
66

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 131

http://upc.gwu.edu

A Co-Array Fortran Tutorial

Robert W. Numrich
Cray Inc.

67

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 133

Outline
1. Philosophy of Co-Array Fortran
2. Co-arrays and co-dimensions
3. Execution model
4. Relative image indices
5. Synchronization
6. Dynamic memory management
7. Example from UK Met Office
8. Examples from Linear Algebra
9. Using “Object-Oriented” Techniques with Co-Array

Fortran
10. I/O
11. Summary

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 134

1. The Co-Array Fortran
Philosophy

68

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 135

The Co-Array Fortran Philosophy

• What is the smallest change required to make
Fortran 90 an effective parallel language?

• How can this change be expressed so that it is
intuitive and natural for Fortran programmers to
understand?

• How can it be expressed so that existing compiler
technology can implement it efficiently?

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 136

The Co-Array Fortran Standard

• Co-Array Fortran is defined by:
– R.W. Numrich and J.K. Reid, “Co-Array

Fortran for Parallel Programming”, ACM
Fortran Forum, 17(2):1-31, 1998

• Additional information on the web:
– www.co-array.org

69

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 137

Co-Array Fortran on the T3E

• CAF has been a supported feature of
Fortran 90 since release 3.1

• f90 -Z src.f90

• mpprun -n7 a.out

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 138

Non-Aligned Variables in SPMD
Programs

• Addresses of arrays are on the local heap.

• Sizes and shapes are different on different
program images.

• One processor knows nothing about
another’s memory layout.

• How can we exchange data between such
non-aligned variables?

70

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 139

Some Solutions
• MPI-1

– Elaborate system of buffers
– Two-sided send/receive protocol
– Programmer moves data between local buffers only.

• SHMEM
– One-sided exchange between variables in COMMON
– Programmer manages non-aligned addresses and computes offsets

into arrays to compensate for different sizes and shapes
• MPI-2

– Mimic SHMEM by exposing some of the buffer system
– One-sided data exchange within predefined windows
– Programmer manages addresses and offsets within the windows

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 140

Co-Array Fortran Solution

• Incorporate the SPMD Model into Fortran 95
itself
– Mark variables with co-dimensions
– Co-dimensions behave like normal dimensions
– Co-dimensions match problem decomposition not

necessarily hardware decomposition

• The underlying run-time system maps your
problem decomposition onto specific hardware.

• One-sided data exchange between co-arrays
– Compiler manages remote addresses, shapes and sizes

71

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 141

The CAF Programming Model

• Multiple images of the same program (SPMD)
– Replicated text and data

– The program is written in a sequential language.

– An “object” has the same name in each image.

– Extensions allow the programmer to point from an
object in one image to the same object in another
image.

– The underlying run-time support system maintains a
map among objects in different images.

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 142

2. Co-Arrays and Co-Dimensions

72

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 143

What is Co-Array Fortran?

• Co-Array Fortran (CAF) is a simple parallel
extension to Fortran 90/95.

• It uses normal rounded brackets () to point
to data in local memory.

• It uses square brackets [] to point to data in
remote memory.

• Syntactic and semantic rules apply
separately but equally to () and [].

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 144

What Do Co-dimensions Mean?

The declaration

real :: x(n)[p,q,*]

means

1. An array of length n is replicated across images.

2. The underlying system must build a map among these
arrays.

3. The logical coordinate system for images is a three
dimensional grid of size

4. (p,q,r) where r=num_images()/(pq)

73

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 145

Examples of Co-Array Declarations
real :: a(n)[*]

real ::b(n)[p,*]

real ::c(n,m)[p,q,*]

complex,dimension[*] :: z

integer,dimension(n)[*] :: index

real,allocatable,dimension(:)[:] :: w

type(field), allocatable,dimension[:,:] :: maxwell

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 146

Communicating Between Co-Array
“Objects”

y(:) = x(:)[p]
myIndex(:) = index(:)
yourIndex(:) = index(:)[you]
yourField = maxwell[you]
x(:)[q] = x(:) + x(:)[p]
x(index(:)) = y[index(:)]

Absent co-dimension defaults to the local object.

