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Chapter 1

Initialization and Completion

The program utilizing Converse begins executing at main, like any other C program. The ini-
tialization process is somewhat complicated by the fact that hardware vendors don’t agree about
which processors should execute main. On some machines, every processor executes main. On
others, only one processor executes main. All processors which don’t execute main are asleep
when the program begins. The function ConverseInit is used to start the Converse system, and
to wake up the sleeping processors.

typedef void (*CmiStartFn)(int argc, char **argv);
void ConverseInit(int argc, char *argv[], CmiStartFn fn, int usched, int initret)
This function starts up the Converse system. It can execute in one of the modes described below.

Normal Mode: schedmode=0, initret=0

When the user runs a program, some of the processors automatically invoke main, while others
remain asleep. All processors which automatically invoked main must call ConverseInit. This
initializes the entire Converse system. Converse then initiates, on all processors, the execution
of the user-supplied start-function fn(argc, argv). When this function returns, Converse auto-
matically calls CsdScheduler, a function that polls for messages and executes their handlers (see
chapter 2). Once CsdScheduler exits on all processors, the Converse system shuts down, and the
user’s program terminates. Note that in this case, ConverseInit never returns. The user is not
allowed to poll for messages manually.

User-calls-scheduler Mode: schedmode=1, initret=0

If the user wants to poll for messages and other events manually, this mode is used to initial-
ize Converse. In normal mode, it is assumed that the user-supplied start-function fn(argc,
argv) is just for initialization, and that the remainder of the lifespan of the program is spent in
the (automatically-invoked) function CsdScheduler, polling for messages. In user-calls-scheduler
mode, however, it is assumed that the user-supplied start-function will perform the entire computa-
tion, including polling for messages. Thus, ConverseInit will not automatically call CsdScheduler
for you. When the user-supplied start-function ends, Converse shuts down. This mode is not sup-
ported on the sim version. This mode can be combined with ConverseInit-returns mode below.

ConverseInit-returns Mode: schedmode=1, initret=1

This option is used when you want ConverseInit to return. All processors which automatically
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invoked main must call ConverseInit. This initializes the entire Converse System. On all proces-
sors which did not automatically invoke main, Converse initiates the user-supplied initialization
function fn(argc, argv). Meanwhile, on those processors which did automatically invoke main,
ConverseInit returns. Shutdown is initiated when the processors that did automatically invoke
main call ConverseExit, and when the other processors return from fn. In this mode, all polling
for messages must be done manually (probably using CsdScheduler explicitly). This option is not
supported by the sim version.

void ConverseExit(void)
This function is only used in ConverseInit-returns mode, described above.
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Chapter 2

Machine Interface and Scheduler

This chapter describes two of Converse’s modules: the CMI, and the CSD. Together, they serve
to transmit messages and schedule the delivery of messages. First, we describe the machine model
assumed by Converse.

2.1 Machine Model

Converse treats the parallel machine as a collection of nodes, where each node is comprised of a
number of processors that share memory In some cases, the number of processors per node may
be exactly one (e.g. Distributed memory multicomputers such as IBM SP.) In addition, each of
the processors may have multiple threads running on them which share code and data but have
different stacks. Functions and macros are provided for handling shared memory across processors
and querying node information. These are discussed in section 2.13

2.2 Defining Handler Numbers

When a message arrives at a processor, it triggers the execution of a handler function, not unlike
a UNIX signal handler. The handler function receives, as an argument, a pointer to a copy of the
message. The message itself specifies which handler function is to be called when the message
arrives. Messages are contiguous sequences of bytes. The message has two parts: the header, and
the data. The data may contain anything you like. The header contains a handler number, which
specifies which handler function is to be executed when the message arrives. Before you can send
a message, you have to define the handler numbers.

Converse maintains a table mapping handler numbers to function pointers. Each processor has
its own copy of the mapping. There is a caution associated with this approach: it is the user’s
responsibility to ensure that all processors have identical mappings. This is easy to do, nonetheless,
and the user must be aware that this is (usually) required.

The following functions are provided to define the handler numbers:

typedef void (*CmiHandler)(void *)
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Functions that handle Converse messages must be of this type.

int CmiRegisterHandler(CmiHandler h)
This represents the standard technique for associating numbers with functions. To use this tech-
nique, the Converse user registers each of his functions, one by one, using CmiRegisterHandler.
One must register exactly the same functions in exactly the same order on all processors. The
system assigns monotonically increasing numbers to the functions, the same numbers on all pro-
cessors. This insures global consistency. CmiRegisterHandler returns the number which was
chosen for the function being registered.

int CmiRegisterHandlerGlobal(CmiHandler h)
This represents a second registration technique. The Converse user registers his functions on pro-
cessor zero, using CmiRegisterHandlerGlobal. The Converse user is then responsible for broad-
casting those handler numbers to other processors, and installing them using CmiNumberHandler
below. The user should take care not to invoke those handlers until they are fully installed.

int CmiRegisterHandlerLocal(CmiHandler h)
This function is used when one wishes to register functions in a manner that is not consistent
across processors. This function chooses a locally-meaningful number for the function, and records
it locally. No attempt is made to ensure consistency across processors.

void CmiNumberHandler(int n, CmiHandler h)
Forces the system to associate the specified handler number n with the specified handler function
h. If the function number n was previously mapped to some other function, that old mapping is
forgotten. The mapping that this function creates is local to the current processor. CmiNum-
berHandler can be useful in combination with CmiRegisterGlobalHandler. It can also be used to
implement user-defined numbering schemes: such schemes should keep in mind that the size of
the table that holds the mapping is proportional to the largest handler number — do not use big
numbers!

Note: of the three registration methods, the CmiRegisterHandler method is by far the simplest,
and is strongly encouraged. The others are primarily to ease the porting of systems that already
use similar registration techniques. One may use all three registration methods in a program.
The system guarantees that no numbering conflicts will occur as a result of this combination.

