
CS @ ILLINOIS

FALL 2010

Parallel Views

In August 2007, NSF announced plans to fund the de-
velopment of “the world’s most powerful leadership
class supercomputer”. Three classes of applications
were identified to assess the performance of candi-
date systems: a molecular dynamics application, a
lattice QCD application, and a turbulence application.
For molecular dynamics, NSF stated the required
performance levels in terms of NAMD (see page 4 for
details), thus acknowledging the importance of NAMD
to the HPC community. As co-developers of NAMD,
this decision cemented the involvement of the Parallel
Programming Lab (PPL) in the Blue Waters project.

With the immense computational resources of the
Blue Waters system, NAMD will enable the simula-
tion of increasingly complex molecular systems at
the atomic scale. At the time NSF put forth its initial
solicitation for hardware designs in 2006, molecular
systems containing between 1 and 3 million atoms
were considered large. Currently, NAMD is simulat-
ing molecular systems with over 20 million atoms.
When the Blue Waters supercomputer becomes op-
erational, scientists will be able to simulate particle
systems with over 100 million atoms.

As simulations scale to hundreds of thousands of
processors, new performance bottlenecks begin to
emerge. For example, the long range electrostatic
calculation phase can become a bottleneck with its

many-to-many communication pattern. To combat
this issue, we are exploring a new multi-level sum-
mation algorithm for scaling long distance electro-
static calculations. We are also enhancing NAMD to
take advantage of the collective communication oper-
ations supported by the Blue Waters interconnection
network.

In addition to scaling the electrostatic calculation in
NAMD, PPL is also tuning the performance of other
portions of the application. With molecular systems
on the scale of 10s or 100s of millions of atoms, all
aspects of the program must be parallelized so that
they are sufficiently scalable. For instance, parallel
I/O is required to speed up the startup code and the
data output portions of NAMD. The serial sections of
the code are also being modified so they can take ad-
vantage of specific features of the Power 7 processor,
such as support for the VSX SIMD instruction exten-
sion.

PPL’s contribution to the Blue Waters project is not
limited to NAMD alone. NAMD was written using
the Charm++ programming model, which
provides features such as asynchro-
nous communication and object-
based virtualization to the pro-
grammer. The model is based
on an efficient runtime sys-

NEWSLETTER OF THE PARALLEL PROGRAMMING LABORATORY

Continued on page 8

P
P

L
 &

 B
lu

e
W

at
er

s

void CkCallback::impl_thread_init(void)
{
 d.thread.onPE=CkMyPe();
 d.thread.cb=this; //<- so we can find this structure later
 d.thread.th=NULL; //<- thread isn't suspended yet
 d.thread.ret=NULL;//<- no data to return yet
}

//Actually suspend this thread
void *CkCallback::impl_thread_delay(void) const
{
 if (type!=resumeThread)
 CkAbort("Called impl_thread_delay on non-threaded callback");
 if (CkMyPe()!=d.thread.onPE)
 CkAbort("Called thread_delay on different processor than where callback was created");

 //Find the original callback object:
 CkCallback *dest=(CkCallback *)this;
 if (d.thread.cb!=NULL) dest=d.thread.cb;
 if (dest->d.thread.cb!=NULL)
 { //We need to sleep for the result:
 dest->d.thread.th=CthSelf(); //<- so we know a thread is waiting
 CthSuspend();
 if (dest->d.thread.cb!=NULL)
 CkAbort("thread resumed, but callback data is still empty");
 }
 return dest->d.thread.ret;
}

CkCallback::CkCallback(int ep,const CProxyElement_Group &grpElt,CmiBool doInline)
 :type(doInline?isendGroup:sendGroup)
{
 d.group.ep=ep;
 d.group.id=grpElt.ckGetGroupID();
 d.group.onPE=grpElt.ckGetGroupPe();

It is with great pleasure and pride that we present the
first newsletter from PPL.

