
Autonomic Computing

Pratap Pattnaik

T. J. Watson Research Center

Yorktown Heights

IBM



Coworkers

K. Ekanadham (Eknath)  

Joefon Jann



reduction of complexity in the 
management of large computing systems

Goal of Autonomic Computing



My Bias
§ Where you stand depends on where you sit.

§ What you see depends on where you stand.

My experience is based on many years of working 
with our leading customers, and in developing 
systems (architecture, prototype and deployment) 
for their needs.

Today’s business sees:
§ Demand for Short Term Cost Savings.

§ Explosion of Transactions through the IT Infrastructure.



utilization

Time

Workloads 
variability

Infrastructure Management

Demand for Short Term Cost Savings.
Explosion of Transactions through the Infrastructure.

ƒComplexity
ƒCost of software & services
ƒSkills shortage
ƒNew kinds of workloads



More degrees of Freedom 
⇒ More choices to be made

⇒ More information to be collected/sorted out
⇒ More criteria to be applied for optimality

⇒ More complexity

HOW DOES THIS COMPLEXITY ARISE?

Demand for Short Term Cost Savings.
Explosion of Transactions through the Infrastructure.



QUINTESSENTIAL  FEATURES 

EXPLOSION  OF
TRANSACTIONS

UNPREDICTABLE
VARIATIONS IN

DEMANDS

UNRELIABLE
FACILITIES

NO TIME TO PRE-PLAN;

ADAPT, JUGGLE, WHATEVER
BUT DO IT BETTER OR DIE

Heterogeneous
Distributed

System



EVER-CHANGING GLOBAL KNOWLEDGE

1.  Non-uniform technological growth

2.  Transactional explosion 

3.  New trends induced by growing society

let us look at each of these aspects …...



1. Non-uniform technological growth
Technology Continues to Advance,  But ….



Non uniform advancements of the components

Historically, computing elements, such as  CPUs, 
memory, disks,  network, etc., have non-uniform 
advancements.  

For Example
vHW (Moore's Law on speed and real estate)
vFirmware (Dynamic Reconfiguration, LPAR, 

Hypervisor etc.)
vOS (QoS, Scalable, etc.)
vMiddleware (New runtime environments)
vApplications



… Consequently

§ This eliminates the possibility of developing a Stable 
knowledge base. 

§ The disparity between  the capabilities/speeds of 
various elements opens up the opportunity for each 
element to introduce a number of different strategies
depending upon the environment the element is 
encountering. 

This lack of knowledge manifests as effective 
increase in the degrees of freedom.

Demand for Short Term Cost Savings.
Explosion of Transactions through the Infrastructure.



2.  Transactional explosion through IT infrastructure

In today’s IT infrastructure, processing a
single transaction, explodes into numerous
transactions

This will only continue to evolve this way

To see this, just visit a web site and see how many  
activities take place to show the contents 

Demand for Short Term Cost Savings.
Explosion of Transactions through the Infrastructure.



Example 1:  e-business Infrastructure

Middleware

Storage

Directory
and Security

Servers

Web 
Presentation 

Servers

Web 
Application 

Servers
Data

Servers

Transaction
ServersCustomers

Business
Partners

Suppliers

Employees

Q
ua

lit
y 

of
 S

er
vi

ce

N
et

w
or

k



Example 2:  Transaction flow 



3.  New trends induced by society

• Society is becoming increasingly data-centric

• Greater role of information transfer in human interactions

• Increasing Variability in demand for services



EVER-CHANGING GLOBAL KNOWLEDGE

1.  Non-uniform advancements of the components
2.  Transactional explosion through IT infrastructure
3.  Variability due to increased interaction with the society

⇒ Cannot model based on extant knowledge (static) 
⇒ Must adapt to dynamically changing environment



How can we reduce the complexity of  
management of large computing systems ?



Observations

Ø Large Systems will force the lack of comprehensive global 
knowledge.

Ø Business needs and opportunities will continuously encourage 
uncoordinated growth. (In the past, a number of major inventions
in CS have come from such dynamics).

Ø Systems will remain as conglomerations of several distributed 
components.

Ø It is desirable to develop systematic framework (theory, 
infrastructure, best practices, heuristics, etc.) to reduce the 
effective complexity of the IT infrastructure.