2.3 Writing Handler Functions

A message handler function is just a C function that accepts a void pointer (to a message buffer)
as an argument, and returns nothing. The handler may use the message buffer until it returns, at
which time Converse will automatically free the message buffer. This behavior can be overrided
using CmiGrabBuffer:

void CmiGrabBuffer(void **pbuf)
A handler function receives a pointer to a message buffer as an argument. Normally, it is supposed
to copy the data out of the message buffer before it returns, at which time Converse automatically
frees the message buffer. However, a handler function may use CmiGrabBuffer to claim ownership
of the message buffer (and therefore prevent Converse from freeing it). Assuming, for example,
that the handler function called its argument msg, it would call CmiGrabBuffer(&msg). Afterward,
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msg contains a pointer to the message, or a copy of it. From that point forward, it is the user’s
responsibility to free the message using CmiFree.

void CmiReleaseBuffer(void *buf)
A handler function receives a pointer to a message buffer as an argument. Normally, it is supposed
to copy the data out of the message buffer before it returns, at which time Converse automatically
frees the message buffer or may reuse it for further communication. However, a handler function
may use CmiReleaseBuffer to give up ownership of the message buffer in the middle of handler
execution (and therefore allowing Converse to reuse it).

2.4 Building Messages

To send a message, one first creates a buffer to hold the message. The buffer must be large enough
to hold the header and the data. The buffer can be in any kind of memory: it could be a local
variable, it could be a global, it could be allocated with malloc, and finally, it could be allocated
with CmiAlloc. The Converse user fills the buffer with the message data. One puts a handler
number in the message, thereby specifying which handler function the message should trigger
when it arrives. Finally, one uses a message-transmission function to send the message.

The following functions are provided to help build message buffers:

void *CmiAlloc(int size)
Allocates memory of size size in heap and returns pointer to the usable space. There are some
message-sending functions that accept only message buffers that were allocated with CmiAlloc.
Thus, this is the preferred way to allocate message buffers.

void CmiFree(void *ptr)
This function frees the memory pointed to by ptr. ptr should be a pointer that was previously
returned by CmiAlloc.

#define CmiMsgHeaderSizeBytes
This constant contains the size of the message header. When one allocates a message buffer, one
must set aside enough space for the header and the data. This macro helps you to do so.

void CmiSetHandler(int *MessageBuffer, int HandlerId)
This macro sets the handler number of a message to HandlerId.

int CmiGetHandler(int *MessageBuffer)
This call returns the handler of a message in the form of a handler number.

CmiHandler CmiGetHandlerFunction(int *MessageBuffer)
This call returns the handler of a message in the form of a function pointer.

2.5 Sending Messages

The following functions allow you to send messages. Our model is that the data starts out in
the message buffer, and from there gets transferred “into the network”. The data stays “in the
network” for a while, and eventually appears on the target processor. Using that model, each of
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these send-functions is a device that transfers data into the network. None of these functions wait
for the data to be delivered.

On some machines, the network accepts data rather slowly. We don’t want the process to sit
idle, waiting for the network to accept the data. So, we provide several variations on each send
function:

• sync: a version that is as simple as possible, pushing the data into the network and not
returning until the data is “in the network”. As soon as a sync function returns, you can
reuse the message buffer.

• async: a version that returns almost instantaneously, and then continues working in the
background. The background job transfers the data from the message buffer into the net-
work. Since the background job is still using the message buffer when the function returns,
you can’t reuse the message buffer immediately. The background job sets a flag when it is
done and you can then reuse the message buffer.

• sync and free: a version that returns almost instantaneously, and then continues working
in the background. The background job transfers the data from the message buffer into
the network. When the background job finishes, it CmiFrees the message buffer. In this
situation, you can’t reuse the message buffer at all. Of course, to use a function of this type,
you must allocate the message buffer using CmiAlloc.

• node: a version that send a message to a node instead of a specific processor. This means
that when the message is received, any “free” processor within than node can handle it.

void CmiSyncSend(unsigned int destPE, unsigned int size, void *msg)
Sends msg of size size bytes to processor destPE. When it returns, you may reuse the message
buffer.

void CmiSyncNodeSend(unsigned int destNode, unsigned int size, void *msg)
Sends msg of size size bytes to node destNode. When it returns, you may reuse the message
buffer.

void CmiSyncSendAndFree(unsigned int destPE, unsigned int size, void *msg)
Sends msg of size size bytes to processor destPE. When it returns, the message buffer has been
freed using CmiFree.

void CmiSyncNodeSendAndFree(unsigned int destNode, unsigned int size, void *ms-
g)
Sends msg of size size bytes to node destNode. When it returns, the message buffer has been
freed using CmiFree.

CmiCommHandle CmiAsyncSend(unsigned int destPE, unsigned int size, void *msg)
Sends msg of size size bytes to processor destPE. It returns a communication handle which can
be tested using CmiAsyncMsgSent: when this returns true, you may reuse the message buffer. If
the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent.

CmiCommHandle CmiAsyncNodeSend(unsigned int destNode, unsigned int size,
void *msg)
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Sends msg of size size bytes to node destNode. It returns a communication handle which can
be tested using CmiAsyncMsgSent: when this returns true, you may reuse the message buffer. If
the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent.

void CmiSyncVectorSend(int destPE, int len, int sizes[], char *msgComps[])
Concatenates several pieces of data and sends them to processor destPE. The data consists of
len pieces residing in different areas of memory, which are logically concatenated. The msgComps
array contains pointers to the pieces; the size of msgComps[i] is taken from sizes[i]. When it
returns, sizes, msgComps and the message components specified in msgComps can be immediately
reused.

void CmiSyncVectorSendAndFree(int destPE, int len, int sizes[], char *msgComps[])
Concatenates several pieces of data and sends them to processor destPE. The data consists of
len pieces residing in different areas of memory, which are logically concatenated. The msgComps
array contains pointers to the pieces; the size of msgComps[i] is taken from sizes[i]. The
message components specified in msgComps are CmiFreed by this function therefore, they should
be dynamically allocated using CmiAlloc(). However, the sizes and msgComps array themselves
are not freed.

CmiCommHandle CmiAsyncVectorSend(int destPE, int len, int sizes[], char *msg-
Comps[])
Concatenates several pieces of data and sends them to processor destPE. The data consists of
len pieces residing in different areas of memory, which are logically concatenated. The msgComps
array contains pointers to the pieces; the size of msgComps[i] is taken from sizes[i]. The indi-
vidual pieces of data as well as the arrays sizes and msgComps should not be overwritten or freed
before the communication is complete. This function returns a communication handle which can
be tested using CmiAsyncMsgSent: when this returns true, the input parameters can be reused.
If the returned communication handle is 0, message buffer can be reused immediately, thus saving
a call to CmiAsyncMsgSent.

int CmiAsyncMsgSent(CmiCommHandle handle)
Returns true if the communication specified by the given CmiCommHandle has proceeded to the
point where the message buffer can be reused.

void CmiReleaseCommHandle(CmiCommHandle handle)
Releases the communication handle handle and associated resources. It does not free the message
buffer.

void CmiMultipleSend(unsigned int destPE, int len, int sizes[], char *msgComps[])
This function allows the user to send many multiple messages that may be destined for the SAME
PE in one go. This is more efficient than sending each message to the destination node separately.
This function assumes that the handlers that are to receive this message have already been set.
If this is not done, the behavior of the function is undefined.