It was approximately twenty years ago that I decided
to call my research group the “Parallel Program-
ming Laboratory” (PPL). We had only three or four
students at that time! With hard work by generations
of students and staff, PPL has become a large enter-
prise with a broad research agenda that does justice
to our name. At PPL, we work on developing novel
parallel programming abstractions backed by adap-
tive runtime techniques that automate tasks such as
resource management and fault tolerance. We create
collaborative, interdisciplinary applications, some of
which are in production use on supercomputers all
over the world and have scaled to tens of thousands
of processors. The scope of our work and plans, and
the number of people we affect, directly or indirectly,
justifies the need for a regular newsletter. We intend
to bring you feature stories about current research,
recent accomplishments, information about collabo-
rations, new and old, and much more, on a periodic
basis.

For our first feature, we provide an overview of
Charm++ and its history. We highlight three of our
more successful parallel applications, ChaNGa, NAMD
and OpenAtom. We also bring news about our visitors
and award-winning PPL students. In future issues,
we hope to continue with news about our inter-dis-
ciplinary collaborations and involvement in research
projects. We are excited to bring the newsletter to you
and we hope you will find it informative and useful.

- Laxmikant (Sanjay) Kale

Page 2 // PARALLEL VIEWS // FALL 2010

From The Director’s Desk

void CkCallback::impl_thread_init(void)
{
 d.thread.onPE=CkMyPe();
 d.thread.cb=this; //<- so we can find this structure later
 d.thread.th=NULL; //<- thread isn't suspended yet
 d.thread.ret=NULL;//<- no data to return yet
}

//Actually suspend this thread
void *CkCallback::impl_thread_delay(void) const
{
 if (type!=resumeThread)
 CkAbort("Called impl_thread_delay on non-threaded callback");
 if (CkMyPe()!=d.thread.onPE)
 CkAbort("Called thread_delay on different processor than where callback was created");

 //Find the original callback object:
 CkCallback *dest=(CkCallback *)this;
 if (d.thread.cb!=NULL) dest=d.thread.cb;
 if (dest->d.thread.cb!=NULL)
 { //We need to sleep for the result:
 dest->d.thread.th=CthSelf(); //<- so we know a thread is waiting
 CthSuspend();
 if (dest->d.thread.cb!=NULL)
 CkAbort("thread resumed, but callback data is still empty");
 }
 return dest->d.thread.ret;
}

CkCallback::CkCallback(int ep,const CProxyElement_Group &grpElt,CmiBool doInline)
 :type(doInline?isendGroup:sendGroup)
{
 d.group.ep=ep;
 d.group.id=grpElt.ckGetGroupID();
 d.group.onPE=grpElt.ckGetGroupPe();

What is Charm++?
 he Parallel Programming Labora-
tory (PPL) at University of Illinois at
Urbana-Champaign is a research group
led by Prof. Kale aimed at multiple fac-
ets of parallel computing. The group has
been called PPL since 1990, although it
was founded when Prof. Kale came to
Illinois in 1985. One of the signature
products of PPL is a parallel program-
ming system called Charm++. It forms a
foundation for much of the research in
the group.

We believe that a parallel programming
system should provide abstractions
aimed toward creating an optimal divi-
sion of labor: the programmers should
do what they can do best, while the
system should automate what it is best
at. Identifying what to do in parallel is
something people are very good at, and
systems (such as parallelizing compil-
ers) are not quite so good at. On the oth-
er hand, resource management is much
too tedious for a programmer, and it gets
worse as machines grow more complex
and applications grow more sophisticat-
ed – but a runtime system can automate
it effectively. The design of Charm++
allows the programmer to specify de-
composition of the computation into
explicitly parallel work and data units,
while empowering an intelligent adap-
tive runtime system (RTS) to control as-
signment of these units to processors,
and even to change these assignments
as the computation evolves. These units
are abstracted as data-driven C++ ob-
jects known as chares.

