and try it out.

