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Chapter 1

Introduction

The Converse Extensions Library is a collection of modules that have been implemented on top of
the Converse API. Each of these modules was deemed potentially useful to other Converse users,
thus, we distribute these modules along with Converse as a convenience. You don’t need to read
any part of this manual to use Converse.
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Chapter 2

Tag Matching

The message manager is a data structure that can be used to put together runtime systems for
languages that support tag-based message retrieval.

The purpose of the message manager is to store, index, and retrieve messages according to a set
of integer tags. It provides functions to create tables, functions to insert messages into tables
(specifying their tags), and functions to selectively retrieve messages from tables according to
their tags. Wildcard tags can be specified in both storage and retrieval.

To use the message manager, you must include converse.h and link with the converse library.

In actuality, the term “message manager” is unnecessarily specific. The message manager can
store and retrieve arbitrary pointers according to a set of tags. The pointers do not necessarily
need to be pointers to converse messages. They can be pointers to anything.

typedef struct CmmTableStruct *CmmTable
This opaque type is defined in converse.h. It represents a table which can be used to store
messages. No information is publicized about the format of a CmmTableStruct.

#define CmmWildCard (-1)
This #define is in converse.h. The tag -1 is the “wild card” for the tag-based lookup functions
in the message manager.

CmmTable CmmNew();
This function creates a new message-table and returns it.

void CmmPut(CmmTable t, int ntags, int *tags, void *msg)
This function inserts a message into a message table, along with an array of tags. ntags specifies
the length of the tags array. The tags array contains the tags themselves. msg and t specify the
message and table, respectively.

void *CmmGet(CmmTable t, int ntags, int *tags, int *ret tags)
This function looks up a message from a message table. A message will be retrieved that “matches”
the specified tags array. If a message is found that “matches”, the tags with which it was stored
are copied into the ret tags array, a pointer to the message will be returned, and the message
will be deleted from the table. If no match is found, 0 will be returned.
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To “match”, the array tags must be of the same length as the stored array. Similarly, all the
individual tags in the stored array must “match” the tags in the tags array. Two tags match if
they are equal to each other, or if either tag is equal to CmmWildCard (this means one can store
messages with wildcard tags, making it easier to find those messages on retrieval).

void *CmmProbe(CmmTable t, int ntags, int *tags, int *ret tags)
This function is identical to CmmGet above, except that the message is not deleted from the table.

void CmmFree(CmmTable t);
This function frees a message-table t. WARNING: It also frees all the messages that have been
inserted into the message table. It assumes that the correct way to do this is to call CmiFree on
the message. If this assumption is incorrect, a crash will occur. The way to avoid this problem is
to remove and properly dispose all the messages in a table before disposing the table itself.
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Chapter 3

Converse Pseudorandom Number
Generator

Converse provides three different Linear Congruential Random Number Generators. Each random
number stream has a cycle length of 264 as opposed to ANSI C standard’s 248. Also, each of the
three random number streams can be split into a number of per processor streams, so that the
random number sequences can be computed in parallel, and are reproducible. Furthermore, there
is no implicit critical section in the random number generator,and yet, this functionality is thread-
safe, because all the state information is stored in the structure allocated by the programmer.
Further, this state information is stored in a first class object, and can be passed to other processors
through messages. This module of Converse is based on the public-domain SPRNG1 package
developed by Ashok Srinivasan2 at NCSA.

For minimal change to programs already using C functions rand(), srand(), and drand48(),
Converse also maintains a “default” random number stream.

Interface to the Converse Pseudorandom Number Generator module is as follows:

typedef ... CrnStream;
State information for generating the next random number in the sequence.

void CrnInitStream(CrnStream *stream, int seed, int type)
Initializes the new random number stream stream of type using seed. type can have values 0,
1, or 2 to represent three types of linear congruential random number generators.

int CrnInt(CrnStream *stream)
Returns an integer between 0 and 231 − 1 corresponding to the next random number in the
sequence associated with stream. Advances stream by one in the sequence.

double CrnDouble(CrnStream *stream)
Returns an double precision floating point number between 0 and 1 corresponding to the next ran-
dom number in the sequence associated with stream. Advances stream by one in the sequence.

float CrnFloat(CrnStream *stream)
1URL:http://www.ncsa.uiuc.edu/Apps/SPRNG/www/
2Email:ashoks@ncsa.uiuc.edu
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Returns a single precision floating point number between 0 and 1 corresponding to the next random
number in the sequence associated with stream. Advances stream by one in the sequence.

void CrnSrand(int seed)
Specifies a different seed for the default random number stream. Replaces srand().

int CrnRand(void)
Generate the next integer random number from the default random number stream. Replaces
rand().

double CrnDrand(void)
Generate the next double precision random number from the default random number stream.

Replaces drand48().
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Chapter 4

Automatic Parameter Marshalling

Automatic Parameter Marshalling is a concise means of invoking functions on remote processors.
The CPM module handles all the details of packing, transmitting, translating, and unpacking
the arguments. It also takes care of converting function pointers into handler numbers. With all
these details out of the way, it is possible to perform remote function invocation in a single line
of code.

4.1 CPM Basics

The heart of the CPM module is the CPM scanner. The scanner reads a C source file. When it
sees the keyword CpmInvokable in front of one of the user’s function declarations, it generates a
launcher for that particular function. The launcher is a function whose name is Cpm concatenated
to the name of the user’s function. The launcher accepts the same arguments as the user’s function,
plus a destination argument. Calling the launcher transmits a message to another processor
determined by the destination argument. When the message arrives and is handled, the user’s
function is called.

For example, if the CPM scanner sees the following function declaration

CpmInvokable myfunc(int x, int y) { ... }

The scanner will generate a launcher named Cpm myfunc. The launcher has this prototype:

void Cpm_myfunc(CpmDestination destination, int x, int y);

If one were to call Cpm myfunc as follows:

Cpm_myfunc(CpmSend(3), 8, 9);

a message would be sent to processor 3 ordering it to call myfunc(8,9). Notice that the destination
argument isn’t just an integer processor number. The possible destinations for a message are
described later.
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When the CPM scanner is applied to a C source file with a particular name, it generates a certain
amount of parameter packing and unpacking code, and this code is placed in an include file named
similarly to the original C file: the .c is replaced with .cpm.h. The include file must be included
in the original .c file, after the declarations of the types which are being packed and unpacked,
but before all uses of the CPM invocation mechanisms.

Note that the .cpm.h include file is not for prototyping. It contains the C code for the packing
and unpacking mechanisms. Therefore, it should only be included in the one source file from
which it was generated. If the user wishes to prototype his code, he must do so normally, by
writing a header file of his own.

Each .cpm.h file contains a function CpmInitializeThisModule, which initializes the code in that
.cpm.h file. The function is declared static, so it is possible to have one in each .cpm.h file with-
out conflicts. It is the responsibility of the CPM user to call each of these CpmInitializeThisModule
functions before using any of the CPM mechanisms.