This object-based design also respects
locality of data-reference, which is
critical to good performance on modern
machines. Its cost model is clear to the
programmer: access within the object
is local and inexpensive, and access to
any other object needs to go via asyn-
chronous method invocations, and is
clearly seen as more expensive.

The chares in a computation are or-
ganized into multiple indexed collec-
tions. Each chare is identified by the
ID of the collection it belongs to, along
with its unique index within the collec-
tion. Charm++ supports multiple index-
structures including dense or sparse
multi-dimensional arrays (of chares),
as well as indexing by strings or bit-
vectors.

Charm++ is a C++-based system, and
each Chare is defined by a regular C++
class. The only extension is the pres-
ence of an interface file that describes
the signature of methods of each Chare
class that may be remotely invoked from
other chares. The system uses these
interface files to create code for auto-
matically packaging method invocations
into messages.

Charm++ supports a global object
space, so programmers don’t typically
deal with processors; communication
is expressed in terms of asynchronous
method invocations (think of them as
messages) sent towards other objects,
named solely via their ID and index. So,
if the runtime moves an object from one

processor to another, the calling object
(and the programmer) doesn’t need do
anything special.

There are typically many chares on a
given processor. The system schedules
them using a message-driven user-lev-
el scheduler. This adaptively overlaps
computation and communication with-
out any need for extra programming.

Page 3

Continued on page 7

CPU CCPU BCPU AGlobal Object Space

T The History of Charm++

Charm++ evolved from its earlier in-
carnation, a library called ChareKernel,
developed in 1988. Charm developed,
over the next two years, into a C-based
system with syntactic extensions that
were supported by a simple translator
with the Chare Kernel as its back end.
Even though Charm was based on C, its
structure was clearly object-based, with
chares as message-driven objects. So it
was natural, with the increasing popu-
larity of C++, that 1992-93 saw develop-
ment of a C++ based version, which was,
obviously, named Charm++. This was
the release 4.0 in Fall 1993. The con-
cept of indexed collections of chares,
the chare-arrays, was developed in
1995; and it was refined into almost the
current form, with scalable support for
migrations, insertions, deletions by year
2000. The system has been continually
improved, with new ports, libraries and
new functionality, such as fault toler-
ance, made available to the community
via regular releases. The current re-
lease stands at 6.2.2.

User view System view

 he members of PPL collaborate with several computa-
tional science and engineering groups for cross disciplin-
ary research efforts. These efforts have produced a num-
ber of parallel scientific applications. A few of them are
described below.

NAMD
http://charm.cs.illinois.edu/research/moldyn/

NAMD (NAnoscale Molecular Dynamics) is a parallel molec-
ular dynamics (MD) code designed for highly scalable simu-
lations of large biomolecular systems. Typical NAMD simu-
lations include all-atom models
of proteins, lipids, and/or
nucleic acids as well as
explicit solvent (water
and ions) and range
in size from 10,000
to 10,000,000 atoms.
The NAMD collabo-
ration between Klaus
Schulten’s Theoreti-
cal and Computation-
al Biophysics Group
(TCBG) of the Beckman
Institute and PPL dates back
to more than fifteen years ago.

NAMD employs the prioritized message-driven execution
capabilities of the Charm++ parallel runtime system, al-
lowing excellent parallel scaling on both massively paral-
lel supercomputers and commodity workstation clusters.
It was awarded a Gordon Bell Prize in the ‘Special’ category
at Supercomputing (SC) 2002. NAMD is distributed free
of charge as both source code and pre-compiled binaries
by TCBG. NAMD development is primarily funded by the
NIH through the Resource for Macromolecular Modeling
and Bioinformatics. NAMD is a popular MD package used
widely at various supercomputing centers. NAMD has been
downloaded by over 36,000 registered users, over 8,000 of
whom have downloaded multiple releases. NAMD 2.7 was
released on October 15, 2010 and features various optimi-
zations for new architectures including NVIDIA CUDA GPU
acceleration of nonbonded force evaluation.

