
11/14/2006

David Kunzman, Gengbin Zheng, Eric Bohm, Jim Phillips, Laxmikant V. Kalé

Charm++ Simplifies Programming for the Cell Processor

Images Sources:
(1) : Courtesy of International Business Machines Corporation. Unauthorized use not permitted.
(2) : From Parallel Programming Lab’s (PPL) Website (http://charm.cs.uiuc.edu).
(3) : Courtesy of the Theoretical and Computational Biophysics Group, Beckman Institute, UIUC
 Website: http://www.ks.uiuc.edu

References / Related Papers
Charm++: L. V. Kale and S. Krishnan. Charm++: Parallel Programming with Message-Driven Objects. In G. V.
 Wilson and P. Lu, editors, Parallel Programming using C++, pages 175–213. MIT Press, 1996.
Charm++ on Cell: D. Kunzman, G. Zheng, E. Bohm, L. V. Kale. “Charm++, Offload API, and the Cell Processor.” In
 PMUP Workshop at PACT’06, Sept. 2006.
NAMD: J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and
 K. Schulten. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry,
 26(16):1781–1802, 2005.

Future Work / Directions
- Performance testing on actual hardware (just started this)
 - Performance of Offload API
 - Latency of Work Request
 - Overlap of Work Request execution and Work Request data movement
 - Performance of Charm++ applications
 - Overhead of Charm++ Runtime System (as increase by Offload API)

- Portability
 - Extend charmc and charmxi tools to auto-generate the needed Cell specific code for entry methods
 - Eventual goal: no modification to Charm++ applications when moving them between Cell-based and
 non-Cell-based platforms

- If appropriate, extend abstraction to GPUs and/or FPGAs
 - To begin with
 - Allow user to specify GPU and/or FPGA versions of the code
 - Charm++ Runtime System executes entry methods on GPU/FPGA if hardware is present
 - Eventual goal: Allow GPU and FPGAs to use the same framework as Offload API to offload entry methods

Conclusion
Offload API

- Currently usable
 - Part of Charm++ distribution
 - Includes source code and simple example programs
- Stand-alone interface (can be used independently
 of Charm++)
- Does:
 - Simplify programming
 - Add affinity to Charm++ programming model (enabling
 natural offloading of entry methods to SPEs)
 - Allow programmer to use SIMD instructions (and
 other SPE specific code such as SPE intrinsics,
 DMAs, etc.)
- Does not:
 - Hide all details from programmer (for example, data
 buffers still require proper alignment)
 - Allow programmer to be completely unaware of
 Cell architecture

Charm++

- Several aspects of the Charm++ model fit well with
 Cell processor’s architecture
 - Data encapsulation:
 - Data: contained within chare and arriving message
 - Code: entry method
 - Virtualization (many chares per processor)
 - Peek-Ahead in Message Queue (Charm++ RTS
 knows what entry methods need to be executed in
 the near future; initiate DMAs prior to SPE needing
 data/code)
- Currently, requires some modification to Charm++
 application code
- Example Charm++ applications which directly use
 the Offload API are included within the Charm++
 distribution

Virus: Using NAMD, the Theoretical and Computational Biophysics
Group, at the Beckman Institute (UIUC), were the first to simulate an
entire life form at the atomic level. By using 256 Itanium2 proces-
sors in NCSA’s Cobalt cluster for 9 days, they were able to simulate
10ns in the life of the Satellite Tobacco Mosaic Virus (pictured
above). The simulation consisted of approximately 1 million atoms.

(3)

For more information, please visit: http://www.ks.uiuc.edu/Research/namd

Step 4: Each Patch Object integrates
the force data received from all of
the Compute Objects it interacts

with and then updates atom posi-
tions and velocities accordingly.