We demonstrate the use of the CPM mechanisms using the following short program myprog.c:

1: #include "myprog.cpm.h"
2:
3: CpmInvokable print_integer(int n)
4: {
5: CmiPrintf("%d\n", n);
6: }
7:
8: user_main(int argc, char **argv)
9: {

10: int i;
11: CpmModuleInit();
12: CpmInitializeThisModule();
13: if (CmiMyPe()==0)
14: for (i=1; i<CmiNumPes(); i++)
15: Cpm_print_integer(CpmSend(i), rand());
16: }
17:
18: main(int argc, char **argv)
19: {
20: ConverseInit(argc, argv, user_main, 0, 0);
21: }

Lines 3-6 of this program contain a simple C function that prints an integer. The function
is marked with the word CpmInvokable. When the CPM scanner sees this word, it adds the
function Cpm print integer to the file myprog.cpm.h. The program includes myprog.cpm.h on
line 1, and initializes the code in there on line 12. Each call to Cpm print integer on line 15
builds a message that invokes print integer. The destination-argument CpmSend(i) causes the
message to be sent to the i’th processor.

The effect of this program is that the first processor orders each of the other processors to print
a random number. Note that the example is somewhat minimalist since it doesn’t contain any

8



code for terminating itself. Also note that it would have been more efficient to use an explicit
broadcast. Broadcasts are described later.

All launchers accept a CpmDestination as their first argument. A CpmDestination is actually a
pointer to a small C structure containing routing and handling information. The CPM module
has many built-in functions that return CpmDestinations. Therefore, any of these can be used as
the first argument to a launcher:

CpmSend(pe) - the message is transmitted to processor pe with maximum priority.

CpmEnqueue(pe, queueing, priobits, prioptr) - The message is transmitted to processor
pe, where it is enqueued with the specified queueing strategy and priority. The queueing,
priobits, and prioptr arguments are the same as for CqsEnqueueGeneral.

CpmEnqueueFIFO(pe) - the message is transmitted to processor pe and enqueued with
the middle priority (zero), and FIFO relative to messages with the same priority.

CpmEnqueueLIFO(pe) - the message is transmitted to processor pe and enqueued with
the middle priority (zero), and LIFO relative to messages with the same priority.

CpmEnqueueIFIFO(pe, prio) - the message is transmitted to processor pe and enqueued
with the specified integer-priority prio, and FIFO relative to messages with the same priority.

CpmEnqueueILIFO(pe, prio) - the message is transmitted to processor pe and enqueued
with the specified integer-priority prio, and LIFO relative to messages with the same priority.

CpmEnqueueBFIFO(pe, priobits, prioptr) - the message is transmitted to processor pe
and enqueued with the specified bitvector-priority, and FIFO relative to messages with the
same priority.

CpmEnqueueBLIFO(pe, priobits, prioptr) - the message is transmitted to processor pe
and enqueued with the specified bitvector-priority, and LIFO relative to messages with the
same priority.

CpmMakeThread(pe) - The message is transmitted to processor pe where a CthThread
is created, and the thread invokes the specified function.

All the functions shown above accept processor numbers as arguments. Instead of supplying a
processor number, one can also supply the special symbols CPM ALL or CPM OTHERS, causing
a broadcast. For example,

Cpm_print_integer(CpmMakeThread(CPM_ALL), 5);

would broadcast a message to all the processors causing each processor to create a thread, which
would in turn invoke print integer with the argument 5.
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4.2 CPM Packing and Unpacking

Functions preceeded by the word CpmInvokable must have simple argument lists. In particular,
the argument list of a CpmInvokable function can only contain cpm-single-arguments and cpm-
array-arguments, as defined by this grammar:

cpm-single-argument :== typeword varname
cpm-array-argument :== typeword ’*’ varname

When CPM sees the cpm-array-argument notation, CPM interprets it as being a pointer to an
array. In this case, CPM attempts to pack an entire array into the message, whereas it only
attempts to pack a single element in the case of the cpm-single-argument notation.

Each cpm-array-argument must be preceeded by a cpm-single-argument of type CpmDim. CpmDim
is simply an alias for int, but when CPM sees an argument declared CpmDim, it knows that the
next argument will be a cpm-array-argument, and it interprets the CpmDim argument to be the
size of the array. Given a pointer to the array, its size, and its element-type, CPM handles the
packing of array values as automatically as it handles single values.

A second program, example2.c, uses array arguments:

1: #include "example2.cpm.h"
2:
3: CpmInvokable print_program_arguments(CpmDim argc, CpmStr *argv)
4: {
5: int i;
6: CmiPrintf("The program’s arguments are: ");
7: for (i=0; i<argc; i++) CmiPrintf("%s ", argv[i]);
8: CmiPrintf("\n");
9: }

10:
11: user_main(int argc, char **argv)
12: {
13: CpmModuleInit();
14: CpmInitializeThisModule();
15: if (CmiMyPe()==0)
16: Cpm_print_program_arguments(CpmSend(1), argc, argv);
17: }
18:
19: main(int argc, char **argv)
20: {
21: ConverseInit(argc, argv, user_main, 0, 0);
22: }

The word CpmStr is a CPM built-in type, it represents a null-terminated string:

typedef char *CpmStr;
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Therefore, the function print program arguments takes exactly the same arguments as user main.
In this example, the main program running on processor 0 transmits the arguments to processor
1, which prints them out.

Thus far, we have only shown functions whose prototypes contain builtin CPM types. CPM has
built-in knowledge of the following types: char, short, int, long, float, double, CpmDim, and
CpmStr (pointer to a null-terminated string). However, you may also also transmit user-defined
types in a CPM message.

For each (non-builtin) type the user wishes to pack, the user must supply some pack and unpack
routines. The subroutines needed depend upon whether the type is a pointer or a simple type.
Simple types are defined to be those that contain no pointers at all. Note that some types are
neither pointers, nor simple types. CPM cannot currently handle such types.

CPM knows which type is which only through the following declarations:

CpmDeclareSimple(typeword);
CpmDeclarePointer(typeword);

The user must supply such declarations for each type that must be sent via CPM.

When packing a value v which is a simple type, CPM uses the following strategy. The gen-
erated code first converts v to network interchange format by calling CpmPack typename(&v),
which must perform the conversion in-place. It then copies v byte-for-byte into the message
and sends it. When the data arrives, it is extracted from the message and converted back using
CpmUnpack typename(&v), again in-place. The user must supply the pack and unpack routines.

When packing a value v which is a pointer, the generated code determines how much space is
needed in the message buffer by calling CpmPtrSize typename(v). It then transfers the data
pointed to by v into the message using CpmPtrPack typename(p, v) , where p is a pointer to the
allocated space in the message buffer. When the message arrives, the generated code extracts the
packed data from the message by calling CpmPtrUnpack typename(p). The unpack function must
return a pointer to the unpacked data, which is allowed to still contain pointers to the message
buffer (or simply be a pointer to the message buffer). When the invocation is done, the function
CpmPtrFree typename(v) is called to free any memory allocated by the unpack routine. The user
must supply the size, pack, unpack, and free routines.

