
Estimates show that the combined energy
consumption for all data centers in the world is
equivalent to 235 billion KWh and it accounts for
more than 1.3% of the world’s overall electricity
consumption. Half of the energy consumed
by a data center can be attributed to cooling.
Although machine room temperature should be
between 18°C-27°C, some data centers operate
machine rooms at temperatures as low as 13°C
due to the fear of increased node failures at higher
temperatures. If processor operation at acceptable
temperatures could be ensured, data centers can
run at higher machine room temperatures. This
is what motivates the temperature-restraining
component of our work.

Modern day microprocessors support dynamic
voltage and frequency scaling (DVFS), a means
of changing the voltage and frequency at which
a processor operates. The motivation for running
processors at a lower frequency-voltage pair is
to reduce power dissipation and, hence, control
temperature. A component of the runtime system
can periodically check processor temperatures
and decrease frequency when the processor heats
up beyond a user-defined threshold.

While most research focuses on minimizing core
power, PPL’s work started by focusing on cooling
energy, which is often overlooked. The paper
“A Cool Load Balancer for Parallel Application”,
published at Supercomputing 2011, proposed
and evaluated a runtime technique that restrains
core temperatures to reduce energy consumption.
Most of the reduction in energy consumption was
from cooling energy. The scheme was evaluated
on a real testbed of 128 cores with a dedicated,
controllable air-conditioning unit. The scheme

was assessed on three metrics: ability to avoid hot
spots by processor temperature control, execution
overhead, and reduction in cooling energy. Results
showed reductions of up to 63% in cooling energy
consumption, with time overhead of only 2-23%.
Moreover, this scheme was able to constrain core
temperatures within the specified limits for all the
experiments.

Recently, PPL has started focusing on reducing
machine energy consumption as well. The paper
“Efficient Cool Down of Parallel Applications,”
accepted at Power-Aware Systems and
Architectures (PASA) 2012, proposes and evaluates
a runtime technique for MPI that reduces both
machine and cooling energy consumption.
By dividing computation into different parts
depending on sensitivity to frequency and
running them at different frequencies, the
technique achieved 17% reduction in machine
energy consumption with as little as 0.9%
increase in execution time while constraining core
temperatures below 60°C.

In addition to reducing energy consumption, lower
processor temperatures can also improve reliabil-
ity of a machine. Past work shows that the failure
rate of a compute node doubles with every 10°C
increase in temperature. The recent paper, “A ‘Cool’
Way of Improving the Reliability of HPC Machines,”
to be presented at Supercomputing 13, proposes,
implements, and evaluates a novel approach that
combines temperature restraint, load balancing,
and checkpoint/restart to increase Mean Time Be-
tween Failures (MTBF), while reducing total execu-
tion time for an application. At exascale, for a 350K-
socket machine where regular checkpoint/restart
fails to make progress (less than 1% efficiency), this

continued on page 4

Parallel Views
ins

id
e

th
is

iss
ue 1/4 Energy and Fault tolerance

2 Director’s Desk
3 PPL at SC13

5 EpiSimdemics
6 Metabalancer
7 Transitions

En
er

gy
 a

nd
 F

au
lt

To
le

ra
nc

e

Fall 2013

newsletter of the parallel programming laboratory

4 Grants

7 Domain-Specific Languages

Power, energy, temperature! These issues dominate discus-
sions of extreme scale parallel computing these days. Many
of us remember the plots shown by Intel’s Shekhar Borkar
in the late nineties, showing that chip temperatures, simply
extrapolated, were set to increase to match those of rocket
nozzles, and even the surface of the sun! That was stopped
by limiting clock frequencies. Yet, the power consumption is
in the 10+ MW range for modern petascale supercomputers.
How can we get to 100-1000 fold more powerful machines
with a much smaller increment in power consumption?
Also, with process variability coming from smaller feature
sizes and possibly near-threshold-voltage computing, ther-
mal and speed variation issues will plague performance and
reliability on large computers. The main article in this issue
addresses how adaptive runtime systems, such as Charm++,
can help optimize multiple metrics in the presence of mul-
tiple constraints. To be sure, hardware advances will be
needed to close much of the gap, but runtime techniques
are necessary to make the best of what the hardware will
provide.