 E
IB

 and/or Network

SPE

PPE

Compute

Patch Patch

Step 3: Compute Object
sends resulting force data

back to Patch Objects
Step 2: Compute Object

calculates forces

Step 1: Patch Objects
send atom data to
Compute Object

Compute ComputeCompute

ComputeCompute

Compute ComputeCompute

PatchPatchPatch

Patch
Patch

Patch

PatchPatchPatch

Self
Compute

Non-Bonded Electrostatic Force Computation
(each iteration)

Note: Only a 2D example

NOTE: The Patch Objects and the Com-
pute Objects do not have to reside on the
same processing core. As such, messages
may have to be sent from the Cell
processor(s) containing the Patch Ob-
jects to the Cell processor where the
Compute Object resides. While the load-
balancer would likely place the Compute
Object as close to the Patch Objects as
possible (that is, on the same chip if pos-
sible, on the same node if the same chip
is not possible, etc.), this cannot always
be achieved.

NAMD on Cell

Initially, the non-bonded electrostatic force computation will be offloaded to the SPEs. This is
our first step for several reasons:

- Non-bonded forces represent approximately 80% of overall computation per iteration
- Clearly defined input (two input messages containing atom data)
- Clearly defined output (two output messages containing force data)
- Computes and Patches are clearly separated (interacting via messages/buffers)
- Charm++ Runtime System can freely migrate Computes and Patches independently

Once completed, other portions of the computation will be offloaded to the SPEs as needed.

Problem Decomposition

- 3D Space is broken down into a grid of 3D blocks (called Patches)
 - Size of Patch determined by cutoff distance (plus margin values: hydrogen bond length, etc.)
- Bonded and non-bonded forces are calculated using compute objects
 - Broken down by type (for example: non-bonded electrostatic, angle, etc.)
 - Broken down by data (for example: each pair of neighboring patches has an associated non-bonded
 electrostatic compute object)
- Integration of force data done by Patch Objects
- Long distance electrostatics done by using Particle Mesh Ewald (PME) calculation
- Periodically, atoms migrate between Patch Objects as necessary
- Typically, 1 femtosecond timesteps

Highlights

- 2002 Gordon Bell Award: Scaled to 3000 processors
- To date: Good scaling on Blue Gene/L up to 8,000 processors
- Over 17,000 registered users worldwide (including many DOE labs and supercomputing centers)
- Selected as one of the core applications for upcoming NFS petascale supercomputing project (Track 1)
- Used for first simulation of an entire lifeform at the atomic level (see image to the right)

NAMD is a Charm++ application, jointly developed by the Theoretical and Computation Biophysics Group
and the Parallel Programming Lab, used to simulate bio-molecular structures. NAMD is quite popular, with
over 17,000 users throughout the world. It is widely regarded as one of the fastest and most scalable
codes for molecular dynamics (MD). In 2002, it won the Gorden Bell Award for scaling to 3,000 processors.
Since then, NAMD has demonstrated good scaling up to 8,000 processors on Blue Gene/L.

NAnoscale Molecular Dynamics (NAMD)

Cutoff Distance
& Margins

Patches

...continued in next column...

#include <stdio.h>
#include "hello.decl.h" // Generated by Charm++ tools

/*readonly*/ CProxy_Main mainProxy;
/*readonly*/ int nElements;

// The "Main" Chare
class Main : public CBase_Main {
 public:

 Main(CkArgMsg* m) {
 // Process command-line arguments
 nElements = 10; // Default to 10 "Hello"s
 if ((m->argc) > 1) nElements = atoi(m->argv[1]);
 delete m;

 // Print info on the run for the user
 CkPrintf("Running Hello on %d processors for %d elements\n",
 CkNumPes(), nElements
);

 // Create a global reference to the Main chare's proxy
 mainProxy = thisProxy;

 // Create the array of "Hello" chares and then broadcast
 // a message to them instructing them to say hi
 CProxy_Hello arr = CProxy_Hello::ckNew(nElements);
 srand(0);
 arr.sayHello(rand() % 10);
 };

 void done(void) {
 static int helloFinishedCount = 0;

 // Increment the finished counter and check to see
 // if all elements of the "Hello" array have completed
 helloFinishedCount++;
 if (helloFinishedCount >= nElements)
 CkExit();
 };
};

// A 1D Array of Chares
class Hello : public CBase_Hello {
 public:

 Hello() { } // General Constructor
 Hello(CkMigrateMessage *m) { } // Migration Constructor
 void sayHello(int num) {

 // Say "Hello"
 CkPrintf("Hello from element %d on processor %d (num:%d)\n",
 thisIndex, CkMyPe(), num
);

 // Send a message to the main chare indicating that
 // this element has finished its "computation"
 mainProxy.done();
 }
};

#include "hello.def.h" // Generated by Charm++ tools

///// hello.C ///

NOTE: Header file (hello.h) not used for brevity.