Ø Business constraints will expect the new frameworks to utilize 
significant portions of existing IT infrastructure.



ANALOGY  WITH PHYSICS

Complexity arising out of a vast number of degrees of 
freedom has been a major source of challenge in Physics.

A successful  approach in Physics has been to decompose
a system into a set of appropriate components, and develop 
behavioral models for each component  by reduction - that is, 

Design a small number of composite degrees of freedom that capture 

the effects of others in some relevant manner

This analogy may not completely carry over to Computer 
Science .., but may give us some guidance.



SCIENCE      VS. COMMERCE

TRY EXPLAINING A BYZANTINE PHENOMENON
WHERE THE VALUE OF YOUR GOAL IS
CHANGED ON YOU AS YOU IMPROVE

UNIVERSE
Relatively static

DISCOVER, MODEL, VERIFY, EXPLAIN  A
UNIVERSE WHICH DOES NOT CHANGE

RULES  ON YOU



FORMAL SYSTEM PARAMETERS

π  : Σ × ψ → Ο × ψ

ξ
Environmental

State

Σ
Input

Internal
State

ψ

α

Ο
Output

[ Σ, Ο, β,           ξ, ψ,               Π,            α, η, Q ]
BehaviorSpec,    StateSpec,    MethodSpec,   StrategySpec

α  : Σ × ξ × ψ → Π



Example   Malloc

Internal
State

ψ

Σ = {Allocate(n),  free(a)}

α

Ο = {Address(a),   ok/error}

β (n,a) ⇒ {Addresses a thru a+n
are currently free}
η ⇒ quick response time

searching linear list does not
scale well

First-fit

Slab of slices
of  same size n

Fixed table
indexed
by size
n < 4k

n < 4k, 60% of the time
On average for many applications

For n > 4k, exploit temporal locality
for frequent requests of same size

Slab of slices
of  same size n

Associative
table of sizes
n > 4k

Track history

ξ is the pattern of arriving requests
It is extrapolated from history
and corrected by self-observation



Internal
State

ψ

Σ = {Allocate(n),  free(a)}

α

Ο = {Address(a),   ok / error}

First-fit

Associative
table of  region
tags

First-fit

TLB  Performance

Malloc Outer Structure
Malloc substructure
Malloc substructure
…..
Malloc substructure

Example  Malloc (contd.)



Plug-and-play
Dynamic Reconfiguration

Self
Configuring

Self
Healing

Self
Optimizing

Self
Protecting

Autonomic

Instruction-retry
Network routing

Memory Allocator
Branch Predictor

Work Load Manager

Fault-tolerant
React to Env Changes
before getting killed

OTHER  EXAMPLES

The framework we described is capable of representing
a wide number of existing autonomic subsystems



What needs to be done?

§ A theory must be developed to study common properties of 

any system expressed in this parameterized framework 

§ For example

• Canonical representations for ξ and ψ
• Monitoring and Sampling criteria
• Concise representations for observed Characteristics
• Stability of switching among different strategies
• Effects of latencies between observations and resource changes



Migration from an 
entitlement-approach to 
goal-oriented approach

• Represent  systems as services
• Attach QOS to the services
• Multi-tasking  è Virtual Machine  è OGSA



Memory Storage I/O

Physical Computing Resources
Hiding Complexity



Hiding Complexity
Virtual Computing Resources



Hiding Complexity

computing power
storage

files data
applications

Physical Internet 



Hiding Complexity: Grid Computing
Accessing and Sharing Resources over the Internet, or 
Private Intranets, based on Open Protocols



Summary

• Need to develop a Theory
• Entitlement-approachèGoal-oriented approach
• The following practical considerations are essential

• Open Standards
• Must carry existing infrastructures as much as possible
• Components and best practices must be reusable



DRIVING FORCES - NEEDED CAPABILITIES

Heterogeneous
Distributed

System

Dynamically Changing
Customer Demands

Dependent Services
with changing QOS

Newly emerging
Services

Component Failures
and Degradations

RECONFIGUREM
O

NI
TO

R 
PE

RF

DISCOVER

DETECT FAULTS

“on demand computing”
discover, detect, monitor, reconfigure
cannot afford to plan and build
react quickly, even if ad hoc