Two short articles describe progress on technical issues:
The first deals with higher level parallel languages, includ-
ing Charisma, and interoperability between them, in spite
of very different interaction APIs used by each. The second
deals with techniques to automate when and how to do
load balancing, in an asynchronous manner. Then, we have
an article on Episimdemics and the collaboration with Mad-
hav Marathe and his team at Virginia Tech.

PPL will be there in force at SC13, with four papers in the
main conference, and a Charm++ BOF on Tuesday evening.
Hope to see you there!

PPL @ SC 2013From the Director’s Desk

2 3

A ‘Cool’ Way of Improving the Reliability
of HPC Machines

Osman Sarood, Esteban Meneses, Laxmikant Kale

Tuesday, Nov. 19th at 1:30 PM

Reports predict that overall reliability at the exascale level could
be so bad that failures might become the norm rather than the
exception. In this work, we leverage both hardware and software
aspects to improve the reliability of HPC machines. It has been
postulated that fault rates in machines double for every 10°C
increase in core temperatures. The paper exploits this idea
to demonstrate the use of constraining core temperatures
combined with load balancing, to improve the reliability of
parallel machines as well as reduce the total execution time
required by the application. Experimental results show that this
method can improve the reliability of a machine by 2.5x and
reduce the execution time by as much as 15%.

Distributed Dynamic Load Balancing
for Iterative Applications

Harshitha Menon, Laxmikant Kale

Tuesday, Nov. 19th at 2:30 PM

This paper describes a fully distributed algorithm which
uses partial information about the global state of the system
for dynamic load balancing. The algorithm, referred to as
“GrapevineLB,” includes lightweight information propagation
based on the gossip protocol for obtaining information
about the system. Using this partial information, GrapevineLB
probabilistically transfers work units to obtain high quality
load balance with less overhead. The paper demonstrates the
effectiveness of GrapevineLB for two applications on up to
131,072 cores of BlueGene/Q.

Predicting application performance using supervised
 learning on communication features

Nikhil Jain, Abhinav Bhatele, Michael Robson, Todd Gamblin, Laxmikant Kale

Thursday, Nov. 21th at 4:00 PM

In order to eliminate performance bottlenecks caused due to
communication in applications, it is vital to first study the factors
that determine network behavior. This paper attempts to model
the performance of an application by using communication
data, such as the communication graph and network hardware
counters. Supervised learning algorithms are used to correlate
performance with combinations of metrics. For three different
communication patterns and a production application, the
paper demonstrates a very strong correlation between the new
proposed metrics and the execution time of these codes.

ACR: Automatic Checkpoint/Restart for
Soft and Hard Error Protection

Xiang Ni, Esteban Meneses, Nikhil Jain, Laxmikant Kale

Wednesday, Nov. 20th at 1:30 PM

As machines increase in scale, many researchers have predict-
ed a corresponding increase in failure rates. Soft errors do not
inhibit execution, but may silently generate incorrect results,
hence they must be handled to maintain correctness. In this pa-
per we present a holistic methodology “ACR” which intelligently
performs application replication along with checkpoint/restart
for soft and hard error protection. ACR can automatically adapt
the checkpoint period using online information about the cur-
rent failure rate to decrease interventions to applications. By
injecting failures that follow different distributions for five ap-
plications this paper shows that ACR incurs low overhead when
scaled to 131,072 cores.

Prof. Laxmikant (Sanjay) Kale

As in years past, the Parallel Programming Laboratory will be
well represented at Supercomputing 2013 in Denver, Colorado.
PPL members will present research spanning load balancing,
performance tuning, resilience, and power management.