///// Output //////////////////////////////
$ charmrun +p4 ./hello
Running Hello on 4 processors for 10 elements
Hello from element 0 on processor 0 (num:3)
Hello from element 4 on processor 0 (num:3)
Hello from element 8 on processor 0 (num:3)
Hello from element 2 on processor 2 (num:3)
Hello from element 6 on processor 2 (num:3)
Hello from element 3 on processor 3 (num:3)
Hello from element 7 on processor 3 (num:3)
Hello from element 1 on processor 1 (num:3)
Hello from element 5 on processor 1 (num:3)
Hello from element 9 on processor 1 (num:3)

///// hello.ci //////////////////////////////
mainmodule hello {

 readonly CProxy_Main mainProxy;
 readonly int nElements;

 mainchare Main {
 entry Main(CkArgMsg *m);
 entry void done(void);
 };

 array [1D] Hello {
 entry Hello(void);
 entry void sayHello(int num);
 };
};

Charm++ Code Example (”Hello”)

NOTE: This function is used by the SPE Run-
time to execute user code. It simply maps

functions to function indexes along with the
appropriate mapping of parameters (buffers).

///// hello_spe.cpp (SPE Only) ////////////////////////////////

#include <stdio.h>
#include "spert.h" // SPE Runtime Header
#include "hello_shared.h"

inline void sayHi(char* msg) {
 printf("\"%s\" from SPE %d...\n", msg, (int)getSPEID());
}

#ifdef __cplusplus
extern "C"
#endif
void funcLookup(int funcIndex,
 void* readWritePtr, int readWriteLen,
 void* readOnlyPtr, int readOnlyLen,
 void* writeOnlyPtr, int writeOnlyLen,
 DMAListEntry* dmaList) {
 switch (funcIndex) {
 case SPE_FUNC_INDEX_INIT: break;
 case SPE_FUNC_INDEX_CLOSE: break;
 case FUNC_SAYHI: sayHi((char*)readOnlyPtr); break;
 default: printf("ERROR :: Invalid funcIndex\n"); break;
 }
}

///// hello.cpp (PPE Only) ///////////////////////////////////

#include <stdio.h>
#include <string.h>
#include <spert_ppu.h> // Offload API Header
#include "hello_shared.h"

#define NUM_WORK_REQUESTS 10

int main(int argc, char* argv[]) {
 WRHandle wrHandle[NUM_WORK_REQUESTS];
 char msg[] __attribute__((aligned(128))) = { "Hello" };
 int msgLen = ROUNDUP_16(strlen(msg));

 InitOffloadAPI();

 // Send some work requests
 for (int i = 0; i < NUM_WORK_REQUESTS; i++)
 wrHandle[i] = sendWorkRequest(FUNC_SAYHI,
 NULL, 0,
 msg, msgLen,
 NULL, 0
);

 // Wait for the work requets to finish
 for (int i = 0; i < NUM_WORK_REQUESTS; i++)
 waitForWRHandle(wrHandle[i]);

 CloseOffloadAPI();
 return EXIT_SUCCESS;
}

NOTE: If sayHi() is moved to shared_hello.h, a
simple define could be used to either call

sendWorkRequest() if the code is being com-
piled on a Cell platform or call sayHi() directly

from main() if not on a Cell platform.

///// Output /////////////////////////////////////
$./hello
"Hello" from SPE 0...
"Hello" from SPE 7...
"Hello" from SPE 4...
"Hello" from SPE 5...
"Hello" from SPE 6...
"Hello" from SPE 2...
"Hello" from SPE 3...
"Hello" from SPE 0...
"Hello" from SPE 1...
"Hello" from SPE 1...