The following program fragment shows the declaration of two user-defined types:

1:
2: typedef struct { double x,y; } coordinate;
3: CpmDeclareSimple(coordinate);
4:
5: void CpmPack_coordinate(coordinate *p)
6: {
7: CpmPack_double(&(p->x));
8: CpmPack_double(&(p->y));
9: }

10:
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11: void CpmPack_coordinate(coordinate *p)
12: {
13: CpmUnpack_double(&(p->x));
14: CpmUnpack_double(&(p->y));
15: }
16:
17: typedef int *intptr;
18: CpmDeclarePointer(intptr);
19:
20: #define CpmPtrSize_intptr(p) sizeof(int)
21:
22: void CpmPtrPack_intptr(void *p, intptr v)
23: {
24: *(int *)p = *v;
25: CpmPack_int((int *)p);
26: }
27:
28: intptr CpmPtrUnpack_intptr(void *p)
29: {
30: CpmUnpack_int((int *)p);
31: return (int *)p;
32: }
33:
34: #define CpmPtrFree_intptr(p) (0)
35:
36: #include "example3.cpm.h"
37: ...

The first type declared in this file is the coordinate. Line 2 contains the C type declaration, and
line 3 notifies CPM that it is a simple type, containing no pointers. Lines 5-9 declare the pack
function, which receives a pointer to a coordinate, and must pack it in place. It makes use of the
pack-function for doubles, which also packs in place. The unpack function is similar.

The second type declared in this file is the intptr, which we intend to mean a pointer to a single
integer. On line 18 we notify CPM that the type is a pointer, and that it should therefore use
CpmPtrSize intptr, CpmPtrPack intptr, CpmPtrUnpack intptr, and CpmPtrFree intptr. Line 20
shows the size function, a constant: we always need just enough space to store one integer. The
pack function copies the int into the message buffer, and packs it in place. The unpack function
unpacks it in place, and returns an intptr, which points right to the unpacked integer which is
still in the message buffer. Since the int is still in the message buffer, and not in dynamically
allocated memory, the free function on line 34 doesn’t have to do anything.

Note that the inclusion of the .cpm.h file comes after these type and pack declarations: the
.cpm.h file will reference these functions and macros, therefore, they must already be defined.
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4.3 Inventing New Types of CpmDestinations

It is possible for the user to create new types of CpmDestinations, and to write functions that
return these new destinations. In order to do this, one must have a mental model of the steps
performed when a Cpm message is sent. This knowledge is only necessary to those wishing to
invent new kinds of destinations. Others can skip this section.

The basic steps taken when sending a CPM message are:

1. The destination-structure is created. The first argument to the launcher is a
CpmDestination. Therefore, before the launcher is invoked, one typically calls a function
(like CpmSend) to build the destination-structure.

2. The launcher allocates a message-buffer. The buffer contains space to hold a
function-pointer and the function’s arguments. It also contains space for an “envelope”, the
size of which is determined by a field in the destination-structure.

3. The launcher stores the function-arguments in the message buffer. In doing
so, the launcher converts the arguments to a contiguous sequence of bytes.

4. The launcher sets the message’s handler. For every launcher, there is a matching
function called an invoker. The launcher’s job is to put the argument data in the message
and send the message. The invoker’s job is to extract the argument data from the message
and call the user’s function. The launcher uses CmiSetHandler to tell Converse to handle
the message by calling the appropriate invoker.

5. The message is sent, received, and handled. The destination-structure contains
a pointer to a send-function. The send-function is responsible for choosing the message’s
destination and making sure that it gets there and gets handled. The send-function has
complete freedom to implement this in any manner it wishes. Eventually, though, the
message should arrive at a destination and its handler should be called.

6. The user’s function is invoked. The invoker extracts the function arguments from
the message buffer and calls the user’s function.

The send-function varies because messages take different routes to get to their final destinations.
Compare, for example, CpmSend to CpmEnqueueFIFO. When CpmSend is used, the message
goes straight to the target processor and gets handled. When CpmEnqueueFIFO is used, the
message goes to the target processor, goes into the queue, comes out of the queue, and then gets
handled. The send-function must implement not only the transmission of the message, but also
the possible “detouring” of the message through queues or into threads.

We now show an example CPM command, and describe the steps that are taken when the com-
mand is executed. The command we will consider is this one:

Cpm_print_integer(CpmEnqueueFIFO(3), 12);

Which sends a message to processor 3, ordering it to call print integer(12).

The first step is taken by CpmEnqueueFIFO, which builds the CpmDestination. The following is
the code for CpmEnqueueFIFO:
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typedef struct CpmDestinationSend
{
void *(*sendfn)();
int envsize;
int pe;

}
*CpmDestinationSend;

CpmDestination CpmEnqueueFIFO(int pe)
{
static struct CpmDestinationSend ctrl;
ctrl.envsize = sizeof(int);
ctrl.sendfn = CpmEnqueueFIFO1;
ctrl.pe = pe;
return (CpmDestination)&ctrl;

}

Notice that the CpmDestination structure varies, depending upon which kind of destination
is being used. In this case, the destination structure contains a pointer to the send-function
CpmEnqueueFIFO1, a field that controls the size of the envelope, and the destination-processor. In
a CpmDestination, the sendfn and envsize fields are required, additional fields are optional.

After CpmEnqueueFIFO builds the destination-structure, the launcher Cpm print integer is in-
voked. Cpm print integer performs all the steps normally taken by a launcher:

1. It allocates the message buffer. In this case, it sets aside just enough room for one
int as an envelope, as dictated by the destination-structure’s envsize field.

2. It stores the function-arguments in the message-buffer. In this case, the function-
arguments are just the integer 12.

3. It sets the message’s handler. In this case, the message’s handler is set to a function
that will extract the arguments and call print integer.

4. It calls the send-function to send the message.

The code for the send-function is here:

void *CpmEnqueueFIFO1(CpmDestinationSend dest, int len, void *msg)
{
int *env = (int *)CpmEnv(msg);
env[0] = CmiGetHandler(msg);
CmiSetHandler(msg, CpvAccess(CpmEnqueueFIFO2_Index));
CmiSyncSendAndFree(dest->pe,len,msg);

}

The send-function CpmEnqueueFIFO1 starts by switching the handler. The original handler is
removed using using CmiGetHandler. It is set aside in the message buffer in the “envelope” space
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described earlier — notice the use of CpmEnv to obtain the envelope. This is the purpose of the
envelope in the message — it is a place where the send-function can store information. The
destination-function must anticipate how much space the send-function will need, and it must
specify that amount of space in the destination-structure field envsize. In this case, the envelope
is used to store the original handler, and the message’s handler is set to an internal function called
CpmEnqueueFIFO2.