In the function, The destPE parameter identifies the destination processor.

The len argument identifies the number of messages that are to be sent in one go.

The sizes[] array is an array of sizes of each of these messages.

The msgComps[] array is the array of the messages.
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The indexing in each array is from 0 to len - 1.

Note:

Before calling this function, the program needs to initialise the system to be able to provide
this service. This is done by calling the function void CmiInitMultipleSendRoutine(void) .
Unless this function is called, the system will not be able to provide the service to the user.

2.6 Broadcasting Messages

void CmiSyncBroadcast(unsigned int size, void *msg)
Sends msg of length size bytes to all processors excluding the processor on which the caller
resides.

void CmiSyncNodeBroadcast(unsigned int size, void *msg)
Sends msg of length size bytes to all nodes excluding the node on which the caller resides.

void CmiSyncBroadcastAndFree(unsigned int size, void *msg)
Sends msg of length size bytes to all processors excluding the processor on which the caller
resides. Uses CmiFree to deallocate the message buffer for msg when the broadcast completes.
Therefore msg must point to a buffer allocated with CmiAlloc.

void CmiSyncNodeBroadcastAndFree(unsigned int size, void *msg)
Sends msg of length size bytes to all nodes excluding the node on which the caller resides. Uses
CmiFree to deallocate the message buffer for msg when the broadcast completes. Therefore msg
must point to a buffer allocated with CmiAlloc.

void CmiSyncBroadcastAll(unsigned int size, void *msg)
Sends msg of length size bytes to all processors including the processor on which the caller resides.
This function does not free the message buffer for msg.

void CmiSyncNodeBroadcastAll(unsigned int size, void *msg)
Sends msg of length size bytes to all nodes including the node on which the caller resides. This
function does not free the message buffer for msg.

void CmiSyncBroadcastAllAndFree(unsigned int size, void *msg)
Sends msg of length size bytes to all processors including the processor on which the caller
resides. This function frees the message buffer for msg before returning, so msg must point to a
dynamically allocated buffer.

void CmiSyncNodeBroadcastAllAndFree(unsigned int size, void *msg)
Sends msg of length size bytes to all nodes including the node on which the caller resides. This
function frees the message buffer for msg before returning, so msg must point to a dynamically
allocated buffer.

CmiCommHandle CmiAsyncBroadcast(unsigned int size, void *msg)
Initiates asynchronous broadcast of message msg of length size bytes to all processors excluding
the processor on which the caller resides. It returns a communication handle which could be used
to check the status of this send using CmiAsyncMsgSent(). If the returned communication handle
is 0, message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg
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should not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncNodeBroadcast(unsigned int size, void *msg)
Initiates asynchronous broadcast of message msg of length size bytes to all nodes excluding the
node on which the caller resides. It returns a communication handle which could be used to check
the status of this send using CmiAsyncMsgSent(). If the returned communication handle is 0,
message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg should
not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncBroadcastAll(unsigned int size, void *msg)
Initiates asynchronous broadcast of message msg of length size bytes to all processors including
the processor on which the caller resides. It returns a communication handle which could be used
to check the status of this send using CmiAsyncMsgSent(). If the returned communication handle
is 0, message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg
should not be overwritten or freed before the communication is complete.

CmiCommHandle CmiAsyncNodeBroadcastAll(unsigned int size, void *msg)
Initiates asynchronous broadcast of message msg of length size bytes to all nodes including the
node on which the caller resides. It returns a communication handle which could be used to check
the status of this send using CmiAsyncMsgSent(). If the returned communication handle is 0,
message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg should
not be overwritten or freed before the communication is complete.

2.7 Multicasting Messages

typedef ... CmiGroup;
A CmiGroup represents a set of processors. It is an opaque type. Group IDs are useful for the
multicast functions below.

CmiGroup CmiEstablishGroup(int npes, int *pes);
Converts an array of processor numbers into a group ID. Group IDs are useful for the multicast
functions below. Caution: this call uses up some resources. In particular, establishing a group
uses some network bandwidth (one broadcast’s worth) and a small amount of memory on all
processors.

void CmiSyncMulticast(CmiGroup grp, unsigned int size, void *msg)
Sends msg of length size bytes to all members of the specified group. Group IDs are created
using CmiEstablishGroup.

void CmiSyncMulticastAndFree(CmiGroup grp, unsigned int size, void *msg)
Sends msg of length size bytes to all members of the specified group. Uses CmiFree to deallocate
the message buffer for msg when the broadcast completes. Therefore msg must point to a buffer
allocated with CmiAlloc. Group IDs are created using CmiEstablishGroup.

CmiCommHandle CmiAsyncMulticast(CmiGroup grp, unsigned int size, void *msg)
Not yet implemented. Initiates asynchronous broadcast of message msg of length size bytes to
all members of the specified group. It returns a communication handle which could be used to
check the status of this send using CmiAsyncMsgSent(). If the returned communication handle is
0, message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg should
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not be overwritten or freed before the communication is complete. Group IDs are created using
CmiEstablishGroup.

void CmiSyncListSend(int npes, int *pes, unsigned int size, void *msg)
Not yet implemented. Sends msg of length size bytes to all processors in the list. Group IDs are
created using CmiEstablishGroup.

void CmiSyncMulticastAndFree(int npes, int *pes, unsigned int size, void *msg)
Not yet implemented. Sends msg of length size bytes to all processors in the list. Uses CmiFree
to deallocate the message buffer for msg when the broadcast completes. Therefore msg must point
to a buffer allocated with CmiAlloc. Group IDs are created using CmiEstablishGroup.

CmiCommHandle CmiAsyncMulticast(int npes, int *pes, unsigned int size, void *ms-
g)
Not yet implemented. Initiates asynchronous broadcast of message msg of length size bytes
to all processors in the list. It returns a communication handle which could be used to check
the status of this send using CmiAsyncMsgSent(). If the returned communication handle is 0,
message buffer can be reused immediately, thus saving a call to CmiAsyncMsgSent. msg should
not be overwritten or freed before the communication is complete. Group IDs are created using
CmiEstablishGroup.