Several PPLers will be recognized at this year’s conference.
Abhishek Gupta will be presenting his research on high-
performance computing in the cloud at this year’s Dissertation
Research Showcase. Despite the advantages of the pay-as-
you-go model, elasticity, and virtualization in clouds, it is often
difficult to use cost and resourse-utilization oriented clouds
for HPC. Abhishek will showcase his research techniques for
performing cost-effective and efficient HPC in the cloud. Ehsan
Totoni will be presenting a poster on parallel algorithms for
solving sparse triangular systems for the ACM Student Research

Competition. PPL swept the George Michael HPC Fellowships,
with both current PPLer Jonathan Lifflander and PPL alumnus
Edgar Solomonik (now at UC Berkeley) winning this year.

PPL will host a Birds-of-a-Feather Session on the Charm++
ecosystem - its runtime, programming tools, and applications.
Participants will hear about how these components are
improving in performance, features, ease of use, portability, and
interoperability. This is an ideal opportunity to learn more about
how Charm++ is used in practice and to see how it is growing.
The session will take place from 5:30PM to 7:00PM on Tuesday,
November 19.

This year, PPL reached a new high, with a record four papers
accepted at SC13.

validated model predicts an efficiency of 20% by improving
the MTBF by a factor of up to 2.29.

With current infrastructure, another big challenge for exascale
machines is the strict power budget. Recent PPL research
focuses on scheduling problems that involve efficiently
running an overprovisioned HPC application under a given
strict power budget. Given application characteristics, the
challenge is to come up with an optimal schedule, the ideal
machine room temperature, and the best power level for each
processor. Preliminary analysis is encouraging, as it suggests
the possibility of reducing both execution time and energy
consumption while remaining under a strict power budget
for an overprovisioned HPC data center.

The figure on the right compares the machine utilization of a
stencil application using our scheme to baseline checkpoint
restart without temperature control. The labels on the figure

show the estimated ‘times’ improvement our scheme gets
over the baseline checkpoint restart.

Accurate simulations can be useful to understand and combat
contagions such as epidemics of communicable disease among
the population of a state, country, or ultimately, the entire planet.
Contagion is used here broadly to mean transmitted phenomena
such as diseases, opinions, trends, norms, packet diffusion, worm
propagation in computer networks, database replication in sen-
sor networks, spread of social movements, and influence among
peers to purchase music videos or go to movies. However, an
increase in input sizes and accuracy requirements, coupled with
strict deadlines for simulations have resulted in simple compu-
tational approaches being insufficient. For example, the analysis
necessary during the 2009 outbreak of the avian flu (H5N1) re-
quired a result within 24 hours to integrate the simulation results
into the federal government’s decision cycle. Techniques based
on simplified probabilistic systems may not generate results accu-
rate enough to be useful. In addition, they may not easily extend
to large-scale realistic networks due to the absence of individu-
ality and heterogeneity. Furthermore, many of the underlying
problems related to dynamical properties become computation-
ally intractable. Thus, HPC is a natural choice to study contagion
diffusion via agent-based simulations.

Contagion diffusion can be viewed as interaction over a graph.
Nodes in the graph represent interactors (computers, sensors,
people, agents, or any other abstract entities). An edge be-
tween two nodes represents an interaction in an abstract form,
labeled with its properties such as the time of interaction. With
social contact networks, the graph has spatial structure with a
small number of long-range edges and a significant amount of
clustering among neighbors. One of the interesting problems is
to understand the dynamics and evolution of the network with
various interventions, such as public policy measures to mitigate
the spread. Developing computational models to simulate such a
phenomenon is complicated and scientifically challenging for at
least following reasons:

1.	 The size and the scale of the network is extremely large, e.g.
at global scale, there are over 7 billion interactors.

2.	 The interaction graph is unstructured where behavior of ev-
ery interactor is distinct from the rest.

3.	 Interactors and the network of interactors co-evolve while
providing feedback to evolve intervention.

4.	 One may need to simulate diffusion of multiple contagions
simultaneously.

5.	 Simulation of contagion diffusion is typically done for many
scenarios, whose combined outcome is useful for analysis.

