http://upc.gwu.edu

h Sembrn N "ol |5 Eoeiie R]

JEELP LML LI

E;:!_ﬁ_m-—l.—- |v~—|u—|u--—|m-|n—-i"mfrf
A Co-Array Fortran Tutorial
Robert W. Numrich
Cray Inc.
== F _ o

66

Outline

1. Philosophy of Co-Array Fortran
2. Co-arrays and co-dimensions
3. Execution model
4. Relativeimageindices
5. Synchronization
6. Dynamic memory management
7. Examplefrom UK Met Office
8. Examplesfrom Linear Algebra
9. Using “Object-Oriented” Technigues with Co-Array
Fortran
10. 1/0
11. Summary
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 133
1. The Co-Array Fortran
Philosophy
SC2001 Programming With the Distributed

11/12/01 Shared-Memory Model 134

The Co-Array Fortran Philosophy

* What isthe smallest change required to make
Fortran 90 an effective parallel language?

» How can this change be expressed so that it is
intuitive and natural for Fortran programmers to
understand?

» How can it be expressed so that existing compiler
technology can implement it efficiently?

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

135

The Co-Array Fortran Standard

» Co-Array Fortran is defined by:

— R.W. Numrich and J.K. Reid, “Co-Array
Fortran for Parallel Programming”, ACM
Fortran Forum, 17(2):1-31, 1998

* Additional information on the web:
— WWW.Co-array.org

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

136

68

Co-Array Fortran on the T3E

» CAF has been a supported feature of
Fortran 90 sincerelease 3.1

* f90 -Z src.f90
* mpprun -n/ a.out

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

137

Non-Aligned Variablesin SPMD
Programs

o Addresses of arrays are on the local heap.

» Sizes and shapes are different on different
program i mages.

» One processor knows nothing about
another’s memory layout.

» How can we exchange data between such
non-aligned variables?

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

138

69

Some Solutions
« MPI-1

— Elaborate system of buffers

— Two-sided send/receive protocol

— Programmer moves data between local buffers only.
e« SHMEM

— One-sided exchange between variablesin COMMON

— Programmer manages non-aligned addresses and computes offsets
into arrays to compensate for different sizes and shapes

e MPI-2
— Mimic SHMEM by exposing some of the buffer system
— One-sided data exchange within predefined windows
— Programmer manages addresses and offsets within the windows

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

139

Co-Array Fortran Solution

* Incorporate the SPMD Model into Fortran 95
itsel f
— Mark variables with co-dimensions
— Co-dimensions behave like normal dimensions
— Co-dimensions match problem decomposition not

necessarily hardware decomposition

* The underlying run-time system maps your
problem decomposition onto specific hardware.

* One-sided data exchange between co-arrays
— Compiler manages remote addresses, shapes and sizes

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

140

70

The CAF Programming Model

» Multiple images of the same program (SPMD)
— Replicated text and data
— The program is written in a sequential language.
— An*“object” has the same name in each image.

— Extensions allow the programmer to point from an
object in one image to the same object in another
image.

— The underlying run-time support system maintains a
map among objects in different images.

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

141

2. Co-Arrays and Co-Dimensions

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

142

71

What is Co-Array Fortran?

» Co-Array Fortran (CAF) isasimple parallel
extension to Fortran 90/95.

* It uses normal rounded brackets () to point
to datain local memory.

* It usessquare brackets[] to point to datain
remote memory.

» Syntactic and semantic rules apply
separately but equally to () and [].

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

143

What Do Co-dimensions Mean?

The declaration
real ;2 x(n)[p,q,*]
means
1. Anarray of length nisreplicated across images.

2. Theunderlying system must build a map among these
arrays.

3. Thelogical coordinate system for imagesis athree
dimensional grid of size

4, (p,a,r) where r=num_images()/(pq)

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

144

72

Examples of Co-Array Declarations
real :: a(n)[*]
real ::b(n)[p."]
real ::c(nm)[p.q,"]
complex,dimension[*] :: z
integer,dimension(n)[*] :: index
real ,allocatable,dimension(;)[:] :: w
type(field), allocatable,dimension(:,:] :: maxwell

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

145

Communicating Between Co-Array
“Objects’

y(:) =xC)IP]

mylndex(:) = index(:)
yourlndex(:) = index(:)[you]
yourField = maxwell[you]
X()[a] = x() +x()p]
x(index(:)) = y[index(:)]

Absent co-dimension defaultsto the local object.

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

146

73

CAF Memory Model

p q
x(Dldl

$C2001 Pr ing With the Distril d
11/12/01 Shared-Memory Model 147

Examplel: A PIC Code Fragment

type(Pstruct) particle(myMax),buffer(myMax)[*]
myCell = this_image(buffer)
yours=0
do mine =1,myParticles
If(particle(mine)%x > rightEdge) then
yours=yours+ 1
buffer(yours)[myCell+1] = particle(mine)
endif
enddo

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 148

74

Exercise: PIC Fragment

» Convince yourself that no synchronization
isrequired for this one-dimensional
problem.