2.8 Scheduling Messages

The scheduler queue is a powerful priority queue. The following functions can be used to place
messages into the scheduler queue. These messages are treated very much like newly-arrived
messages: when they reach the front of the queue, they trigger handler functions, just like messages
transmitted with Cmi functions. Note that unlike the Cmi send functions, these cannot move
messages across processors.

Every message inserted into the queue has a priority associated with it. Converse priorities are
arbitrary-precision numbers between 0 and 1. Priorities closer to 0 get processed first, priorities
closer to 1 get processed last. Arbitrary-precision priorities are very useful in AI search-tree
applications. Suppose we have a heuristic suggesting that tree node N1 should be searched before
tree node N2. We therefore designate that node N1 and its descendants will use high priorities,
and that node N2 and its descendants will use lower priorities. We have effectively split the range
of possible priorities in two. If several such heuristics fire in sequence, we can easily split the
priority range in two enough times that no significant bits remain, and the search begins to fail
for lack of meaningful priorities to assign. The solution is to use arbitrary-precision priorities, aka
bitvector priorities.

These arbitrary-precision numbers are represented as bit-strings: for example, the bit-string
“0011000101” represents the binary number (.0011000101). The format of the bit-string is as
follows: the bit-string is represented as an array of unsigned integers. The most significant bit
of the first integer contains the first bit of the bitvector. The remaining bits of the first integer
contain the next 31 bits of the bitvector. Subsequent integers contain 32 bits each. If the size
of the bitvector is not a multiple of 32, then the last integer contains 0 bits for padding in the
least-significant bits of the integer.
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Some people only want regular integers as priorities. For simplicity’s sake, we provide an easy
way to convert integer priorities to Converse’s built-in representation.

In addition to priorities, you may choose to enqueue a message “LIFO” or “FIFO”. Enqueueing a
message “FIFO” simply pushes it behind all the other messages of the same priority. Enqueueing
a message “LIFO” pushes it in front of other messages of the same priority.

Messages sent using the CMI functions take precedence over everything in the scheduler queue,
regardless of priority.

A recent addition to Converse scheduling mechanisms is the introduction of node-level scheduling
designed to support low-overhead programming for the SMP clusters. These functions have
“Node” in their names. All processors within the node has access to the node-level scheduler’s
queue, and thus a message enqueued in a node-level queue may be handled by any processor
within that node. When deciding about which message to process next, i.e. from processor’s
own queue or from the node-level queue, a quick priority check is performed internally, thus a
processor views scheduler’s queue as a single prioritized queue that includes messages directed at
that processor and messages from the node-level queue sorted according to priorities.

void CsdEnqueueGeneral(void *Message, int strategy, int priobits, int *prioptr)
This call enqueues a message to the processor’s scheduler’s queue, to be sorted according to its
priority and the queueing strategy. The meaning of the priobits and prioptr fields depend
on the value of strategy, which are explained below.

void CsdNodeEnqueueGeneral(void *Message, int strategy, int priobits, int *prioptr)
This call enqueues a message to the node-level scheduler’s queue, to be sorted according to its
priority and the queueing strategy. The meaning of the priobits and prioptr fields depend
on the value of strategy, which can be any of the following:

• CQS QUEUEING BFIFO: the priobits and prioptr point to a bit-string representing an arbitrary-
precision priority. The message is pushed behind all other message of this priority.

• CQS QUEUEING BLIFO: the priobits and prioptr point to a bit-string representing an arbitrary-
precision priority. The message is pushed in front all other message of this priority.

• CQS QUEUEING IFIFO: the prioptr is a pointer to a signed integer. The integer is converted
to a bit-string priority, normalizing so that the integer zero is converted to the bit-string
“1000...” (the “middle” priority). To be more specific, the conversion is performed by
adding 0x80000000 to the integer, and then treating the resulting 32-bit quantity as a 32-
bit bitvector priority. The message is pushed behind all other messages of this priority.

• CQS QUEUEING ILIFO: the prioptr is a pointer to a signed integer. The integer is converted
to a bit-string priority, normalizing so that the integer zero is converted to the bit-string
“1000...” (the “middle” priority). To be more specific, the conversion is performed by
adding 0x80000000 to the integer, and then treating the resulting 32-bit quantity as a 32-
bit bitvector priority. The message is pushed in front of all other messages of this priority.

• CQS QUEUEING FIFO: the prioptr and priobits are ignored. The message is enqueued with
the middle priority “1000...”, and is pushed behind all other messages with this priority.

• CQS QUEUEING LIFO: the prioptr and priobits are ignored. The message is enqueued with
the middle priority “1000...”, and is pushed in front of all other messages with this priority.
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Caution: the priority itself is not copied by the scheduler. Therefore, if you pass a pointer to a
priority into the scheduler, you must not overwrite or free that priority until after the message
has emerged from the scheduler’s queue. It is normal to actually store the priority in the message
itself, though it is up to the user to actually arrange storage for the priority.

void CsdEnqueue(void *Message)
This macro is a shorthand for CsdEnqueueGeneral(Message, CQS QUEUEING FIFO,0, NULL) pro-
vided here for backward compatibility.

void CsdNodeEnqueue(void *Message)
This macro is a shorthand for CsdNodeEnqueueGeneral(Message, CQS QUEUEING FIFO,0, NULL)
provided here for backward compatibility.

void CsdEnqueueFifo(void *Message)
This macro is a shorthand for CsdEnqueueGeneral(Message, CQS QUEUEING FIFO,0, NULL) pro-
vided here for backward compatibility.

void CsdNodeEnqueueFifo(void *Message)
This macro is a shorthand for CsdNodeEnqueueGeneral(Message, CQS QUEUEING FIFO,0, NULL)
provided here for backward compatibility.

void CsdEnqueueLifo(void *Message)
This macro is a shorthand for CsdEnqueueGeneral(Message, CQS QUEUEING LIFO,0, NULL) pro-
vided here for backward compatibility.

void CsdNodeEnqueueLifo(void *Message)
This macro is a shorthand for CsdNodeEnqueueGeneral(Message, CQS QUEUEING LIFO,0, NULL)
provided here for backward compatibility.

int CsdEmpty()
This function returns non-zero integer when the scheduler’s processor-level queue is empty, zero
otherwise.

int CsdNodeEmpty()
This function returns non-zero integer when the scheduler’s node-level queue is empty, zero oth-
erwise.