After switching the handler, CpmEnqueueFIFO1 sends the message. Eventually, the message will be
received by CsdScheduler, and its handler will be called. The result will be that CpmEnqueueFIFO2
will be called on the destination processor. Here is the code for CpmEnqueueFIFO2:

void CpmEnqueueFIFO2(void *msg)
{
int *env;
CmiGrabBuffer(&msg);
env = (int *)CpmEnv(msg);
CmiSetHandler(msg, env[0]);
CsdEnqueueFIFO(msg);

}

This function takes ownership of the message-buffer from Converse using CmiGrabBuffer. It
extracts the original handler from the envelope (the handler that calls print integer), and
restores it using CmiSetHandler. Having done so, it enqueues the message with the FIFO queueing
policy. Eventually, the scheduler picks the message from the queue, and print integer is invoked.

In summary, the procedure for implementing new kinds of destinations is to write one send-
function, one function returning a CpmDestination (which contains a reference to the send-
function), and one or more Converse handlers to manipulate the message.

The destination-function must return a pointer to a “destination-structure”, which can in fact be
any structure matching the following specifications:

• The first field must be a pointer to a send-function,

• The second field must the an integer, the envelope-size.

This pointer must be coerced to type CpmDestination.

The send-function must have the following prototype:

void sendfunction(CpmDestination dest, int msglen, void *msgptr)

It can access the envelope of the message using CpmEnv:

int *CpmEnv(void *msg);

It can also access the data stored in the destination-structure by the destination-function.
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Chapter 5

Load Balancing

5.1 Using Converse Load Balancers

This module defines a function CldEnqueue that sends a message to a lightly-loaded processor.
It automates the process of finding a lightly-loaded processor.

The function CldEnqueue is extremely sophisticated. It does not choose a processor, send the
message, and forget it. Rather, it puts the message into a pool of movable work. The pool of
movable work gradually shrinks as it is consumed (processed), but in most programs, there is
usually quite a bit of movable work available at any given time. As load conditions shift, the load
balancers shifts the pool around, compensating. Any given message may be shifted more than
once, as part of the pool.

CldEnqueue also accounts for priorities. Normal load-balancers try to make sure that all pro-
cessors have some work to do. The function CldEnqueue goes a step further: it tries to make
sure that all processors have some reasonably high-priority work to do. This can be extremely
helpful in AI search applications.

The two assertions above should be qualified: CldEnqueue can use these sophisticated strate-
gies, but it is also possible to configure it for different behavior. When you compile and link your
program, you choose a load-balancing strategy. That means you link in one of several implemen-
tations of the load-balancer. Most are sophisticated, as described above. But some are simple and
cheap, like the random strategy. The process of choosing a strategy is described in the manual
Converse Installation and Usage.

Before you send a message using CldEnqueue, you must write an info function with this proto-
type:

void InfoFn(void *msg, CldPackFn *pfn, int *len, int *queueing, int *priobits, un-
signed int *prioptr);
The load balancer will call the info function when it needs to know various things about the
message. The load balancer will pass in the message via the parameter msg. The info function’s
job is to “fill in” the other parameters. It must compute the length of the message, and store
it at *len. It must determine the pack function for the message, and store a pointer to it at
*pfm. It must identify the priority of the message, and the queueing strategy that must be used,
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storing this information at *queueing, *priobits, and *prioptr. Caution: the priority will not
be copied, so the *prioptr should probably be made to point to the message itself.

After the user of CldEnqueue writes the “info” function, the user must register it, using this:

int CldRegisterInfoFn(CldInfoFn fn)
Accepts a pointer to an info-function. Returns an integer index for the info-function. This index
will be needed in CldEnqueue.

Normally, when you send a message, you pack up a bunch of data into a message, send it, and
unpack it at the receiving end. It is sometimes possible to perform an optimization, though. If
the message is bound for a processor within the same address space, it isn’t always necessary to
copy all the data into the message. Instead, it may be sufficient to send a message containing only
a pointer to the data. This saves much packing, unpacking, and copying effort. It is frequently
useful, since in a properly load-balanced program, a great many messages stay inside a single
address space.

With CldEnqueue, you don’t know in advance whether a message is going to cross address-space
boundaries or not. If it’s to cross address spaces, you need to use the “long form”, but if it’s to
stay inside an address space, you want to use the faster “short form”. We call this “conditional
packing.” When you send a message with CldEnqueue, you should initially assume it will not
cross address space boundaries. In other words, you should send the “short form” of the message,
containing pointers. If the message is about to leave the address space, the load balancer will call
your pack function, which must have this prototype:

void PackFn(void **msg)
The pack function is handed a pointer to a pointer to the message (yes, a pointer to a pointer). The
pack function is allowed to alter the message in place, or replace the message with a completely
different message. The intent is that the pack function should replace the “short form” of the
message with the “long form” of the message. Note that if it replaces the message, it should
CmiFree the old message.

Of course, sometimes you don’t use conditional packing. In that case, there is only one form of
the message. In that case, your pack function can be a no-op.

Pack functions must be registered using this:

int CldRegisterPackFn(CldPackFn fn)
Accepts a pointer to an pack-function. Returns an integer index for the pack-function. This index
will be needed in CldEnqueue.

Normally, CldEnqueue sends a message to a lightly-loaded processor. After doing this, it en-
queues the message with the appropriate priority. The function CldEnqueue can also be used as a
mechanism to simply enqueue a message on a remote processor with a priority. In other words, it
can be used as a prioritized send-function. To do this, one of the CldEnqueue parameters allows
you to override the load-balancing behavior and lets you choose a processor yourself.

The prototype for CldEnqueue is as follows:

void CldEnqueue(int pe, void *msg, int infofn)
The argument msg is a pointer to the message. The parameter infofn represents a function that
can analyze the message. The parameter packfn represents a function that can pack the mes-
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sage. If the parameter pe is CLD ANYWHERE, the message is sent to a lightly-loaded processor and
enqueued with the appropriate priority. If the parameter pe is a processor number, the message
is sent to the specified processor and enqueued with the appropriate priority. CldEnqueue frees
the message buffer using CmiFree.