OpenAtom
http://charm.cs.illinois.edu/OpenAtom

OpenAtom is a long standing (2001), cross-discipline, col-
laborative project to produce an efficient highly scalable
fine grained implementation of the Car-Parrinello method
for first principles molecular dynamics. By combining the

physics of Glenn Martyna and Mark Tuckerman’s PINYMD,
with the event driven execution model and adaptive runtime
of Charm++, the OpenAtom project has been able to achieve
higher levels of productive parallelization (32 water mol-
ecules on 8,192 cores) than traditional schemes.

Recently in 2008, the project added Klaus Schulten (TCBG,
Illinois) and Jack Dongarra (UT) as PI’s to integrate with
NAMD to provide QM/MM (quantum mechanics/molecular
mechanics) features and optimize performance on ORNL/
NICS’s Cray machines. Once complete, this will provide the
higher accuracy of QM modeling for the active regions of
molecular systems modeled by NAMD.

The OpenAtom team is expecting to issue a new release
2.0 in 2011. In addition to QM/MM, the new features in this
release will include Path Integrals, K-Points, Spin Orbit-
als, Tempering, high accuracy Van Der Waals, and Excited
States.

ChaNGa
http://charm.cs.illinois.edu/research/cosmology/

Cosmological simulators are becoming increasingly impor-
tant in the study of the formation of galaxies and large scale
structures. The more general study of the evolution of in-
teracting particles under the effects of Newtonian gravita-
tional forces, also known as the N-Body problem, has been
extensively reported in literature. Hierarchical methods for
such simulations have been adopted for quite some time by
astronomers. Most of those codes, however, do not scale
effectively on modern machines with thousands of pro-
cessors, due to load imbalance and communication over-
heads.

To address these scalability issues, PPL, in collaboration
with Thomas Quinn, University of Washington, developed
ChaNGa (Charm++ N-body Gravity solver), which had its
first public release in February 2007. ChaNGa uses one
of several available decomposition schemes to achieve an
efficient distribution of particles over migratable objects.
Through the use of techniques such as software tree cach-
ing and overlap of communication with useful force compu-
tation work, it has been able to accommodate large scale
simulations of hundreds of millions of particles on over
20,000 cores. More recently it has also shown good perfor-
mance on a cluster of a few hundred GPUs.

The Estrogen Receptor image above was made with VMD and is
owned by the Theoretical and Computational Biophysics Group,
NIH Resource for Macromolecular Modeling and Bioinformatics,
at the Beckman Institute, University of Illinois at Urbana-Cham-
paign.

T

Page 4 // PARALLEL VIEWS // FALL 2010

APPLICATIONS CORNER
A review of PPL’s top 3 parallel applications PPL

Visitors

PPL’s Workshop on Charm++ and its Applications will be held from April 18 through 20, 2011, at the University of Illinois.
This annual meeting, gearing up for its ninth year, is an opportunity for interested groups to discuss research accomplish-
ments in Charm++ and its applications, new development, and plans for the coming year. It is also an ideal time for new
and prospective users to visit PPL, and get perspectives on the best ways to exploit Charm++’s unique features in building
their applications. With its collaborative atmosphere, the workshop is a chance to present, learn about, and discuss work
in progress related to the Charm++ ecosystem.

This upcoming workshop will feature a keynote address by Professor Jack Dongarra, Distinguished Professor at the Uni-
versity of Tennessee, Knoxville. PPL will also host a programming competition, focused on developing a load balancing
strategy for a set of benchmark applications. Participants will harness Charm++’s object-based decomposition and adap-
tive runtime system to compete for the best performance.