2.9 Polling for Messages

As we stated earlier, Converse messages trigger handler functions when they arrive. In fact, for this
to work, the processor must occasionally poll for messages. When the user starts Converse, he can
put it into one of several modes. In the normal mode, the message polling happens automatically.
However user-calls-scheduler mode is designed to let the user poll manually. To do this, the user
must use one of two polling functions: CmiDeliverMsgs, or CsdScheduler. CsdScheduler is more
general, it will notice any Converse event. CmiDeliverMsgs is a lower-level function that ignores
all events except for recently-arrived messages. (In particular, it ignores messages in the scheduler
queue). You can save a tiny amount of overhead by using the lower-level function. We recommend
the use of CsdScheduler for all applications except those that are using only the lowest level of
Converse, the Cmi. A third polling function, CmiDeliverSpecificMsg, is used when you know the
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exact event you want to wait for: it does not allow any other event to occur.

void CsdScheduler(int NumberOfMessages)
This call invokes the Converse scheduler, which repeatedly delivers messages to their handlers
(i.e. invokes the handler for each message it selects). In each iteration, the scheduler first looks
for any message that has arrived from another processor, and delivers it. If there isn’t any, it
selects a message from the locally enqueued messages, and delivers it. The NumberOfMessages
parameter specifies how many messages should be processed (i.e. delivered to their handlers). If
set to -1, the scheduler continues delivering messages until CsdExitScheduler() is called from a
message handler. if NumberOfMessages is 0, the scheduler continues delivering messages until it
exhausts its supply of messages (i.e. becomes idle) or some handler calls CsdExitScheduler().

int CmiDeliverMsgs(int MaxMsgs)
Retrieves messages from the network message queue and invokes corresponding handler functions
for arrived messages. This function returns after either the network message queue becomes empty
or after MaxMsgs messages have been retrieved and their handlers called. It returns the difference
between total messages delivered and MaxMsgs. The handler is given a pointer to the message as
its parameter.

void CmiDeliverSpecificMsg(int HandlerId)
Retrieves messages from the network queue and delivers the first message with its handler field
equal to HandlerId. This functions leaves alone all other messages. It returns after the invoked
handler function returns.

void CsdExitScheduler(void)
This call causes CsdScheduler to stop processing messages when control has returned back to it.
The scheduler then returns to its calling routine.

2.10 Scheduler Callbacks

Scheduler callbacks are provided for programmers who want to utilize in some way the event of
scheduler becoming idle, or the scheduler becoming busy again. Typically, these callbacks are
useful for determining idle time in complex multilingual programs. The callback function should
not contain calls to scheduler related functions. Also, the callback functions should not block
indefinitely. Doing so will cause the conditional callbacks to fail. Following functions are provided
for controlling the scheduler callbacks.

void CsdStartNotifyIdle(void)
This call causes CsdScheduler to invoke callback functions for idle and busy notifications. Initially,
the scheduler does not call any callback functions.

void CsdStopNotifyIdle(void)
This call causes CsdScheduler to stop invoking callback functions for idle and busy norifications.

void CsdSetNotifyIdle(void (* fIdle)(void), void (* fBusy)(void))
This call registers the functions to be called when CsdScheduler becomes idle (fIdle) or busy
(fBusy). These functions can be overridden with another call to CsdSetNotifyIdle.
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2.11 The Timer

double CmiTimer(void)
Returns current value of the timer in seconds. This is typically the time spent since the ConverseInit()
call. The precision of this timer is the best available on the particular machine, and usually has
at least microsecond accuracy.

2.12 Processor Ids

int CmiNumPe(void)
Returns the total number of processors on which the parallel program is being run.

int CmiMyPe(void)
Returns the logical processor identifier of processor on which the caller resides. A processor Id is
between 0 and CmiNumPe()-1.

Also see the calls in Section 2.13.2.

2.13 Global Variables and Utility functions

Different vendors are not consistent about how they treat global and static variables. Most vendors
write C compilers in which global variables are shared among all the processors in the node. A
few vendors write C compilers where each processor has its own copy of the global variables. In
theory, it would also be possible to design the compiler so that each thread has its own copy of
the global variables.

The lack of consistency across vendors, makes it very hard to write a portable program. The fact
that most vendors make the globals shared is inconvenient as well, usually, you don’t want your
globals to be shared. For these reasons, we added “pseudoglobals” to Converse. These act much
like C global and static variables, except that you have explicit control over the degree of sharing.

2.13.1 Converse PseudoGlobals

Three classes of pseudoglobal variables are supported: node-private, process-private, and thread-
private variables.

Node-private global variables are specific to a node. They are shared among all the processes
within the node.

Process-private global variables are specific to a process. They are shared among all the
threads within the process.

Thread-private global variables are specific to a thread. They are truely private.

There are five macros for each class. These macros are for declaration, static declaration, extern
declaration, initialization, and access. The declaration, static and extern specifications have the
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same meaning as in C. In order to support portability, however, the global variables must be
installed properly, by using the initialization macros. For example, if the underlying machine is a
simulator for the machine model supported by Converse, then the thread-private variables must
be turned into arrays of variables. Initialize and Access macros hide these details from the user. It
is possible to use global variables without these macros, as supported by the underlying machine,
but at the expense of portability.

Macros for node-private variables:

CsvDeclare(type,variable)
CsvStaticDeclare(type,variable)
CsvExtern(type,variable)
CsvInitialize(type,variable)
CsvAccess(variable)

Macros for process-private variables:

CpvDeclare(type,variable)
CpvStaticDeclare(type,variable)
CpvExtern(type,variable)
CpvInitialize(type,variable)
CpvAccess(variable)

Macros for thread-private variables:

CtvDeclare(type,variable)
CtvStaticDeclare(type,variable)
CtvExtern(type,variable)
CtvInitialize(type,variable)
CtvAccess(variable)

A sample code to illustrate the usage of the macros is provided in Figure 2.1. There are a few
rules that the user must pay attention to: The type and variable fields of the macros must be
a single word. Therefore, structures or pointer types can be used by defining new types with the
typedef. In the sample code, for example, a struct point type is redefined with a typedef as
Point in order to use it in the macros. Similarly, the access macros contain only the name of the
global variable. Any indexing or member access must be outside of the macro as shown in the
sample code (function func1). Finally, all the global variables must be installed before they are
used. One way to do this systematically is to provide a module-init function for each file (in the
sample code - ModuleInit(). The module-init functions of each file, then, can be called at the
beginning of execution to complete the installations of all global variables.