In order to develop a simulation framework that is capable of han-
dling the complex unstructured and evolving nature of contagion
diffusion, one requires a rich programming model that is equally
capable. EpiSimdemics is an agent-based simulation framework
for contagion simulation that has been co-designed by domain
specialists from Virginia Tech and PPL to meet the aforementioned
requirements. It can be used to model a wide range of epidemic
scenarios as well as the impact of counter measures. The social
contact network data used in EpiSimdemics are synthesized to
match the statistical properties at the street block level using the

information available from various sources such as the US Census
Bureau, American Community Survey, NAVTEQ, OSM, and so on.
It is built on top of Charm++, which provides strong support for
efficiently handling dynamic unstructured application environ-
ments. Based on the notion of over-decomposed, asynchronous
message driven objects, Charm++ has a powerful runtime system
that is apt for meeting the aforementioned requirements of con-
tagion simulation.

Use of an individual-based model for diffusion in EpiSimdemics
makes the idea of “interaction” explicit, which allows for studying
many interesting aspects of the network. However, this pushes
the scalability requirement of the simulation to its limit with the
growth in the volume of data and the semi-real-time demand.
Initial attempts to meet these challenges focused on an imple-
mentation of EpiSimdemics in MPI. Scalability for EpiSimdemics
in MPI was limited to only 376 processing elements (for a popu-
lation of 100 million), far from sufficient for current needs. Since
then, EpiSimdemics has been reimplemented in Charm++, taking
advantage of its highly productive programming environment,
abstract machine model that transparently optimize for SMP con-
figurations and communication layers, various libraries for syn-
chronization and fine-grained message handling, and interopera-
tion with MPI-IO. As a result, the scalability of EpiSimdemics has
been greatly improved and demonstrated for up to 352K process-
ing elements on Blue Waters when simulating a population of 280
million. This is currently the largest social contact network data
available while the global population data is under preparation.

In EpiSimdemics, the overhead of synchronization may grow
quickly if not implemented carefully as there are two explicit
global synchronizations per simulation iteration in addition to a
reduction. These are necessary for detecting the completion of
message deliveries, which are dynamic and data dependent. The
Quiescence Detection (QD) mechanism in Charm++ offers a scal-
able solution to these problems. Further complications arise with
the addition of support for branching of simulation for running
multiple simulations simultaneously. Charm++’s Completion
Detection provides an apt tool to handle these complications. It
prevents the synchronization operation from interfering with the
execution of the non-participants, and hence avoids a scalability
bottleneck. The Topological Routing and Aggregation Module
(TRAM) in Charm++, which offers transparent aggregation of
small messages and can be easily configured to take advantage
of underlying interconnection topology, is yet another example
of a feature in Charm++ that is useful in EpiSimdemics.

The close association between the application scientists at Vir-
ginia Tech and systems researchers at Illinois has resulted in mu-
tual benefits. EpiSimdemics performance has been significantly
improved through use of Charm++ features and detailed per-
formance analysis using PPL’s Projections tool. For example, by
profiling the application and then performing post-mortem vi-
sual analysis, load imbalance and synchronization overhead were
identified as two dominant scaling bottlenecks. In turn, EpiSim-
demics has fueled the research and development of some new
parallel runtime features, and extensions of some existing ones.
Using TRAM for many-to-many communication and interopera-
tion between MPI and Charm++ are notable examples.

Energy and Fault Tolerance continued from page 1

4 5

EpiSimdemics

After going through
a stretch of time with
no new funding in
sight, PPL is smiling
again! There are two
major new grants
and several smaller

sources of funding to report. It is interesting to note that almost
all of these were awarded a few weeks ago, around September
2013!

PPL is proud to participate in a DOE-funded joint project called
Argo (well, not the movie) to design the OS/runtime prototype
for exascale machines! The project is led by Argonne National
Laboratory, and other participants include PNNL, LLNL, the Uni-
versity of Tennessee, the University of Oregon, the University of
Chicago, and Boston University. Many constructs and ideas in
the Charm++ stack are expected to find their way in the Argo
stack, or influence constructs in it.