///// hello_shared.h (PPE + SPE) //////////////

#ifndef __HELLO_SHARED_H__
#define __HELLO_SHARED_H__

#define FUNC_SAYHI 1

#endif //__HELLO_SHARED_H__

Simple Offload API Code Example (”Hello”)

For more information, please visit: http://charm.cs.uiuc.edu

NOTE: The “Future
Goal” would remove
the need for this link.

Charm++ Application: User application code that has been compiled using
the Charm++ tools.

Charm++ Runtime System: Contains support for Charm++ abstractions
(chares, chare arrays, etc.)

Converse: An abstract message passing layer; contains functionality and/or
interface to send point-to-point messages, broadcast messages, etc.

Machine Layer: Directly interacts with hardware providing functionality
needed by both Converse and the Charm++ Runtime System

The Offload API and the Charm++ Runtime System

SPE

InterconnectCharm++
Application

Code

SPE
Runtime

SPE

...Charm++
Application

Code

SPE
Runtime

SPE

Charm++
Application

Code

SPE
Runtime

SPE

Charm++ Application

Charm++ Runtime System

Converse

Offload API Machine Layer

PPE

NOTE: Charmc and/or charmxi will generate the PPE stub
code and SPE code needed by the Offload API as long as
the “Calculation Code” is safe to execute on the SPEs. The
generated code would hook directly into the Charm++
RTS, removing the need for Converse threads. However,
determination of whether or not an entry method is “safe”
may require, at least initially, the user to specify a keyword
in the ci file (such as “[offloadable]” for example).

Chare Object Data: Read/Write Buffer
Incoming Message(s): Read-Only Buffer(s)
Generated Message(s): Write-Only Buffer(s)

void MyChare::myEntryMethod(...) {
 // Calculation Code...
}

Charm++ Code

Future Goal
Eventually, each chare may have one or more entry
methods that are safe and will be offloaded onto
the SPEs. This will allow the user to write a
Charm++ application just like they would for any
other platform. During compilation of the pro-
gram, the Charm++ tools will generate the neces-
sary wrapper code for entry methods that can be
safely executed on the SPEs (i.e. - entry methods
that do not randomly access global data struc-
tures). The Charm++ Runtime System will then ex-
ecute these safe entry methods on either the PPE
or one of the SPEs as it sees fit.

void calculationFunction(...) {
 // Calculation Code...
}

SP
E

C
o

d
e

Converse
Thead ID

SPE Code Executed H
ere

void MyChare::myEntryMethod(...) {
 // Pre-WorkRequest processing ...

 sendWorkRequest(..., CthSelf());

 CthSuspend();

 // Post-WorkRequest processing ...
}

NOTE: This entry method is marked
as “[threaded]” in ci file.

P
P

E
C

o
d

e

Current Status
Currently, for a Charm++ application to take ad-
vantage of the SPEs, some code changes are
required. A Charm++ application must explicitly
make calls to the Offload API. Entry methods that
offload work onto the SPEs must be threaded. This
causes the Charm++ Runtime System to create a
light-weight Converse thread when executing the
entry method. After the entry method issues a
Work Request to the Offload API, the entry method
then suspends. Once the work request has com-
pleted, the thread executing the entry method is
woken up and execution of the entry method con-
tinues.

The Charm++ Runtime System uses the Offload API to offload portions of the computation (entry methods)
performed by Charm++ applications to the SPEs.

Charm++ and the Offload API

Charm++ on Cell

- Impractical to map Chares to SPEs (LS cannot hold many, leaving most on PPE)
- Instead, entry methods will be executed on the SPEs
 - Each entry method executed on SPE as a single work request
 - Chare data and message will be moved to SPE’s Local Store prior to the entry method
 being executed (while the SPE is currently executing another entry method)
 - Only entry methods that are safe to execute on the SPEs will execute on them
 (i.e. - entry methods that do not randomly access global data, etc.).
 - Non-safe entry methods will execute on the PPE

Suitability to the Cell Processor

- Data Encapsulation: Data needed by entry methods is encapsulated within the chare
 object itself and within the message that the chare just received

- Virtualization (many chares per physical processor): With many chares on each processor,
 typically at least one chare has a message waiting for it and thus is ready to executed an
 entry method. While this entry method executes, the other chares on the processor wait
 for pending messages to arrive (overlap of computation and communication effectively
 hiding message latency).