The following simple example illustrates how a Converse program can make use of the load
balancers.

hello.c:

#include <stdio.h>
#include "converse.h"
#define CHARES 10

void startup(int argc, char *argv[]);
void registerAndInitialize();

typedef struct pemsgstruct
{
char header[CmiExtHeaderSizeBytes];
int pe, id, pfnx;
int queuing, priobits;
unsigned int prioptr;

} pemsg;

CpvDeclare(int, MyHandlerIndex);
CpvDeclare(int, InfoFnIndex);
CpvDeclare(int, PackFnIndex);

int main(int argc, char *argv[])
{
ConverseInit(argc, argv, startup, 0, 0);
CsdScheduler(-1);

}

void startup(int argc, char *argv[])
{
pemsg *msg;
int i;

registerAndInitialize();
for (i=0; i<CHARES; i++) {

msg = (pemsg *)malloc(sizeof(pemsg));
msg->pe = CmiMyPe();
msg->id = i;
msg->pfnx = CpvAccess(PackFnIndex);
msg->queuing = CQS_QUEUEING_FIFO;
msg->priobits = 0;
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msg->prioptr = 0;
CmiSetHandler(msg, CpvAccess(MyHandlerIndex));
CmiPrintf("[%d] sending message %d\n", msg->pe, msg->id);
CldEnqueue(CLD_ANYWHERE, msg, CpvAccess(InfoFnIndex));
/* CmiSyncSend(i, sizeof(pemsg), &msg); */

}
}

void MyHandler(pemsg *msg)
{
CmiPrintf("Message %d created on %d handled by %d.\n", msg->id, msg->pe,

CmiMyPe());
}

void InfoFn(pemsg *msg, CldPackFn *pfn, int *len, int *queuing, int *priobits,
unsigned int *prioptr)

{
*pfn = (CldPackFn)CmiHandlerToFunction(msg->pfnx);
*len = sizeof(pemsg);
*queuing = msg->queuing;
*priobits = msg->priobits;
prioptr = &(msg->prioptr);

}

void PackFn(pemsg **msg)
{
}

void registerAndInitialize()
{
CpvInitialize(int, MyHandlerIndex);
CpvAccess(MyHandlerIndex) = CmiRegisterHandler(MyHandler);
CpvInitialize(int, InfoFnIndex);
CpvAccess(InfoFnIndex) = CldRegisterInfoFn((CldInfoFn)InfoFn);
CpvInitialize(int, PackFnIndex);
CpvAccess(PackFnIndex) = CldRegisterPackFn((CldPackFn)PackFn);

}

5.2 How to Write a Load Balancer for Converse/Charm++

5.2.1 Introduction

This manual details how to write your own general-purpose message-based load balancer for
Converse. A Converse load balancer can be used by any Converse program, but also serves as
a seed load balancer for Charm++ chare creation messages. Specifically, to use a load balancer,
you would pass messages to CldEnqueue rather than directly to the scheduler. This is the default
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behavior with chare creation message in Charm++. Thus, the primary provision of a new load
balancer is an implementation of the CldEnqueue function.

5.2.2 Existing Load Balancers and Provided Utilities

Throughout this manual, we will occasionally refer to the source code of two provided load bal-
ancers, the random initial placement load balancer (cldb.rand.c) and the graph-based load
balancer (cldb.graph.c). The functioning of these balancers is described in the Charm++ Ex-
tensions manual load balancing section.

In addition, a special utility is provided that allows us to add and remove load-balanced messages
from the scheduler’s queue. The source code for this is available in cldb.c. The usage of this
utility will also be described here in detail.

5.3 A Sample Load Balancer

This manual steps through the design of a load balancer using an example which we will call
test. The test load balancer has each processor periodically send half of its load to its neighbor
in a ring. Specifically, for N processors, processor K will send approximately half of its load to
(K+1)%N, every 100 milliseconds (this is an example only; we leave the genius approaches up to
you).

5.3.1 Minimal Requirements

The minimal requirements for a load balancer are illustrated by the following code.

#include <stdio.h>
#include "converse.h"

char *CldGetStrategy(void)
{
return "test";

}

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)
{
CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
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ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

void CldEnqueue(int pe, void *msg, int infofn)
{
int len, queueing, priobits; unsigned int *prioptr;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);
CldPackFn pfn;

if (pe == CLD_ANYWHERE) {
/* do what you want with the message; in this case we’ll just keep

it local */
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
else {

/* pe contains a particular destination or broadcast */
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {
pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
if (pe==CLD_BROADCAST)
CmiSyncBroadcastAndFree(len, msg);

else if (pe==CLD_BROADCAST_ALL)
CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);
}

}

void CldModuleInit()
{
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CldModuleGeneralInit();

}

The primary function a load balancer must provide is the CldEnqueue function, which has the
following prototype:

void CldEnqueue(int pe, void *msg, int infofn);

This function takes three parameters: pe, msg and infofn. pe is the intended destination of the
msg. pe may take on one of the following values:
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• Any valid processor number - the message must be sent to that processor

• CLD ANYWHERE - the message can be placed on any processor

• CLD BROADCAST - the message must be sent to all processors excluding the local processor

• CLD BROADCAST ALL - the message must be sent to all processors including the local processor

CldEnqueue must handle all of these possibilities. The only case in which the load balancer
should get control of a message is when pe = CLD ANYWHERE. All other messages must be sent off
to their intended destinations and passed on to the scheduler as if they never came in contact
with the load balancer.

The integer parameter infofn is a handler index for a user-provided function that allows CldEn-
queue to extract information about (mostly components of) the message msg.

Thus, an implementation of the CldEnqueue function might have the following structure:

void CldEnqueue(int pe, void *msg, int infofn)
{
...
if (pe == CLD_ANYWHERE)

/* These messages can be load balanced */
else if (pe == CmiMyPe())

/* Enqueue the message in the scheduler locally */
else if (pe==CLD_BROADCAST)

/* Broadcast to all but self */
else if (pe==CLD_BROADCAST_ALL)

/* Broadcast to all plus self */
else /* Specific processor number was specified */

/* Send to specific processor */
}

In order to fill in the code above, we need to know more about the message before we can send
it off to a scheduler’s queue, either locally or remotely. For this, we have the info function. The
prototype of an info function must be as follows:

void ifn(void *msg, CldPackFn *pfn, int *len, int *queueing, int *priobits, unsigned
int **prioptr);

Thus, to use the info function, we need to get the actual function via the handler index provided
to CldEnqueue. Typically, CldEnqueue would contain the following declarations:

int len, queueing, priobits;
unsigned int *prioptr;
CldPackFn pfn;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);

Subsequently, a call to ifn would look like this:
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ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

The info function extracts information from the message about its size, queuing strategy and
priority, and also a pack function, which will be used when we need to send the message elsewhere.
For now, consider the case where the message is to be locally enqueued:

...
else if (pe == CmiMyPe())

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
...

Thus, we see the info function is used to extract info from the message that is necessary to pass
on to CsdEnqueueGeneral.

In order to send the message to a remote destination and enqueue it in the scheduler, we need to
pack it up with a special pack function so that it has room for extra handler information and a
reference to the info function. Therefore, before we handle the last three cases of CldEnqueue,
we have a little extra work to do:

...
else

{
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {

pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
...

Calling the info function once gets the pack function we need, if there is one. We then call the
pack function which rearranges the message leaving space for the info function, which we will
need to call on the message when it is received at its destination, and also room for the extra
handler that will be used on the receiving side to do the actual enqueuing. CldSwitchHandler
is used to set this extra handler, and the receiving side must restore the original handler.

In the above code, we call the info function again because some of the values may have changed
in the packing process.

Finally, we handle our last few cases:

...
if (pe==CLD_BROADCAST)
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CmiSyncBroadcastAndFree(len, msg);
else if (pe==CLD_BROADCAST_ALL)

CmiSyncBroadcastAllAndFree(len, msg);
else CmiSyncSendAndFree(pe, len, msg);

}
}

The above example also provides CldHandler which is used to receive messages that CldEn-
queue forwards to other processors.