2.13.2 Utility Functions

To further simplify programming with global variables on shared memory machines, Converse
provides the following functions and/or macros. (Note: These functions are defined on machines
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File Module1.c

typedef struct point
{

float x,y;
} Point;

CpvDeclare(int, a);
CpvDeclare(Point, p);

void ModuleInit()
{

CpvInitialize(int, a)
CpvInitialize(Point, p);

CpvAccess(a) = 0;
}

int func1()
{

CpvAccess(p).x = 0;
CpvAccess(p).y = CpvAccess(p).x + 1;

}

Figure 2.1: An example code for global variable usage

other than shared-memory machines also, and have the effect of only one processor per node and
only one thread per processor.)

int CmiMyNode()
Returns the node number to which the calling processor belongs.

int CmiNumNodes()
Returns number of nodes in the system. Note that this is not the same as CmiNumPes().

int CmiMyRank()
Returns the rank of the calling processor within a shared memory node.

int CmiNodeFirst(int node)
Returns the processor number of the lowest ranked processor on node node

int CmiNodeSize(int node)
Returns the number of processors that belong to the node node.

int CmiNodeOf(int pe)
Returns the node number to which processor pe belongs. Indeed, CmiMyNode() is a utility macro
that is aliased to CmiNodeOf(CmiMyPe()).
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int CmiRankOf(int pe)
Returns the rank of processor pe in the node to which it belongs.

2.13.3 Node-level Locks and other Synchronization Mechanisms

void CmiNodeBarrier()
Provide barrier synchronization at the node level, i.e. all the processors belonging to the node
participate in this barrier.

typedef McDependentType CmiNodeLock
This is the type for all the node-level locks in Converse.

CmiNodeLock CmiCreateLock(void)
Creates, initializes and returns a new lock. Initially the lock is unlocked.

void CmiLock(CmiNodeLock lock)
Locks lock. If the lock has been locked by other processor, waits for lock to be unlocked.

void CmiUnlock(CmiNodeLock lock)
Unlocks lock. Processors waiting for the lock can then compete for acquiring lock.

int CmiTryLock(CmiNodeLock lock)
Tries to lock lock. If it succeeds in locking, it returns 0. If any other processor has already
acquired the lock, it returns 1.

voi CmiDestroyLock(CmiNodeLock lock)
Frees any memory associated with lock. It is an error to perform any operations with lock after
a call to this function.

2.14 Input/Output

void CmiPrintf(char *format, arg1, arg2, ...)
This function does an atomic printf() on stdout. On machine with host, this is implemented
on top of the messaging layer using asynchronous sends.

int CmiScanf(char *format, void *arg1, void *arg2, ...)
This function performs an atomic scanf from stdin. The processor, on which the caller resides,
blocks for input. On machines with host, this is implemented on top of the messaging layer using
asynchronous send and blocking receive.

void CmiError(char *format, arg1, arg2, ...)
This function does an atomic printf() on stderr. On machines with host, this is implemented
on top of the messaging layer using asynchronous sends.
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2.15 Spanning Tree Calls

Sometimes, it is convenient to view the processors/nodes of the machine as a tree. For this pur-
pose, Converse defines a tree over processors/nodes. We provide functions to obtain the parent
and children of each processor/node. On those machines where the communication topology is
relevant, we arrange the tree to optimize communication performance. The root of the span-
ning tree (processor based or node-based) is always 0, thus the CmiSpanTreeRoot call has been
eliminated.

int CmiSpanTreeParent(int procNum)
This function returns the processor number of the parent of procNum in the spanning tree.

int CmiNumSpanTreeChildren(int procNum)
Returns the number of children of procNum in the spanning tree.

void CmiSpanTreeChildren(int procNum, int *children)
This function fills the array children with processor numbers of children of procNum in the
spanning tree.

int CmiNodeSpanTreeParent(int nodeNum)
This function returns the node number of the parent of nodeNum in the spanning tree.

int CmiNumNodeSpanTreeChildren(int nodeNum)
Returns the number of children of nodeNum in the spanning tree.

void CmiNodeSpanTreeChildren(int nodeNum, int *children)
This function fills the array children with node numbers of children of nodeNum in the spanning
tree.
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Chapter 3

Threads

The calls in this chapter can be used to put together runtime systems for languages that support
threads. This threads package, like most thread packages, provides basic functionality for creating
threads, destroying threads, yielding, suspending, and awakening a suspended thread. In addition,
it provides facilities whereby you can write your own thread schedulers.

3.1 Basic Thread Calls

typedef struct CthThreadStruct *CthThread;
This is an opaque type defined in converse.h. It represents a first-class thread object. No
information is publicized about the contents of a CthThreadStruct.

typedef void (CthVoidFn)();
This is a type defined in converse.h. It represents a function that returns nothing.

typedef CthThread (CthThFn)();
This is a type defined in converse.h. It represents a function that returns a CthThread.

CthThread CthSelf()
Returns the currently-executing thread. Note: even the initial flow of control that inherently
existed when the program began executing main counts as a thread. You may retrieve that
thread object using CthSelf and use it like any other.

CthThread CthCreate(CthVoidFn fn, void *arg, int size)
Creates a new thread object. The thread is not given control yet. To make the thread execute,
you must push it into the scheduler queue, using CthAwaken below. When (and if) the thread
eventually receives control, it will begin executing the specified function fn with the specified
argument. The size parameter specifies the stack size in bytes, 0 means use the default size.
Caution: almost all threads are created with CthCreate, but not all. In particular, the one initial
thread of control that came into existence when your program was first exec’d was not created
with CthCreate, but it can be retrieved (say, by calling CthSelf in main), and it can be used like
any other CthThread.
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void CthFree(CthThread t)
Frees thread t. You may ONLY free the currently-executing thread (yes, this sounds strange, it’s
historical). Naturally, the free will actually be postponed until the thread suspends. To terminate
itself, a thread calls CthFree(CthSelf()), then gives up control to another thread.

void CthSuspend()
Causes the current thread to stop executing. The suspended thread will not start executing
again until somebody pushes it into the scheduler queue again, using CthAwaken below. Control
transfers to the next task in the scheduler queue.

void CthAwaken(CthThread t)
Pushes a thread into the scheduler queue. Caution: a thread must only be in the queue once.
Pushing it in twice is a crashable error.

void CthAwakenPrio(CthThread t, int strategy, int priobits, int *prio)
Pushes a thread into the scheduler queue with priority specified by priobits and prio and
queueing strategy strategy. Caution: a thread must only be in the queue once. Pushing it in
twice is a crashable error. prio is not copied internally, and is used when the scheduler dequeues
the message, so it should not be reused until then.

void CthYield()
This function is part of the scheduler-interface. It simply executes { CthAwaken(CthSelf());
CthSuspend(); } . This combination gives up control temporarily, but ensures that control will
eventually return.

void CthYieldPrio(int strategy, int priobits, int *prio)
This function is part of the scheduler-interface. It simply executes
{CthAwakenPrio(CthSelf(),strategy,priobits,prio);CthSuspend();}
This combination gives up control temporarily, but ensures that control will eventually return.