PPL received a major grant from NSF’s SI2-SSI program for devel-
oping HPC software for electronic structure methods, applicable
to predictive simulations of nanoscale organic solar power sys-
tems and fast, low power, post-CMOS devices. This project builds
upon our work on OpenAtom program, developed in collabora-
tion with Dr. Glenn Martyna (IBM Research). It now includes Prof.
Ismail-Beigi (Yale University), in addition to Dr. Martyna.

PPL is part of another large project awarded to a team at the Uni-

versity of Illinois, led by Bill Gropp: “Center for Exascale Simula-
tion of Plasma-Coupled Combustion”, funded by DOE’s PSAAP2
program. We expect this project to begin by December 2013.

PPL’s collaboration with Prof. Tom Quinn (University of Washing-
ton) on ChaNGa, the computational astronomy code, received a
small boost, in the form of a collaborative grant to support the
scaling work on “Evolution of the High Redshift Galaxy and AGN
Populations,” via NSF’s CDS&E program. This will allow PPL to
continue work on ChaNGa, which is a highly scalable and adap-
tive tree code. Last year, ChaNGa was selected to run on the Blue
Waters system by NSF, as a PRAC (Petascale Computing Resource
Allocation) awardee.

Some programs get evaluated and renewed each year. PPL has
a collaborative project with Prof. Udatta Palekar on stochastic
optimization, funded by the MITRE corporation. This is expected
to be renewed for this new financial year. Also, an LLNL-funded
project in collaboration with Dr. Abhinav Bhatele on topology-
aware mapping is getting renewed for 2013-14. Gifts are espe-
cially neat, as they provide relatively unrestricted funds while
allowing us to explore specific areas of interest to us. PPL is
pleased to report a gift from Disney, encouraging our work on
collision detection and load balancing for animation.

So, as you can see, PPL is back in the black! After losing some staff
over the past two years, PPL is looking for new staff (research
programmer, postdoctoral associate) again! Encourage good
candidates to apply at http://charm.cs.illinois.edu/.

Grants

Visit the Charm++ website
for more information

co-written by Jae-Seung Yeom

Transitions
Load imbalance is a key factor that affects the performance of an
application. As we move towards large systems, the chance that
one of the processors has a load significantly greater than the aver-
age system load is high. However, performing load balance incurs
overhead which includes the time spent in finding the new place-
ment of work units and the time
spent in moving the work units.
Due to the cost of load balanc-
ing, it is important to determine
if invoking the load balancer is
profitable at all. In addition, the
load characteristics of the appli-
cation may change due the dy-
namic nature of the application.
All this makes it difficult to iden-
tify when and how often to bal-
ance load. Currently, the user is
responsible for identifying a load
balancing period which is done
using educated guesses and by
extensively studying the applica-
tion. A common practice is to use
a fixed period for invoking the
load balancer. This approach may
not be efficient as it prevents the
load balancing from adapting to
the dynamic nature of the appli-
cation.

MetaBalancer is an adaptive control mechanism to automate some
of the decisions related to load balancing. It is a part of the run-time
system which monitors the application characteristics and based
on some guiding principles invokes the load balancer. MetaBa-
lancer collects information
about the application char-
acteristics aggressively to de-
termine if load balancing is
required. At every fixed small
interval, it aggregates some
statistics which includes
the maximum load, average
load and the minimum uti-
lization of all the processors
in the system. In order to
aggregate the information
with less overhead, it collects
minimal set of statistics and
uses asynchronous reduction
mechanism. Once the load
statistics is collected, MetaB-
alancer determines whether
there is load imbalance using
the ratio of maximum load
to the average load. If there is load imbalance in the system, it will
lead to performance loss. However, the presence of load imbalance
does not mandate load balancing as it may not be profitable due
to the overhead incurred in balancing load. An ideal load balancing
period is calculated using a linear model to predict the load char-
acteristics of the system. The load balancing period is chosen so

that the benefit of performing load balancing overshoots the cost
incurred. The load model is updated and the LB period is refined as
the application makes progress. To minimize the overhead of this
process, the load balancing decisions are taken asynchronously.
A distributed consensus scheme is used to identify the ideal load

balancing period and ensure
that all the objects enter the
load balancing phase.