CpvDeclare(int, CldHandlerIndex);

void CldHandler(void *msg)
{
CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

Note that the CldHandler properly restores the message’s original handler using CldRestore-
Handler, and calls the info function to obtain the proper parameters to pass on to the scheduler.
We talk about this more below.

Finally, Converse initialization functions call CldModuleInit to initialize the load balancer mod-
ule.

void CldModuleInit()
{
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CldModuleGeneralInit();

/* call other init processes here */
CldBalance();

}

5.3.2 Provided Load Balancing Facilities

Converse provides a number of structures and functions to aid in load balancing (see cldb.c).
Foremost amongst these is a method for queuing tokens of messages in a processor’s scheduler in
a way that they can be removed and relocated to a different processor at any time. The interface
for this module is as follows:
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void CldSwitchHandler(char *cmsg, int handler)
void CldRestoreHandler(char *cmsg)
int CldCountTokens()
int CldLoad()
void CldPutToken(char *msg)
void CldGetToken(char **msg)
void CldModuleGeneralInit()

Messages normally have a handler index associated with them, but in addition they have extra
space for an additional handler. This is used by the load balancer when we use an intermediate
handler (typically CldHandler) to handle the message when it is received after relocation. To
do this, we use CldSwitchHandler to temporarily swap the intended handler with the load
balancer handler. When the message is received, CldRestoreHandler is used to change back
to the intended handler.

CldPutToken puts a message in the scheduler queue in such a way that it can be retrieved
from the queue. Once the message gets handled, it can no longer be retrieved. CldGetToken
retrieves a message that was placed in the scheduler queue in this way. CldCountTokens tells
you how many tokens are currently retrievable. CldLoad gives a slightly more accurate estimate
of message load by counting the total number of messages in the scheduler queue.

CldModuleGeneralInit is used to initialize this load balancer helper module. It is typically
called from the load balancer’s CldModuleInit function.

The helper module also provides the following functions:

void CldMultipleSend(int pe, int numToSend)
int CldRegisterInfoFn(CldInfoFn fn)
int CldRegisterPackFn(CldPackFn fn)

CldMultipleSend is generally useful for any load balancer that sends multiple messages to one
processor. It works with the token queue module described above. It attempts to retrieve up to
numToSend messages, and then packs them together and sends them, via CmiMultipleSend, to pe.
If the number and/or size of the messages sent is very large, CldMultipleSend will transmit them
in reasonably sized parcels. In addition, the CldBalanceHandler and its associated declarations
and initializations are required to use it.

You may want to use the three status variables. These can be used to keep track of what your
LB is doing (see usage in cldb.graph.c and itc++queens program).

CpvDeclare(int, CldRelocatedMessages);
CpvDeclare(int, CldLoadBalanceMessages);
CpvDeclare(int, CldMessageChunks);

The two register functions register info and pack functions, returning an index for the functions.
Info functions are used by the load balancer to extract the various components from a message.
Amongst these components is the pack function index. If necessary, the pack function can be
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used to pack a message that is about to be relocated to another processor. Information on how to
write info and pack functions is available in the load balancing section of the Converse Extensions
manual.

5.3.3 Finishing the Test Balancer

The test balancer is a somewhat silly strategy in which every processor attempts to get rid of
half of its load by periodically sending it to someone else, regardless of the load at the destination.
Hopefully, you won’t actually use this for anything important!

The test load balancer is available in charm/src/Common/conv-ldb/cldb.test.c. To try out your
own load balancer you can use this filename and SUPER INSTALL will compile it and you
can link it into your Charm++ programs with -balance test. (To add your own new balancers
permanently and give them another name other than ”test” you will need to change the Makefile
used by SUPER INSTALL. Don’t worry about this for now.) The cldb.test.c provides a good
starting point for new load balancers.

Look at the code for the test balancer below, starting with the CldEnqueue function. This is
almost exactly as described earlier. One exception is the handling of a few extra cases: specifically
if we are running the program on only one processor, we don’t want to do any load balancing.
The other obvious difference is in the first case: how do we handle messages that can be load
balanced? Rather than enqueuing the message directly with the scheduler, we make use of the
token queue. This means that messages can later be removed for relocation. CldPutToken adds
the message to the token queue on the local processor.

#include <stdio.h>
#include "converse.h"
#define PERIOD 100
#define MAXMSGBFRSIZE 100000

char *CldGetStrategy(void)
{
return "test";

}

CpvDeclare(int, CldHandlerIndex);
CpvDeclare(int, CldBalanceHandlerIndex);
CpvDeclare(int, CldRelocatedMessages);
CpvDeclare(int, CldLoadBalanceMessages);
CpvDeclare(int, CldMessageChunks);

void CldDistributeTokens()
{
int destPe = (CmiMyPe()+1)%CmiNumPes(), numToSend;

numToSend = CldLoad() / 2;
if (numToSend > CldCountTokens())
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numToSend = CldCountTokens() / 2;
if (numToSend > 0)

CldMultipleSend(destPe, numToSend);
CcdCallFnAfter((CcdVoidFn)CldDistributeTokens, NULL, PERIOD);

}

void CldBalanceHandler(void *msg)
{
CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
CldPutToken(msg);

}

void CldHandler(void *msg)
{
CldInfoFn ifn; CldPackFn pfn;
int len, queueing, priobits; unsigned int *prioptr;

CmiGrabBuffer((void **)&msg);
CldRestoreHandler(msg);
ifn = (CldInfoFn)CmiHandlerToFunction(CmiGetInfo(msg));
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}

void CldEnqueue(int pe, void *msg, int infofn)
{
int len, queueing, priobits; unsigned int *prioptr;
CldInfoFn ifn = (CldInfoFn)CmiHandlerToFunction(infofn);
CldPackFn pfn;

if ((pe == CLD_ANYWHERE) && (CmiNumPes() > 1)) {
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CldPutToken(msg);

}
else if ((pe == CmiMyPe()) || (CmiNumPes() == 1)) {

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
CmiSetInfo(msg,infofn);
CsdEnqueueGeneral(msg, queueing, priobits, prioptr);

}
else {

ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);
if (pfn) {
pfn(&msg);
ifn(msg, &pfn, &len, &queueing, &priobits, &prioptr);

}
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CldSwitchHandler(msg, CpvAccess(CldHandlerIndex));
CmiSetInfo(msg,infofn);
if (pe==CLD_BROADCAST)
CmiSyncBroadcastAndFree(len, msg);

else if (pe==CLD_BROADCAST_ALL)
CmiSyncBroadcastAllAndFree(len, msg);

else CmiSyncSendAndFree(pe, len, msg);
}

}

void CldModuleInit()
{
CpvInitialize(int, CldHandlerIndex);
CpvAccess(CldHandlerIndex) = CmiRegisterHandler(CldHandler);
CpvInitialize(int, CldBalanceHandlerIndex);
CpvAccess(CldBalanceHandlerIndex) = CmiRegisterHandler(CldBalanceHandler);
CpvInitialize(int, CldRelocatedMessages);
CpvInitialize(int, CldLoadBalanceMessages);
CpvInitialize(int, CldMessageChunks);
CpvAccess(CldRelocatedMessages) = CpvAccess(CldLoadBalanceMessages) =

CpvAccess(CldMessageChunks) = 0;
CldModuleGeneralInit();
if (CmiNumPes() > 1)

CldDistributeTokens();
}

Now look two functions up from CldEnqueue. We have an additional handler besides the Cld-
Handler: the CldBalanceHandler. The purpose of this special handler is to receive messages
that can be still be relocated again in the future. Just like the first case of CldEnqueue uses
CldPutToken to keep the message retrievable, CldBalanceHandler does the same with relo-
catable messages it receives. CldHandler is only used when we no longer want the message to
have the potential for relocation. It places messages irretrievably in the scheduler queue.