74

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 147

CAF Memory Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 148

Example I: A PIC Code Fragment

type(Pstruct) particle(myMax),buffer(myMax)[*]
myCell = this_image(buffer)
yours = 0
do mine =1,myParticles

If(particle(mine)%x > rightEdge) then
yours = yours + 1
buffer(yours)[myCell+1] = particle(mine)

endif
enddo

75

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 149

Exercise: PIC Fragment

• Convince yourself that no synchronization
is required for this one-dimensional
problem.

• What kind of synchronization is required
for the three-dimensional case?

• What are the tradeoffs between
synchronization and memory usage?

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 150

3. Execution Model

76

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 151

The Execution Model (I)
• The number of images is fixed.

• This number can be retrieved at run-time.
num_images() >= 1

• Each image has its own index.

• This index can be retrieved at run-time.
1 <= this_image() <= num_images()

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 152

The Execution Model (II)

• Each image executes independently of the
others.

• Communication between images takes place
only through the use of explicit CAF
syntax.

• The programmer inserts explicit
synchronization as needed.

77

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 153

Who Builds the Map?

• The programmer specifies a logical map
using co-array syntax.

• The underlying run-time system builds the
logical-to-virtual map and a virtual-to-
physical map.

• The programmer should be concerned with
the logical map only.

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 154

One-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical

Processor

78

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 155

Many-to-One Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 156

One-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

One
Physical

Processor

79

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 157

Many-to-Many Execution Model

x(1)

x(n)

x(1)

x(n)

x(1)[q]

p q

x(n)[p]

x(1)

x(n)

x(1)

x(n)

x(1)

x(n)

Many
Physical

Processors

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 158

4. Relative Image Indices

80

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 159

Relative Image Indices

• Runtime system builds a map among
images.

• CAF syntax is a logical expression of this
map.

• Current image index:
1 <= this_image() <= num_images()

• Current image index relative to a co-array:
lowCoBnd(x) <= this_image(x) <= upCoBnd(x)

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 160

Relative Image Indices (1)

161284

151173

14106 2

139511

2

3

4

1 2 3 4

this_image() = 15 this_image(x) = (/3,4/)x[4,*]

81

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 161

Relative Image Indices (II)

161284

151173

14106 2

139510

1

2

3

0 1 2 3

this_image() = 15 this_image(x) = (/2,3/)x[0:3,0:*]

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 162

Relative Image Indices (III)

161284

151173

14106 2

13951-5

-4

-3

-2

0 1 2 3

this_image() = 15 this_image(x) = (/-3, 3/)x[-5:-2,0:*]

82

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 163

Relative Image Indices (IV)

161412108642

151311975310

1

0 1 2 3 4 5 6 7

x[0:1,0:*] this_image() = 15 this_image(x) =(/0,7/)

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 164

5. Synchronization

83

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 165

Synchronization Intrinsic Procedures

sync_all()
Full barrier; wait for all images before continuing.

sync_all(wait(:))
Partial barrier; wait only for those images in the wait(:) list.

sync_team(list(:))
Team barrier; only images in list(:) are involved.

sync_team(list(:),wait(:))
Team barrier; wait only for those images in the wait(:) list.

sync_team(myPartner)
Synchronize with one other image.

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 166

Events

sync_team(list(:),list(me:me)) post event

sync_team(list(:),list(you:you)) wait event

84

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 167

Example: Global Reduction
subroutineglb_dsum(x,n)
real(kind=8),dimension(n)[0:*] :: x
real(kind=8),dimension(n) :: wrk
integer n,bit,i,mypartner,dim,me, m
dim = log2_images()
if(dim .eq. 0) return
m = 2**dim
bit = 1
me = this_image(x)
do i=1,dim
mypartner=xor(me,bit)
bit=shiftl(bit,1)
call sync_all()
wrk(:) = x(:)[mypartner]
call sync_all()
x(:)=x(:)+wrk(:)

enddo
end subroutineglb_dsum

6&����

��������

3URJUDPPLQJ:LWK WKH 'LVWULEXWHG

6KDUHG�0HPRU\0RGHO 168

Exercise: Global Reduction

• Convince yourself that two sync points are
required.

• How would you modify the routine to
handle non-power-of-two number of
images?

• Can you rewrite the example using only one
barrier?