- Peek-Ahead in Message Queue: As messages arrive at the processor, they are queued by
 the Charm++ RTS. The Charm++ RTS can then peek-ahead in this queue and preemptively
 push the data (and code) needed by a future entry method to the SPE’s Local Store. When
 the SPE finishes the current entry method, it will have the data (and code) needed to
 immediately start executing the next entry method.

(2)User View

System Implementation

Core Idea

Charm++ has traditionally been used to create high performance computing (HPC) applica-
tions. In the Charm++ programming model, the program is broken down into objects called
“chares.” Each chare is responsible for a portion of the overall computation. The chares com-
municate with each other via asynchronous method invocation (messages). The program-
mer writes the application in terms of these chares (instead of processors). Typically, the
number of chares is much greater than the number of processors. The Charm++ Runtime
System takes care of mapping the objects to processors and routing messages to the correct
processors.

Each chare has one or more entry methods defined. When a chare sends a message to an-
other chare, it must also specify the entry method that will be invoked on the receiving chare.
Once the receiving chare receives the message, then entry method is executed with the mes-
sage being passed to it as a parameter. The entry method, a member function of the chare
object, can then do some computation, including sending more messages to other chares.

Charm++

This figure shows the flow of three work requests being passed to a single SPE. Following the blue work request,
code on the PPE makes a work request [1]. The SPE then initiates a DMA-Get [2] to retrieve the needed data.

Once the data has arrived in the local store [3], the work request is executed on the SPE [4]. After completion,
the output data is transferred into system memory [5] and the PPE is notified that the work request has finished

[6]. (Not to Scale: [4] should be greater than [3] + [5])

[1]

[2]

[3]

[6]

[4]

[5]

Timeline of Work Requests being Issued to an SPE

Output Buffer M...Output Buffer 2Output Buffer 1

(Code Associated with Work Request Type)

void wrFunc(... pointers to buffers...) {

 // User defined calculation that operates on
 // the buffers
}

Input Buffer N...Input Buffer 2Input Buffer 1

Structure of a Work Request

For more information, please visit: http://charm.cs.uiuc.edu

- Additional Work Request types based on usage
 patterns in applications and/or the Charm++ RTS
- Performance testing on actual Cell hardware (has
 already been started)
- Reduce the overhead caused by the SPE Runtime
 - Memory: Reduce the code size so more of the
 local store is available to the application
 - Time: Reduce the amount of time spent executing
 SPE Runtime code to process the Work Requests
- Add ability to move code to/from the Local Stores

Future Work

 - Strided Work Request Type
 - Multiple calls to the same Work Request function
 without PPE intervention (to reduce PPE overhead)
 - Each input/output buffer is divided into chunks
 - Sizes of the chunks (per buffer)
 - Strides (pointer offsets) between chunks (per buffer)
 - Zero used to share the same buffer between calls
 - Less total overhead
 - PPE only involved at very beginning and very end
 - LS memory reused for all invocations of Work
 Request function

Current Status

- Offload API usable (however, still actively under development)
- Distributed as part of Charm++
 - Includes source code
 - Includes simple example programs

SPE Runtime

 - PPE queues Work Requests to SPE and periodically
 checks for completion, SPE Runtime responsible for:
 - Issuing DMA commands to move data buffer between
 main storage and SPE’s local store
 - Executing Work Requests
 - Managing Local Store
 - Notifying PPE when Output Buffers have been placed
 in system memory (Work Request completed)
 - SPE Runtime runs asynchronously to PPE code
 - Requires lookup function which maps function indexes to
 actual function pointers (user code)

Work Request Groups

 - A set of Work Requests logically grouped together
 - Use code notified of Work Request Group completion
 either via callback function specified by user or by
 polling/blocking on the Work Request Group Handle
 - Less overhead (less callbacks/notifications)

Work Requests (WR)