Next we look at our initialization functions to see how the process gets started. The CldMod-
uleInit function gets called by the common Converse initialization code and starts off the periodic
load distribution process by making a call to CldDistributeTokens. The entirety of the bal-
ancing is handled by the periodic invocation of this function. It computes an approximation of
half of the PE’s total load (CsdLength()), and if that amount exceeds the number of movable
messages (CldCountTokens()), we attempt to move all of the movable messages. To do this,
we pass this number of messages to move and the number of the PE to move them to, to the
CldMultipleSend function.
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Chapter 6

Futures

This library supports the future abstraction, defined and used by Halstead and other researchers.

Cfuture CfutureCreate()

Returns the handle of an empty future. The future is said to reside on the processor that created
it. The handle is a global reference to the future, in other words, it may be copied freely across
processors. However, while the handle may be moved across processors freely, some operations
can only be performed on the processor where the future resides.

Cfuture CfutureSet(Cfuture future, void *value, int nbytes)

Makes a copy of the value and stores it in the future. CfutureSet may be performed on processors
other than the one where the future resides. If done remotely, the copy of the value is created on
the processor where the future resides.

void *CfutureWait(Cfuture fut)

Waits until the future has been filled, then returns a pointer to the contents of the future. If the
future has already been filled, this happens immediately (without blocking). Caution: Cfuture-
Wait can only be done on the processor where the Cfuture resides. A second caution: blocking
operations (such as this one) can only be done in user-created threads.

void CfutureDestroy(Cfuture f)

Frees the space used by the specified Cfuture. This also frees the value stored in the future.
Caution: this operation can only be done on the processor where the Cfuture resides.

void* CfutureCreateValue(int nbytes)

Allocates the specified amount of memory and returns a pointer to it. This buffer can be filled
with data and stored into a future, using CfutureStoreBuffer below. This combination is faster
than using CfutureSet directly.

void CfutureStoreValue(Cfuture fut, void *value)

Make a copy of the value and stores it in the future, destroying the original copy of the value. This
may be significantly faster than the more general function, CfutureSet (it may avoid copying).
This function can only used to store values that were previously extracted from other futures, or
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values that were allocated using CfutureCreateValue.

void CfutureModuleInit()

This function initializes the futures module. It must be called once on each processor, during the
handler-registration process (see the Converse manual regarding CmiRegisterHandler).
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Chapter 7

Converse-POSIX threads

We have implemented the POSIX threads API on top of Converse threads. To use the Converse-
pthreads, you must include the header file:

#include <cpthreads.h>

Refer to the POSIX threads documentation for the documentation on the pthreads functions and
types. Although Converse-pthreads threads are POSIX-compliant in most ways, there are some
specific things one needs to know to use our implementation.

7.1 Pthreads and Converse

Our pthreads implementation is designed to exist within a Converse environment. For example,
to send messages inside a POSIX program, you would still use the usual Converse messaging
primitives.

7.2 Suppressing Name Conflicts

Some people may wish to use Converse pthreads on machines that already have a pthreads
implementation in the standard library. This may cause some name-conflicts as we define the
pthreads functions, and the system include files do too. To avoid such conflicts, we provide an
alternative set of names beginning with the word Cpthread. These names are interchangable
with their pthread equivalents. In addition, you may prevent Converse from defining the pthread
names at all with the preprocessor symbol SUPPRESS PTHREADS:

#define SUPPRESS_PTHREADS
#include <cpthreads.h>
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7.3 Interoperating with Other Thread Packages

Converse programs are typically multilingual programs. There may be modules written using
POSIX threads, but other modules may use other thread APIs. The POSIX threads imple-
mentation has the following restriction: you may only call the pthreads functions from inside
threads created with pthread create. Threads created by other thread packages (for example, the
CthThread package) may not use the pthreads functions.

7.4 Preemptive Context Switching

Most implementations of POSIX threads perform time-slicing: when a thread has run for a
while, it automatically gives up the CPU to another thread. Our implementation is currently
nonpreemptive (no time-slicing). Threads give up control at two points:

• If they block (eg, at a mutex).

• If they call pthread yield().

Usually, the first rule is sufficient to make most programs work. However, a few programs (par-
ticularly, those that busy-wait) may need explicit insertion of yields.

7.5 Limits on Blocking Operations in main

Converse has a rule about blocking operations — there are certain pieces of code that may not
block. This was an efficiency decision. In particular, the main function, Converse handlers, and
the converse startup function (see ConverseInit) may not block. You must be aware of this when
using the POSIX threads functions with Converse.

There is a contradition here — the POSIX standard requires that the pthreads functions work
from inside main. However, many of them block, and Converse forbids blocking inside main.
This contradition can be resolved by renaming your posix-compliant main to something else: for
example, mymain. Then, through the normal Converse startup procedure, create a POSIX thread
to run mymain. We provide a convenience function to do this, called Cpthreads start main. The
startup code will be much like this:

void mystartup(int argc, char **argv)
{
CpthreadModuleInit();
Cpthreads_start_main(mymain, argc, argv);

}

int main(int argc, char **argv)
{
ConverseInit(mystartup, argc, argv, 0, 0);

}
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This creates the first POSIX thread on each processor, which runs the function mymain. The
mymain function is executing in a POSIX thread, and it may use any pthread function it wishes.

7.6 CpthreadModuleInit

On each processor, the function CpthreadModuleInit must be called before any other pthread
function is called. This is shown in the example in the previous section.
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Chapter 8

Parallel Arrays of Threads

This module is CPath: Converse Parallel Array of Threads. It makes it simple to create arrays of
threads, where the threads are distributed across the processors. It provides simple operations like
sending a message to a thread, as well as group operations like multicasting to a row of threads,
or reducing over an array of threads.

