
(5)

Future Work
- Application Development: NAMD, Cosmology, etc.

- Development of Load-Balancers (considering several metrics)
 - Greatly varying communication costs depending on sending
 and receiving processing elements (over EIB, within node,
 and over the interconnect)
 - Varying capabilities of processing elements including memory
 size, ISA characteristics, etc.

- Portability / Ease-of-Programming
 - Modify Charmxi to allow offloadable keyword
 - Auto-generate code needed by Offload API based on
 user’s code

- Performance Analysis: generate Projections data for SPEs

- Special Purpose Hardware: FPGAs, GPUs, etc.

Charm++ on Cell so Far
We have created an Offload API that will allow Charm++ applications
to take advantage of the Cell processor. Using the Offload API, the ap-
plication can send work requests to the SPEs. Each of the SPEs has a
simple scheduler running on it that will coordinate the execution of
work requests along with moving the data needed by those work re-
quests.

This figure shows the flow of three work requests being passed to a single SPE. Following the blue work request, code
on the PPE makes a work request [1]. The SPE then initiates a DMA-Get [2] to retrieve the needed data. Once the data
has arrived to the local store [3], the work request is executed on the SPE [4]. After completion, the data is once again
placed back into system memory [5] and the PPE is notified that the work request has finished [6]. (Not to Scale)

[6]

[5]

[4]

[3]

[2]

[1]

(2) Screenshot of performance data generated using the Cell Simulator provided by IBM. This figure is a
single iteration of a 2D stencil program written using Charm++ and the Offload API. This run utilizes all 8

SPEs on the Cell. Each SPE receives 8 evenly sized chunks of data.

Some simple example programs have already been written using
Charm++ and the Offload API (a 2D Jacobi run is shown below).

Charm++ Complements Cell
- Ease of Programming
 - The nature of Cell makes it difficult to program
 - Charm++ programming model fits Cell well
- Intelligent Message Scheduling
 - Messages arriving for Chares are queued for execution
 - Scheduler peeks ahead in message queue to initiate DMA
 transfers of data/code that will be used by future messages while
 the current messages are still being processed
- Load-Balancing
 - Processing elements have different characteristics (SPE vs PPE)
 - Network-topology aware load-balancers (different communication
 costs between interconnect and EIB)
 - Application can use different load-balancers for different platforms
- Portability
 - Charm++ applications can already run on a variety of platforms
 - Will allow users to take advantage of Cell’s power with little to no
 modification of existing code
- Chares Encapsulate Data/Code (Locality)
 - Arriving message is self-contained
 - Other data used by entry method is usually contained within the
 associated Chare

What is NAMD?
NAMD, a production molecular dynamics code, is the first Charm++ application that will be adapted to
utilize the Cell. NAMD was developed by the Theoretical and Computational Biophysics Group
(TCBG) at UIUC’s Beckman Institute in collaboration with the Parallel Programming Lab. In 2002 it
won the Gorden Bell Award and is currently
being used around the world.

NAMD Highlights:
 - 2002 Gorden Bell Award
 - Scaled to 8000 Processors (BlueGene\L)
 - File-Compatible with AMBER,
 CHARMM, X-PLOR
 - Used by DOE National Labs

(3) Using NAMD, researchers in TCBG recently simulated an
entire life form at the atomic level for the first time. They simu-
lated the satellite tobacco mosaic virus. They used 256 proces-
sors on NCSA’s SGI Altix to perform the 1,000,000 atom virus

simulation for a total of 10ns (at 1.1ns per day).

Recently in the News...
What is Cell?

Jointly developed by IBM, Sony, and Toshiba, the Cell pro-
cessor has 9 cores. One of the cores is a fairly standard Pow-
erPC core. This “main core” is the called the Power Process-
ing Element (PPE). The other 8 cores are called Synergistic
Processing Elements (SPEs). A brief summary of the Cell’s
characteristics is below.

Some Attributes of Cell:
 - SPEs run at same clock speed as PPE

 - All SPE main memory accesses are done explicitly using DMA transactions
- SPE loads and stores can only access the local store (256KB, 6-cycle latency)
- Each SPE has 25.6 GFlop/s peak performance (single-precision @ 3.2 GHz)
- SPEs have two in-order pipelines: up to two instructions per clock
- 234M transistors (221mm²)
- Element Interconnect Bus (EIB): high-bandwidth from 74GB/s (worst-case)
 to 200GB/s (best-case)
- PPE is a 2-way SMT
- Both the PPE and SPE can initiate DMA transactions

Initial Cell-based platforms include Sony’s Playstation 3, Blade servers from
IBM, and servers from Mercury Computer Systems.

(1)

(4)

One of the first products planned is the Dual Cell-
Based Servers by Mercury Computer Systems. Each of

the 1U units has a peak performance of about 400
GFlop/s each (single-precision). The five shown above

can provide a total peak performance of 2TFlop/s.

What is Charm++?
Charm++ is an message-driven paradigm developed by the Parallel
Programming Lab (PPL) which uses messages to communicate be-
tween entities called Chares (C++ objects). The chares are then spread
across the available processors. The runtime system automatically
handles mapping of objects to processors, routing messages, load-
balancing, automatic check-pointing, has associated tools for collect-

ing performance data, etc.

The current Charm++
Runtime System can
run on a wide variety

of platforms including SGI’s Altix, IBM’s BlueGene\L, clus-
ters of workstations, and Alpha-based platforms.

Ongoing PPL Research Includes:
 - Development of network-topology aware load-balancers
 - Fault tolerance
 - Dynamically changing the number of physical processors
 - Multi-Cluster computing
 - ParFUM: Parallel Framework for Unstructured Meshes
 - Adaptive MPI (AMPI)

(6) User View

System Implementation

(4) Image from Mercury Computer Systems Inc. Image Library (http://www.mc.com)
(5) Image from IBM Photo Gallery (http://www-03.ibm.com/press/us/en/photos.wss)
(6) Image from PPL Webpage (http://charm.cs.uiuc.edu/research/charm/)

(1) Image from: http://domino.research.ibm.com/comm/research.nsf/pages/r.arch.innovation.html
(2) Screenshot of Cell Simulator provided by IBM
(3) Image provided by the Theoretical and Computational Biophysics Group For More Information, Please Visit... Charm++ : http://charm.cs.uiuc.edu

NAMD : http://www.ks.uiuc.eduPoster Created: 04/14/05

Parallel Programming Lab
University of Illinois Urbana-Champaign
David Kunzman, Gengbin Zheng, Eric Bohm, Laxmikant V. KaleCharm++ on Cell