Previous years’ workshops have featured talks on a wide variety of topics, ranging from
runtime implementation issues, parallel programming languages, debugging and analysis
tools, to many application domains and more. Attendees can expect to hear about exciting
new capabilities resulting from PPL’s collaborations in enhancing NAMD, OpenAtom, and
ChaNGa (featured on page 4), and how Charm++ facilitated their development. Other appli-
cations have included weather modeling, operations research, 3D rendering and visualiza-
tion, and fundamental building blocks like parallel linear algebra and sorting.

PPL invites anyone interested in attending or submitting an abstract for a presentation to
visit our web site, http://charm.cs.illinois.edu/charmWorkshop. We look forward to seeing
you!

Charm++ Workshop and
20th Anniversary of PPL

Page 5

During 2009-2010, The Parallel Programming Labo-
ratory hosted several visitors from different institu-
tions around the world.

Research scientist Dr. Sathish Vadhiyar, from the Su-
percomputer Education and Research Centre of the
Indian Institute of Science, Bangalore, was here dur-
ing the summer researching scientific computational
applications and developing enabling frameworks to
apply computer science techniques to different sci-
entific domains, including molecular dynamics, com-
putational astronomy and climate modeling.

Eduardo Rodrigues, a Ph.D. Student from Federal
University of Rio Grande Do Sul, Brazil, was with us
for a year, working on dynamic load balancing in sci-
entific applications, specifically weather forecasting
codes. His research with PPL has resulted in a few
papers, including one that was accepted at HiPC 2010
in Goa, India in December.

Dr. Yunchun Li of the Network and Information Center
of Beihang University, China, is currently conducting
research on parallel computing, focusing on the pos-
sible uses of Charm++ with embedded systems. Dr. Li
will be leaving PPL at the end of 2010.

Ph.D. candidate Xavier Besseron from the Labora-
tory of Informatics of Grenoble (LIG), France, was
in Urbana for a month researching domain decom-
position applications with Kaapi/Charm++/MPI and
fault-tolerance. The work he did added validation
and additional results to his thesis. Dr. Besseron has
successfully defended and is now working as a Post-
doctoral fellow with Ohio State University.

Page 6 // PARALLEL VIEWS // FALL 2010

 embers of the PPL group have been awarded a
number of honors and awards over the past year. From
outstanding undergraduate researchers to distinguished
paper awards, the PPLers are aiming high (and hitting the
mark) with their research.

Abhinav Bhatele successfully defended his thesis titled Au-
tomating Topology Aware Mapping for Supercomputers in
August 2010. Dr. Bhatele has been the recipient of several
awards due to his research: third prize in the ACM Student
Research Competition at SC 2008 for contention studies
on supercomputers, David J. Kuck Outstanding MS The-
sis Award in 2009, and as mentioned later in this article,
a Distinguished Paper Award, presented at EuroPar 2009
for significant improvements to a production scientific ap-
plication (OpenAtom). Based on this thesis work, Abhinav
was also selected as one of two George Michael Memorial
High Performance Computing Fellows for 2009, in an inter-
national competition, by ACM/IEEE and the SC conference
organizers. He will present his resulting research at SC’10
in New Orleans.

Edgar Solomonik was a PPL research assistant when he
was picked as a finalist for the Computing Research As-
sociation’s (CRA) Outstanding Undergraduate Researcher
award for 2010. Solomonik was a senior in his 2nd year of
study when he was awarded the honor.

The Computing Research Association
presents the CRA Outstanding
Undergraduate Researcher
award yearly and this year
it is sponsored by Mit-
subishi Electric Re-
search Labs. Mi-
crosoft Research
and Mitsubishi
Electric Re-
search Labs
are sponsors
in alternate
years. This
r e p r e s e n t s
the second
time a PPL
u n d e r g r a d u -
ate earned this
award. Ekaterina
Gonina was award-
ed an Honorable Men-
tion in 2008.