» What kind of synchronization isrequired
for the three-dimensional case?

» What are the tradeoffs between
synchronization and memory usage?

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

149

3. Execution Model

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

150

75

$C2001
11/12/01

The Execution Model (1)

The number of imagesisfixed.
This number can be retrieved at run-time.
num_images() >=1
Each image has its own index.
Thisindex can beretrieved at run-time.
1 <=this_image() <= num_images()

Programming With the Distributed
Shared-Memory Model

151

$C2001
11/12/01

The Execution Model (11)

Each image executes independently of the
others.

Communication between images takes place
only through the use of explicit CAF

syntax.

The programmer inserts explicit
synchronization as needed.

Programming With the Distributed
Shared-Memory Model

152

76

Who Builds the Map?

» The programmer specifies alogical map
using co-array syntax.

* The underlying run-time system builds the
logical-to-virtual map and avirtual-to-
physical map.

» The programmer should be concerned with
the logical map only.

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model

153

One-to-One Executi on Modedl

SC2001 Programming With the Distributed

Shared-Memory Model

! X(l)[q] I

154

77

M any-to-One Execulti on Model

! X(l)[q] I

SC2001 ing With the Distri
Shared-Memory Model 155
One-to-M an;g Executl oQ Mod€d
SC2001 Programming With the Distributed
Shared-Memory Model 156

11/12/01

78

Many-to-Many Execution Model

$C2001 Pr ing With the Distril d

157

11/12/01 Shared-Memory Model
4. Relative Image Indices
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 158

79

Relative Image Indices

Runtime system builds a map among
images.
CAF syntax isalogical expression of this
map.
Current image index:
1 <= this_image() <= num_images()
Current image index relative to a co-array:
lowCoBnd(x) <=this_image(x) <= upCoBnd(x)

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 159

Relative Image Indices (1)

1 2 3 4
1 1 5 9 13
, |2 6 10 14
3 3 7 11 15
4 |4 8 12 16

X[4,*] this image() =15 this image(x) = (/3,4/)

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 160

$C2001
11/12/01

Relative Image Indices (11)
0 1 2 3

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

X[0:3,0:*] this_image() = 15

this_image(x) = (/2,3/)

Programming With the Distributed
Shared-Memory Model

161

Relative Image Indices (111)

0 1 2 3
s |1 5 9 13
4 |2 6 10 14
3 |3 7 11 15
5 |4 8 12 16

X[-5:-2,0:*] this_image() = 15

$C2001
11/12/01

this_image(x) = (/-3, 3/)

Programming With the Distributed
Shared-Memory Model

81

Relative Image Indices (1V)

0 1 2 3 4 5 6 7

O11 |3 |5 |7 |9 |11 |13 |15

112 |4 |6 |8 |10 |12 |14 |16

X[0:1,0:*] this image() = 15 this_image(x) =(/0,7/)

SC2001 Programming With the Distributed

11/12/01 Shared-Memory Model 163
5. Synchronization

SC2001 Programming With the Distributed

11/12/01 Shared-Memory Model 164

82

Synchronization Intrinsic Procedures

sync_all()

Full barrier; wait for all images before continuing.
sync_all(wait(:))

Partial barrier; wait only for those imagesin the wait(:) list.
sync_team(list(:))

Team barrier; only imagesin list(:) are involved.
sync_team(list(:),wait(:))

Team barrier; wait only for those images in the wait(:) list.
sync_team(myPartner)

Synchronize with one other image.

SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 165
Events
sync_team(list(:),list(me:me)) post event
sync_team(list(;),list(you:you)) wait event
SC2001 Programming With the Distributed
11/12/01 Shared-Memory Model 166

83

$C2001
11/12/01

Example: Globa Reduction

subroutine d b _dsungx n
red (k nd=8),d nension(n[Q*] :: x
red (ki nd=8),d nenson(n) :: wk
irteger nkt,i, nypatner,d mne m
d m=log2 i mages()
if(d meg Q reun
m=2**d m
bt =1
me =ths i mage(X)
doi=l,dm
nypart ner =xor(ng, t)
bt=shftl(kt, 1)
cdl sync_dl()
wk(:) =x()[nypart ner]
cdl sync_dl()
X)) +wk(:)
enddo
end subrouinedb dsum

Programming With the Distributed
Shared-Memory Model

167

» Convince yourself that two sync points are
required.

Exercise: Globa Reduction

» How would you modify the routine to

$C2001
11/12/01

handle non-power-of-two number of
images?

» Can you rewrite the example using only one
barrier?

Programming With the Distributed
Shared-Memory Model