8.1 Creating Arrays of Threads

This module defines a data type CPath, also known as an “array descriptor”. Arrays are created
by the function CPathMakeArray, and individual threads are created using CPathMakeThread:

void CPathMakeArray(CPath *path, int threadfn, int mapfn, ...)
This function initiates the creation of an array of threads. It fills in the array descriptor *path.
Each thread in the array starts executing the function represented by threadfn. The function
mapfn represents a mapping function, controlling the layout of the array. This parameter must
be followed by the dimensions of the array, and then a zero.

void CPathMakeThread(CPath *path, int startfn, int pe)
This function makes a zero-dimensional array of threads, in other words, just one thread.

8.2 Mapping Functions for Arrays of Threads

One of the parameters to CPathMakeArray is a “mapping function”, which maps array elements to
processors. Mapping functions must be registered. The integer index returned by the registration
process is the number which is passed to CPathMakeArray. Mapping functions receive the array
descriptor as a parameter, and may use it to determine the dimensions of the array.

unsigned int MapFn(CPath *path, int *indices)
This is a prototype map function, all mapping functions must have this parameter list. It accepts
an array descriptor and a set of indices. It returns the processor number of the specified element.
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int CPathRegisterMapper(void *mapfn)
Accepts a pointer to a mapping function, and returns an integer index for the function. This
number can be used as a parameter to CPathMakeArray.

int CPathArrayDimensions(CPath *path)
Returns the number of dimensions in the specified array.

int CPathArrayDimension(CPath *path, int n)
Returns the nth dimension of the specified array.

8.3 Thread Functions for Arrays of Threads

Thread functions (the functions that the threads execute) must have the following prototype, and
must be registered using the following registration function. The integer index returned by the
registration process is the number which is passed to CPathMakeArray.

void ThreadFn(CPath *self, int *indices)
This is a prototype thread function. All thread-functions must have these parameters. When
an array of threads is created, each thread starts executing the specified thread function. The
function receives a pointer to a copy of the array’s descriptor, and the array element’s indices.

int CPathRegisterThreadFn(void *mapfn)
Accepts a pointer to a thread function, and returns an integer index for the function. This number
can be used as a parameter to CPathMakeArray.

8.4 Sending Messages to Threads

Threads may send messages to each other using CPathSend, which takes a complicated set of
paramters. The parameters are most easily described by a context-free grammar:

void CPathSend(dest-clause, tag-clause, data-clause, end-clause)
Where:

dest-clause :== CPATH_DEST ’,’ pathptr ’,’ index ’,’ index ’,’ ...
tag-clause :== CPATH_TAG ’,’ tag
tag-clause :== CPATH_TAGS ’,’ tag ’,’ tag ’,’ ... ’,’ 0
tag-clause :== CPATH_TAGVEC ’,’ numtags ’,’ tagvector
data-clause :== CPATH_BYTES ’,’ numbytes ’,’ bufptr
end-clause :== CPATH_END

The symbols CPATH DEST, CPATH TAG, CPATH TAGS, CPATH TAGVEC, CPATH BYTES, CPATH END, and
the comma are terminal symbols. The symbols descriptor, index, tag, numtags, tagvector, num-
bytes, and bufptr all represent C expressions.

The dest-clause specifies which array and which indices the message is to go to. One must provide
a pointer to an array descriptor and a set of indices. Any index may be either a normal index, or
the wildcard CPATH ALL. Using the wildcard causes a multicast. The tag-clause provides several

35



notations, all of which specify an array of one or more integer tags to be sent with the message.
These tags can be used at the receiving end for pattern matching. The data-clause specifies the
data to go in the message, as a sequence of bytes. The end-clause represents the end of the
parameter list.

Messages sent with CPathSend can be received using CPathRecv, analyzed using CPathMsgDe-
codeBytes, and finally discarded with CPathMsgFree:

void *CPathRecv(tag-clause, end-clause)
The tag-clause and end-clause match the grammar for CPathSend. The function will wait until a
message with the same tags shows up (it waits using the thread-blocking primitives, see Converse
threads). If any position in the CPathRecv tag-vector is CPATH WILD, then that one position
is ignored. CPathRecv returns an “opaque CPath message”. The message contains the data
somewhere inside it. The data can be located using CPathMsgDecodeBytes, below. The opaque
CPath message can be freed using CPathMsgFree below.

void CPathMsgDecodeBytes(void *msg, int *len, void *bytes)
Given an opaque CPath message (as sent by CPathSend and returned by CPathRecv), this
function will locate the data inside it. The parameter *len is filled in with the data length, and
*bytes is filled in with a pointer to the data bytes. Bear in mind that once you free the opaque
CPath message, this pointer is no longer valid.

void CPathMsgFree(void *msg)
Frees an opaque CPath message.

8.5 Performing Reductions over Array Elements

An set of threads may participate in a reduction. All the threads wishing to participate must
call CPathReduce. The parameters to CPathReduce are most easily described by a context-free
grammar:

void CPathReduce(over-clause, tag-clause, red-clause, data-clause, dest-clause, end-
clause)
Where:

over-clause :== CPATH_OVER ’,’ pathptr ’,’ index ’,’ index ’,’ ...
dest-clause :== CPATH_DEST ’,’ pathptr ’,’ index ’,’ index ’,’ ...
tag-clause :== CPATH_TAG ’,’ tag
tag-clause :== CPATH_TAGS ’,’ tag ’,’ tag ’,’ ... ’,’ 0
tag-clause :== CPATH_TAGVEC ’,’ numtags ’,’ tagvector
data-clause :== CPATH_BYTES ’,’ vecsize ’,’ eltsize ’,’ data
red-clause :== CPATH_REDUCER ’,’ redfn
end-clause :== CPATH_END

The over-clause specifies the set of threads participating in the reduction. One or more of the
indices should be CPATH ALL, the wildcard value. All array elements matching the pattern are
participating in the reduction. All participants must supply the same over-clause. The tags-
clause specifies a vector of integer tags. All participants must supply the same tags. The reducer
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represents the function used to combine data pairwise. All participants must supply the same
reducer. The data-clause specifies the input-data, which is an array of arbitrary-sized values. All
participants must agree on the vecsize and eltsize. The dest-clause specifies the recipient of the
reduced data (which may contain CPATH ALL again). The data is sent to the recipient. The results
can be received with CPathRecv using the same tags specified in the CPathReduce. The results
may be analyzed with CPathMsgDecodeReduction, and freed with CPathMsgFree.

void CPathMsgDecodeReduction(void *msg,int *vecsize,int *eltsize,void *bytes)
This function accepts an opaque CPath message which was created by a reduction. It locates the
data within the message, and determines the vecsize and eltsize.

The function that combines elements pairwise must match this prototype, and be registered with
the following registration function. It is the number returned by the registration function which
must be passed to CPathReduce:

void ReduceFn(int vecsize, void *data1, void *data2)
The reduce function accepts two equally-sized arrays of input data. It combines the two arrays
pairwise, storing the results in array 1.

int CPathRegisterReducer(void *fn)
Accepts a pointer to a reduction function, and returns an integer index for the function. This
number can be used as a parameter to CPathReduce.
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