Edgar received the CS department Best Undergraduate Re-
search Project Award for the 2008-2009 academic year and
his research paper titled, “Highly Scalable Parallel Sort-
ing,” was presented at IPDPS (IEEE International Parallel
and Distributed Processing Symposium) in April, 2010 in
Atlanta, Georgia. After graduating with honors from Illi-
nois, he went to pursue a PhD at University of California,
Berkeley.

A Case Study of Communication Optimizations on 3D Mesh
Interconnects by Abhinav Bhatele, Eric Bohm, and Laxmi-
kant V. Kale was picked as a Distinguished Paper at Euro-
Par 2009. The paper was one of four that was given this
honor during the 2009 conference. Bhatele was on hand at
the conference in Delft, The Netherlands, to present their
research.

The paper presents research on exploiting the topology of
supercomputers to improve application performance. Per-
formance improvements of up to two times are presented
in the paper. These gains were achieved using an API the
authors developed to obtain topology information on 3D to-
rus machines like IBM Blue Gene and Cray XT. Using the
API and topology aware mapping, the object communica-
tion graph is embedded on the processor topology graph.
The group is currently working on automating techniques
developed in this paper and adding them to the Charm++
runtime.

David Kunzman’s “Toward a Frame-
work for Abstracting Accelera-

tors in Parallel Applica-
tions: Experience with

Cell” was picked as
one of four final-

ists for the best
student paper
honor at SC ‘09.
The paper is a
result of Kun-
zman’s the-
sis research,
which is aimed
at harness-

ing the power
of future super-

computers con-
sisting of a hetero-

geneous collection of
accelerators, along with

manycore and multicore
chips.

Recent PPL Alumni
This past year, four graduate students with PPL successfully

defended their Ph.D. theses. Chee Wai Lee, Abhinav Bhatele,

Isaac Dooley and Filippo Gioachin graduated from Illinois and are

pursuing a variety of post-graduate careers. Lee is currently a

post-doctoral researcher with the University of Oregon. Bhat-

ele is doing a post-doc with Profs. Bill Gropp and Kale. Dooley

accepted a position with Two Sigma, a financial corporation in

Manhattan, New York. Gioachin is now based in Singapore and

working for HP Labs.

M
Awards and Honors

Page 7

Tools for Charm++ Development
Tools are important to the utility of a parallel programming system. Two PhD students at PPL submitted their dissertations dur-
ing the past year on topics relating to tools: Chee Wai Lee’s thesis on scalable performance analysis, whose results are being

incorporated into Projections, a rich performance analysis tool with a
long history in the group, and Filippo Gioachin’s thesis on scalable de-
bugging techniques, which are incorporated into a relatively new tool
called CharmDebug.

Charm++ programs may be linked with a tracing library that produces de-
tailed logs (or optionally, summary profiles) during execution. No user-
level instrumentation is necessary. A tool called Projections can then be
used to visualize various aspects of performance and to carry out certain
kinds of analysis automatically. Projections has evolved over a decade’s
use in analyzing performance of production applications on large super-
computers. It has some unusual features that take advantage of the fine-
grained application-level data that is available to the Charm++ runtime
system, such as the separation of idle-time and overhead in communi-
cation operations. One can view a detailed timeline, as well as various
profile and histogram displays. Projections supports advanced scalable
analysis techniques, such as outlier analysis via k-means clustering. A
recently added feature is live visualization of running programs, which
relies on scalable data collection using a client-server interface without
significant interference to the application performance.

CharmDebug is a specialized parallel debugger that understands
Charm++ constructs and provides online access to runtime data struc-

tures. One can freeze a running computation, attach to individual nodes, and set conditional breakpoints. It provides support for
tracking memory-corruption bugs, as well as non-deterministic bugs via a sophisticated record-replay system, which allows
controlled analysis of the conditions leading to a bug on a given processor. CharmDebug was recently enhanced with the capabil-
ity to analyze speculative message delivery, a technique that can uncover potential race conditions in a parallel program.