CthThread CthGetNext(CthThread t)
Each thread contains space for the user to store a “next” field (the functions listed here pay no
attention to the contents of this field). This field is typically used by the implementors of mutexes,
condition variables, and other synchronization abstractions to link threads together into queues.
This function returns the contents of the next field.

void CthSetNext(CthThread t, CthThread next)
Each thread contains space for the user to store a “next” field (the functions listed here pay no
attention to the contents of this field). This field is typically used by the implementors of mutexes,
condition variables, and other synchronization abstractions to link threads together into queues.
This function sets the contents of the next field.

3.2 Thread Scheduling and Blocking Restrictions

Converse threads use a scheduler queue, like any other threads package. We chose to use the
same queue as the one used for Converse messages (see section 2.8). Because of this, thread
context-switching will not work unless there is a thread polling for messages. A rule of thumb,
with Converse, it is best to have a thread polling for messages at all times. In Converse’s normal
mode (see section 1), this happens automatically. However, in user-calls-scheduler mode, you
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must be aware of it.

There is a second caution associated with this design. There is a thread polling for messages (even
in normal mode, it’s just hidden in normal mode). The continuation of your computation depends
on that thread — you must not block it. In particular, you must not call blocking operations in
these places:

• In the code of a Converse handler (see sections 2.2 and 2.3).

• In the code of the Converse start-function (see section 1).

These restrictions are usually easy to avoid. For example, if you wanted to use a blocking operation
inside a Converse handler, you would restructure the code so that the handler just creates a new
thread and returns. The newly-created thread would then do the work that the handler originally
did.

3.3 Thread Scheduling Hooks

Normally, when you CthAwaken a thread, it goes into the primary ready-queue: namely, the main
Converse queue described in section 2.8. However, it is possible to hook a thread to make it go
into a different ready-queue. That queue doesn’t have to be priority-queue: it could be FIFO,
or LIFO, or in fact it could handle its threads in any complicated order you desire. This is a
powerful way to implement your own scheduling policies for threads.

To achieve this, you must first implement a new kind of ready-queue. You must implement a
function that inserts threads into this queue. The function must have this prototype:

void awakenfn(CthThread t, int strategy, int priobits, int *prio);

When a thread suspends, it must choose a new thread to transfer control to. You must implement
a function that makes the decision: which thread should the current thread transfer to. This
function must have this prototype:

CthThread choosefn();

Typically, the choosefn would choose a thread from your ready-queue. Alternately, it might choose
to always transfer control to a central scheduling thread.

You then configure individual threads to actually use this new ready-queue. This is done using
CthSetStrategy:

void CthSetStrategy(CthThread t, CthAwkFn awakenfn, CthThFn choosefn)
Causes the thread to use the specified awakefn whenever you CthAwaken it, and the specified
choosefn whenever you CthSuspend it.

CthSetStrategy alters the behavior of CthSuspend and CthAwaken. Normally, when a thread
is awakened with CthAwaken, it gets inserted into the main ready-queue. Setting the thread’s
awakenfn will cause the thread to be inserted into your ready-queue instead. Similarly, when
a thread suspends using CthSuspend, it normally transfers control to some thread in the main
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ready-queue. Setting the thread’s choosefn will cause it to transfer control to a thread chosen
by your choosefn instead.

You may reset a thread to its normal behavior using CthSetStrategyDefault:

void CthSetStrategyDefault(CthThread t)
Restores the value of awakefn and choosefn to their default values. This implies that the next
time you CthAwaken the specified thread, it will be inserted into the normal ready-queue.

Keep in mind that this only resolves the issue of how threads get into your ready-queue, and how
those threads suspend. To actually make everything “work out” requires additional planning:
you have to make sure that control gets transferred to everywhere it needs to go.

Scheduling threads may need to use this function as well:

void CthResume(CthThread t)
Immediately transfers control to thread t. This routine is primarily intended for people who
are implementing schedulers, not for end-users. End-users should probably call CthSuspend or
CthAwaken (see below). Likewise, programmers implementing locks, barriers, and other synchro-
nization devices should also probably rely on CthSuspend and CthAwaken.

A final caution about the choosefn: it may only return a thread that wants the CPU, eg, a thread
that has been awakened using the awakefn. If no such thread exists, if the choosefn cannot return
an awakened thread, then it must not return at all: instead, it must wait until, by means of some
pending IO event, a thread becomes awakened (pending events could be asynchonous disk reads,
networked message receptions, signal handlers, etc). For this reason, many schedulers perform
the task of polling the IO devices as a side effect. If handling the IO event causes a thread to be
awakened, then the choosefn may return that thread. If no pending events exist, then all threads
will remain permanently blocked, the program is therefore done, and the choosefn should call
exit.

There is one minor exception to the rule stated above (“the scheduler may not resume a thread
unless it has been declared that the thread wants the CPU using the awakefn”). If a thread t is
part of the scheduling module, it is permitted for the scheduling module to resume t whenever it
so desires: presumably, the scheduling module knows when its threads want the CPU.
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Chapter 4

Timers, Periodic Checks, and
Conditions

This module provides functions that allow users to insert hooks, i.e. user-supplied functions, that
are called by the system at specified times, or as specific conditions arise.

CcdCallOnCondition

void CcdCallOnCondition(condnum,fnp,arg)
int condnum;
CcdVoidFn fnp;
void *arg;

This call instructs the system to call the function indicated by the function pointer fnp, with
the specified argument arg, when the condition indicated by condnum is raised next. Multiple
functions may be registered for the same condition number. A total of 511 conditions, numbered
1 through 511, are supported. Currently, users must make sure that various condition numbers
used in a program are disjoint. (In the future, we may provide a call to allocate the next available
condition number.)

The system supports a predefined condition, with condition number 1 (CcdPROCESSORIDLE,
BUT I AM AM NOT SURE THAT IS EXPORTED TO THE USER PROGRAM), which is raised
by the system when there are no entities (ready threads, messages for objects, posted handlers,
etc.) in the scheduler’s queue.