 - Well Defined Input and Output (buffers)
 - Three types of buffers (aimed at reducing EIB traffic)
 - Read/Write: Data copied to/from Local Store before/after WR execution, respectively
 - Read-Only: Data only copied to LS before WR execution
 - Write-Only: Data only copied out of LS after WR execution
 - Types of Work Requests
 - Scatter/Gather (using DMA Lists): many of each type of buffer
 - Standard: one of each buffer type, requires less setup in user code
 - Self-Contained Code: no dependencies with other chunks of code or Work Requests
 that are executed concurrently, i.e. one shouldn’t issue two WRs that both write to the
 same memory buffer since the order-of-execution between concurrent WRs is not enforced
 - Work Request code is executed on the SPEs
 - Migration of Input/Ouput buffers to/from LS is overlapped with useful
 computation on SPE (double buffering takes place at the granularity level of WRs)
 - PPE notified of Work Request completion
 - User can specify a callback function that will be called by the Offload API
 - If no callback specified, Work Request Handle can be used to check if a Work Request
 has completed (non-blocking) or wait until a Work Request completes (blocking)

The overall computation performed by an application is broken up into chunks of smaller computations called Work
Requests. PPE application code issues these work requests to the Offload API. The Offload API then passes the work
requests to the SPEs. When a work request has finished executing and its output has been moved into system memory,
the PPE code is notified. Each individual work request is executed in its entirety on a single SPE. The idea is to have
many work requests pending at a time. First, this helps ensure that all SPEs have work to perform. Second, it allows the
Offload API to overlap the movement of one work request’s data with the computation of another work request.

Core IdeaThe Offload API has been developed by the Parallel Programming
Lab (PPL). Its purpose is to enable the Charm++ Runtime System,
and thus Charm++ applications, to utilize the SPEs on the Cell pro-
cessor. While this is the main purpose of the Offload API, it has also
been developed to be independent of Charm++ and can be used
by any C/C++ application. The Offload API is publicly available as
part of the Charm++ distribution. This includes the source code,
along with some simple example programs (both Charm++ and
general C/C++ programs). Current development efforts are
focused on enhancing the Offload API as well as decreasing the
overhead produced by the Offload API itself.

Offload API

(1)

PPE

System
Memory

EIB

SPX
(pipelines,

registers, etc.)
Local Store

(256KB)DMA-Get

DMA-Put

DMA
Controller

Communication Within the Cell

Element Interconnect Bus (EIB)

- Connects all elements in the Cell
 (PPE, SPEs, System Memory, I/O)
- Transfer rate: 96 bytes/cycle (200 GB/s best-case)
- Two Cell chips may connect via EIB and I/O ports

Synergistic Processor Element (SPE)

- Same clock speed as PPE
- Performance : 25.6 GFlop/s peak (single-precision: 8 flops / cycle using FMA x 3.2 GHz)
- SPE can only access Local Store (LS) : 256 KB, Holds everything (data, code, stack), 6-cycle Latency
- Data moved between System Memory and LS using DMA transactions
 - DMA transactions are cache coherent
 - PPE can also issue DMA transactions
- Two in-order pipelines (maximum of two instructions per clock)

Power Processor Element (PPE)

- Similar to standard PowerPC core
- 2-way SMT
- Can access system memory using loads and stores

The Cell processor deviates from typical processor
design. The Cell has nine cores. The “main” core, called
the Power Processor Element (PPE), can be thought of as
a standard 2-way SMT processing core. The other eight
cores are specialized to do large amounts of computa-
tion quickly.

The Cell Processor

The Cell processor, jointly developed by IBM, Sony, and Toshiba, has enormous computational process-
ing power. It also deviates from traditional processor design. We at the Parallel Programming Lab. be-
lieve that several features of the Charm++ programming model make it a good fit for the Cell Broad-
band Engine Architecture (CBEA or “Cell”), including data encapsulation, virtualization, peek-ahead
ability in the message queues, and portability.

By porting the Charm++ Runtime System to Cell-based platforms, we hope to bring the rich set of fea-
tures available to Charm++ applications to the Cell. Towards this end, we have begun porting the
Charm++ Runtime System to the Cell. Here, we present the current progress and future directions of
this effort.

Introduction