To demonstrate the adaptive
nature of MetaBalancer we
use it to perform load bal-
ance decisions for `Fractog-
raphy3D’. Fractography3D is
an application used to study
the fracture surface of mate-
rials. When an external force
is applied to the material, the
initial elastic response of the
material may change to plas-
tic as stress increases which
results in high load concen-
tration in that region. Figure
1 shows the average proces-
sor utilization as the execu-
tion progress. It can be seen
that Fractography3D has a
large variation in processor

utilization. Figure 3 shows the total application run time for a range
of fixed LB periods. If the load balancer is invoked frequently, the
overhead of load balancing overshoots the gains and results in bad
performance. On the other hand, if load balancing is performed
infrequently, the load imbalance in the system reduces the appli-

cation performance.
When using MetaBa-
lancer, it adapts to the
application character-
istics as shown in Fig-
ure 2. An interesting
thing to note is the
frequent invocation
of load balancing by
Meta-Balancer in the
first quarter of the ex-
ecution as seen by the
vertical notches in the
plot. Thereafter, when
the load variation de-
creases, the frequency
of load balancing goes
down.

MetaBalancer auto-
mates the process of

when and how often to balance load depending on the application
characteristics and the load balancing overhead. We have shown
that MetaBalancer is able to identify the ideal load balancing pe-
riod and extract the best performance without any help from the
user.

 10

 100

 1000

 10000

 4 16 64 256 1024 4096

El
ap

se
d

tim
e

(s
)

LB Period

Elapsed time vs LB Period (Jaguar)

64 cores
128 cores
256 cores

512 cores
1024 cores

MetaBalancer

6 7

It is believed that currently dominant (e.g. MPI, OpenMP)
programming paradigms suffer from productivity (e.g. message
passing, as embodied by MPI) or scalability (thread-based fork-
join parallelism, as embodied by OpenMP and Cilk) pitfalls. PPL
(and others, e.g. the designers of PGAS/APGAS languages such
as X10, UPC, CAF, etc.) believes that parallel programming can
be made easier through the provision of higher-level, abstract
languages for programming.

In particular, PPL is interested in the productive and performance-
oriented construction of scalable HPC applications of interest to
the scientific and engineering communities. Previous research
has shown that most HPC applications can be categorized into
one of a handful of communication patterns.

In recent work, PPL has been creating a programming system
that aims to exploit this regularity of expression in the realm of
HPC. This system is intended to provide a means for the modular,
productive and performance-oriented construction of parallel
HPC applications. Specifically, PPL has identified three broad
application classes that are of interest to the HPC community:

•	 Programs with data-independent
communication patterns (Charisma)

•	 Generatively recursive programs on
distributed memory machines (Divcon)

•	 Programs based on distributed trees (Distree)

Moreover, a higher-level, specialized mini-language was
designed for each application class. The price of language

specialization, however, is that of completeness of expression.
That is, not all types of parallel computation can be expressed in
any one of our languages. Indeed, we expect the programmer
to identify the language best suited for the expression of each
application (or module thereof). Moreover, if none of the
specialized paradigms suffice, the programmer must express
the computation in a general-purpose programming paradigm,
namely Charm++.

This work enables interoperability between differently
expressed parallel modules, thereby allowing the programmer
to phrase her parallel application as the composition of a
number of relatively independent, productively-expressed
modules. Each module of the application is expressed in the
paradigm that most closely matches its semantics. Moreover, all
of the specialized paradigms as well as the base language are
based on the object-based, message-driven execution model.
This allows module execution to be automatically interleaved,
based on availability of data for each module.

To demonstrate this multi-paradigm approach, PPL has
developed a Barnes-Hut simulator that comprises modules
written in Charisma, Divcon, Distree, and Charm++. Specifically,
data-independent control and data flows are expressed in
Charisma; ORB domain decomposition is expressed in Divcon;
and the highly irregular, data-dependent data flows of the tree
traversal are expressed in Distree and Charm++. Importantly,
the performance of this multi-paradigm program is comparable
to a highly optimized Charm++ code with similar functionality.