CcdRaiseCondition

void CcdRaiseCondition(condNum)
int condNum;

When this function is called, it invokes all the functions whose pointers were registered for the
condNum via a prior call to CcdCallOnCondition(..). All calls to CcdCallOnCondition(..)
during this function’s execution takes effect only after it returns. Once a user-registered function
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is called, it loses its registration. So, if users want the function to be called the next time the
same condition arises, they must register the function again.

CcdPeriodicallyCall

void CcdPeriodicallyCall(fnp, arg)
CcdVoidFn fnp;
void *arg;

A function registered through this call is called periodically by the system’s scheduler. Typically,
it would be called every time the scheduler gets control, such as while switching context to a new
thread or before scheduling a message for an object, or before calling a posted handler. These
functions don’t have to be re-registered after every call, unlike the functions for the ”conditions”.

CcdCallFnAfter

void CcdCallFnAfter(fnp, arg, deltaT)
CcdVoidFn fnp;
void *arg;
unsigned int deltaT;

This call registers a function via a pointer to it, fnp, that will be called at least deltaT milliseconds
later. The registered function fnp is actually called the first time the scheduler gets control after
deltaT milliseconds have elapsed.
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Chapter 5

Converse Client-Server Interface

This note attempts at explaining the design of CCS module of Converse. This module is respon-
sible for enabling parallel servers to be written using Converse. Currently, this module will be
implemented only on network of workstations. Other parallel architectures will follow.

The CCS module is split into two parts. One part consists of functions that can be used in
Converse programs which act as servers. The other part consists of functions that can be used
with clients that try to connect to servers written using CCS. The following sections describe
both these parts. conv-host is sometimes also referred to as server-host in order to distinguish
it from the individual converse processes which are sometimes referred to as server-processes.
Together, the server-host and the server-processes constitute a server. In general, the client
does not need to know the difference.

5.1 CCS: Server-Side

On the network of workstations, any converse program is started using

conv-host pgmname +pN conv-host-opts pgm-opts

In addition to the original options, now conv-host accepts one more option: ++server. Currently
this option makes conv-host print out its own (randomly allocated) port number, which can then
be used to connect to it from the client. Note that this is the same port number over which the
processes belonging to the server contact conv-host (for CmiPrintf etc.)

In addition to the usual commands (aset, aget etc.), conv-host now accepts one more command
getinfo over the abovementioned port. This command is issued only by the client and not by
any of the constituent server processes. The response to getinfo command is as follows:

infoN P0 P1 .. PN IP0 IP1 .. IPN Port0 Port1 .. PortN

Where N is the number of SMP nodes, Pi are number of processors in node i, IPi is the IP address
as an integer for node i, Porti is the control port number of the server process on node i.
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If this command is received before all the server processes report to conv-host, the response is
delayed. Internally, the server processes execute CcsInit(), which makes CcsEnabled() return
1. On architectures that do not yet support CCS functionality, all the CCS functions do not do
anything, and all the functions that return boolean values return 0.

In the server-processes, a new type of handler mechanism is introduced. These handlers have a
character string associated with it that identifies the handler function. These handlers are reg-
istered using a CcsRegisterHandler(). The handler index returned by CcsRegisterhandler()
can be used for normal remote invocation too. (CcsRegisterHandler internally calls
CmiRegisterHandlerLocal.)

Handler functions responsible for remote requests have the same syntax and semantics as the
normal Converse handlers. However, in the handler function invoked by a remote request,
CcsIsRemoteRequest() returns 1. Also, in that case, CcsCallerId() returns meaningful val-
ues for IP address and Port of the caller. No message format conversion is actually done by the
runtime system and is the responsibility of the handler and the client. Once the server process
gets hold of IP and port of the caller, it can use that anytime for replying to the client using
CcsSendReply function.

void CcsInit(void);
Initializes some internal variables that CCS uses.

int CcsRegisterHandler(char *id, CmiHandlerFn fn);
Register the handler function fn with the handler identified by id. Returns the id number of the
handler.

void CcsUseHandler(char *id, int hdlr);
Add the handler name specified by id to the list of handlers, with the handler number specified
by hdlr. This function is used by CcsRegisterHandler()

int CcsEnabled(void);
Returns 1 if CCS is enabled

int CcsIsRemoteRequest(void);
Returns non-zero if the caller is remote.

void CcsCallerId(int *pip, int *pport);
Assigns the caller’s IP addres to pip and the port number to pport.

void CcsSendReply(int ip, int port, int size, void *msg);
Send a message to the CCS client with the IP address and port specified by ip and port. size
indicates the number of bytes in the message, which is referenced by the pointer msg.

5.2 CCS: Client-Side

The client program calls CcsConnect() for contacting the server. This call will internally send the
getinfo command to the server-host and will wait for the server information to arrive. This infor-
mation can be extracted using the calls such as CcsNumNodes(), CcsNumPes(), CcsNodeFirst(),
and CcsNodeSize. Requests can be made to individual server-processes of any node using
CcsSendRequest(), and response can be received using CcsRecvResponse(). The latter is a
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blocking function. In addition to this, a CcsProbe is available to check if the response is received,
and CcsResponseHandler is provided to invoke the specified function similar to an interrupt han-
dler. No effort is made by the runtime to serialize multiple requests made to the server as well
as responses received from the server. CcsFinalize() could be used to terminate the request-
response session with the server. Note that no assumption has been made about the persistence
of the underlying connection, thus the implementation is free to choose whatever is appropriate.
All functions return -1 on error.

int CcsConnect(CcsServer *svr);

int CcsNumNodes(CcsServer *svr);

int CcsNumPes(CcsServer *svr);

int CcsNodeFirst(CcsServer *svr, int node);

int CcsNodeSize(CcsServer *svr,int node);

int CcsSendRequest(CcsServer *svr, char *hdlrID, int pe, uint size, void *msg);

int CcsRecvResponse(CcsServer *svr, uint maxsize, void *recvBuffer);

int CcsProbe(CcsServer *svr);

int CcsResponseHandler(CcsServer *svr, CcsHandlerFn fn);

int CcsFinalize(CcsServer *svr);
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CpvExtern, 17
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CsdExitScheduler, 15
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CsdSetNotifyIdle, 15
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CsdStopNotifyIdle, 15
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CsvDeclare, 17
CsvExtern, 17
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CthResume, 24
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