The ability to peek at the schedule’s queue also allows the
system to prefetch objects closer to the CPU. This has been
exploited by our implementation on the Cell processor. The
message-driven execution also supports efficient composabil-
ity, since objects from multiple independent modules can in-
terleave their execution on a processor, thus overlapping idle
time in one with useful computation in another.

The most impressive benefits of this programming model arise
when the RTS exercises its ability to migrate objects across
processors. Dynamic load balancing is achieved by measure-
ment based strategies that migrate objects away from over-
loaded processors. Evacuating processors in the face of im-
pending failure leads to a proactive fault tolerance strategy.
One can also shrink or expand the sets of processors allocated
to a job, by migrating objects and adjusting runtime structures
accordingly.

Another striking feature of Charm++ is its multiple strategies
for reactive fault tolerance. Many of these strategies are sup-
ported in its production versions, as long as the job schedulers
allow them. The simplest strategies support automatic check-

pointing to disk with restart on a different number of proces-
sors. An in-memory checkpointing scheme goes further: it au-
tomatically detects failure, and restarts processes from their
checkpoints stored in local or remote memories. An even more
advanced experimental message-logging strategy sends only
the failed processor back to its checkpoint, and parallelizes its
recovery by sending the recovering objects to different proces-
sors. This allows an application to make progress even when
MTBF falls below the checkpoint period!

The benefits of the Charm++ system are also available to MPI
users via Adaptive MPI (AMPI), an implementation of the MPI
standard on top of Charm++. Charm++ is a good substrate
for developing novel higher level languages, because of au-
tomation of resource management and interoperability. We
are developing a few such languages which elegantly capture
specialized communication patterns: Charisma for static data
flow, and MultiPhase Shared Arrays (MSA) for disciplined, de-
terministic and efficient use of globally shared arrays.

The system, its tools, documentation and papers about it are
available at http://charm.cs.illinois.edu.

Charm++ continued from page 3

Non-profit Organization

US POSTAGE

PAID

Permit No. 75

CHAMPAIGN IL 61820

Department of Computer Science
University of Illinois • College of Engineering
201 North Goodwin Avenue
Urbana, IL 61801-2302

tem that enables the dynamic overlap of computation and
communication and provides automated load balancing and
fault tolerance support for applications. This combination of
features has enabled many complex applications written in
Charm++ to scale to tens of thousands of processors in the
past. However, scaling to machines the size of Blue Waters
presents a new set of challenges. We are tackling these by
introducing new features into the runtime system. These
include SMP optimizations for intra- and inter-node com-
munication, the automated placement of objects accord-
ing to machine topology information, scalable hierarchical
load balancing schemes, and the optimal usage of individual
cores on a single node based on real-time measurements
from program execution. Members of PPL have also started
collaborations with researchers from DOE laboratories and
other universities to define common runtime infrastructure
that runtime systems of multiple programming models can
use interopearably.

PPL is also responsible for the development of BigSim, a
tool used to model and analyze the performance of appli-
cations running on future machines with large numbers of
processors before they even exist. As a case-study, BigSim
has been used to simulate and study the performance of
NAMD on the entire Blue Waters system comprising more
than 300,000 processing cores. The simulation itself was
carried out on an existing cluster—with a much smaller
number of processors. This is a powerful approach to the
tuning of application performance, saving developers the
expense of doing repeated and expensive performance
tests on the actual machine. We have also integrated IBM’s
SystemSim sequential simulator into the BigSim tool chain,
allowing BigSim to make accurate predictions of sequential
pieces of code executing on future processor architectures
before they have been implemented in actual hardware
(such as on Power 7 before IBM manufactured a chip).

The development of accurate system simulators, such as
BigSim, will enable scientists to better predict the perfor-
mance of HPC applications on future machines and enable
architects to design machines that are well-suited to target
applications.

PPL & Blue Waters continued from page 1

Members of the Parallel Programming Laboratory, May, 2010.