Domain-Specific Languages

Pritish Jetley is interested in the design and
implementation of higher-level and special-
ized languages for the productive, perfor-
mance-oriented programming of modern par-
allel computers. He enjoys studying aspects
of application performance at scale, and the

emergence of intelligent functions from the dynamics of sim-
ple, neural units. Since leaving PPL, he has been a part of the
Qualcomm Zeroth project, which aims to create biologically
inspired, intelligent machines.

Esteban Meneses is a Research Assistant Pro-
fessor in the Center for Simulation and Model-
ing (SaM) at the University of Pittsburgh. He is
currently extending a computational fluid dy-
namics application by adding a dynamic load
balancing mechanism and several kernels to

use accelerators. His responsibilities at SaM also include pro-
viding support in HPC to the scientific computing community
at the university. He is still interested in fault tolerance strate-

gies for extreme-scale systems. Currently, he is participating in
various projects related to resilience for HPC.

Ramprasad Venkataraman recently tran-
sitioned to an engineering role at Google.
Ram joined PPL in 2008 as a research staff
engineer. He is interested in scalable and pro-
ductive programming models, parallel ap-
plication design, collective communication
optimizations and runtime assisted adap-

tivity in the context of parallel algorithms for novel domains.
Ram worked on the Charm++ runtime system and was part of
the core group that maintained and evolved the runtime ca-
pabilities. He also worked on applications and collaborations
that used Charm++, notably: OpenAtom (quantum chemistry),
JetAlloc (stochastic optimization) and CharmLU (LU bench-
mark). He contributed to, and organized the team that submit-
ted and won the HPC Challenge award at SC in 2011. Ram plans
to continue his involvement with large-scale HPC in the com-
ing years.

 Figure 1 and 2: Comparing utilization without and with the Metabalancer.

 Figure 3: Total application run time for a range of fixed LB periods.

Non-profit Organization

US POSTAGE

PAID

Permit No. 75

CHAMPAIGN IL 61820

Department of Computer Science
University of Illinois
College of Engineering
201 North Goodwin Avenue
Urbana, IL 61801-2302

At Supercomputing 2013, the first book on parallel applications
developed using Charm++ will be released. Parallel Science and
Engineering Applications: The Charm++ Approach surveys a
diverse collection of scalable science and engineering applications,
most of which are used regularly on supercomputers by scientists.
The book is co-edited by Laxmikant Kale and Abhinav Bhatele
and is composed of contributed chapters on different Charm++
applications.

The first few chapters provide a brief introduction to Charm++
and associated tools, and design considerations for writing a
Charm++ program. Then, the book presents several parallel codes
written in the Charm++ model and their underlying scientific and
numerical formulations, explaining their parallelization strategies
and performance. These chapters demonstrate the versatility of
Charm++ and its utility for a wide variety of applications, including
molecular dynamics (NAMD), cosmology (ChaNGa), fracture
simulations (Fractography3D), quantum chemistry (OpenAtom),
agent-based simulations (EpiSimdemics), and weather modeling
(BRAMS).

The book is intended for a wide audience of people, both in
academia and industry. Application developers and users will
find this book interesting as an introduction to Charm++ and to
developing parallel applications in an asynchronous, message-
driven model. It will also be a useful reference for undergraduate
and graduate courses on parallel computing in computer science
and other engineering disciplines.

In the words of Horst Simon (LBNL), “Laxmikant (Sanjay) Kale
and Abhinav Bhatele have developed an eminently readable
and comprehensive book that provides the very first in depth
introduction in book form to the research that Sanjay Kale has
pioneered in the last 20 years with his research group at the
University of Illinois [...] It succeeds perfectly and combines for the
first time both Charm++ and significant application development
in a single volume. It will provide a solid foundation for anyone
who is considering using the most recent tools for developing
applications for future Exascale platforms.”

Charm++ Apps Book

