
Automatic Topology-Aware Task Mapping for Parallel Applications Running on Large Parallel Machines Abhinav Bhatele
Laxmikant V. Kale

PA R A L L E L
PROGRAMMING LAB
DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF ILLINOIS

PPL
U I U C

For more details visit: http://charm.cs.uiuc.edu/~bhatele/phd

Problem Statement

Cray XT3

IBM Blue Gene/L

Performance of communication-bound applications is greatly affected by message la-
tencies and the available network bandwidth. On machines with a non-flat topology 
(such as a torus or mesh), message latencies depend upon:
    - Number of hops the message has to travel
    - Contention on the network

The fastest supercomputers today such as Blue Gene/L, Blue Gene/P, Cray XT3 and XT4 
have a 3-dimensional (3D) torus network. Hardware latencies in such networks depend 
on the number of hops:

              

In presence of contention, messages can take even longer to 
arrive at their destination. In such scenarios, task mapping 
strategies should consider:
    - The communication characterstics of the application
    - The network topology of the machine

Using intelligent mapping can improve the efficiency and 
scaling of applications on large machines. We propose to de-
velop an automatic framework which can generate efficient 
mappings for tasks to processors based on the communica-
tion graph and the processor topology.

Blue Gene/L: < 1 us (1 hop), 7 us (68 hops)
Blue Gene/P: < 1 us (1 hop), 5 us (68 hops)

Motivation and Examples
Message Latencies on Blue Gene/L

Plot on the right demonstrates the effect of 
message sizes and torus sizes on the message 
latency. It shows the average time for sending a 
message to the nearest processor and to a 
random processor.

Message latency increases with:
    - Increase in the message size in both cases
    - Increase in the torus size in the random processor case

Hence, for applications with huge messages, it would be beneficial to place communi-
cating tasks on the same or nearby processors to avoid this latency.

3D Stencil

A simple 3-dimensional 7-point stencil (3D Stencil) application is used to demonstrate 
the high returns from topology-aware mapping of communicating tasks. Charm++ was 
used to implement this example code.

Communication in 3D Stencil is fairly straightforward
    - Each object is responsible for the computation of a 3D block of data
    - Every object communicates with six neighbors, two in each dimension
    - Optimal mapping maps a 3D block of objects together on a processor

A simple mapping scheme which places contiguous 3D blocks of objects on nearby 
processors minimizes communication 
    - Results on Blue Gene/L for two different virtualization ratios shown above
    - Improvement up to ~25% for some processor counts
    - Corresponding reduction in the number of total hops (links traversed) for all 
       messages in the program
These results suggest that reducing the hops travelled can reduce message latencies 

and contention for an application and lead to significant performance benefits.

Elements

Chares

Processors

Data Array Machine Torus
4

4

4
4

4

2

2

2

Data Array = 163

Chare Array = 43

Processor Array = 23

Chares per 
Processor = 23

RND = Random
NN    = Near Neighbor

 0.25

 1

 4

 16

 64

 256

 1024

512 1K 2K 4K

Ti
m

e (
m

s)

No. of Processors

Contention e�ects on Blue Gene/L

RND: 100000 B
NN: 100000 B
RND: 10000 B

NN: 10000 B
RND: 1000 B

NN: 1000 B
RND: 100 B

NN: 100 B
RND: 10 B

NN: 10 B

Charm++ is an asynchronous message-driven parallel runtime system. The 
concept of virtualization in Charm++ allows multiple objects on a processor. 
These objects are the basic unit of computation. Having multiple objects allows 
adpative overlap of communication and computation.

Random
Round−robin
Topology

  0.00

  0.20

  0.40

  0.60

  0.80

  1.00

  1.20

  1.40

  1.60

  1.80

  2.00

512 1,024 2,048 4,096 8,192

H
op

−b
yt

es
 p

er
 li

nk
 p

er
 se

c 
(M

B
)

No. of processors

Hop−bytes comparison for 3D Stencil

  1 object per PE   8 objects per PE
Processors RND RR TO RND RR TO

512 407.25 156.09 153.85 416.26 147.18 146.61
1024 270.56 96.48 82.19 294.59 101.82 76.80
2048 181.45 49.74 42.11 161.94 46.43 40.24
4096 115.56 25.61 21.27 93.27 24.89 23.65
8192 53.44 10.67 10.81 32.59 11.41 11.34

Static Regular Communication: OpenAtom

Transpose

RhoR

GSpace

RhoG

Pair Calculator

Multicast

Reduction

I II IIIIV

RealSpace

State 1

State nsStates
ns1

1

1
Ng

States

Planes

Planes

ns ns = no. of states
N  = no. of planes
Ng = no. of planes
        in GSpace

Key

OpenAtom is a production quantum chemistry code implemented in Charm++
    - Implements a fine-grained parallelization of the Car-Parrinello ab-initio Molecular Dynamics (CPAIMD) method
    - Every iteration consists of ten complex phases executed by fifteen arrays of Charm++ objects
    - Each array communicates with a few other arrays in a specific regular pattern
    - A heavily communication-bound application which is greatly affected by network performance (message laten-

cies and performance under bandwidth contention)

Figure above shows the important arrays in OpenAtom
    - GSpace and RealSpace interact through transposes. G(s, *) interacts
       with R(s, *): state-wise communication
    - Gspace and PairCalculator interact through multicasts and reductions.
       G(*, p) interacts with P(*, *, p): plane-wise communication
    - RhoR(*, p) interacts with R(*, p): plane-wise communication

A hybrid approach (see figure on top left):
    - The 3D torus of the machine is divided into prisms along the longest dimension
    - Each prism holds all states of a few planes of GSpace
    - RealSpace is placed in perpendicular prisms formed by all planes of one state
       of GSpace (benefits state-wise communication)
    - PairCalculator objects are placed in prisms similar to GSpace (plane-wise)

These mapping schemes improve the performance of OpenAtom on machines such 
as Blue Gene/L, Blue Gene/P and XT3 
    - Plots on the right show the execution time for the WATER_256M_70Ry system
       which has 256 water molecules.
    - Benefit upto ~40% in some cases.
    - Mapping also helps overcome scaling bottlenecks on small systems such as
       WATER _32M_70Ry when using more than 2048 processors on Blue Gene/L. 

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

512 1K 2K 4K 8K 16K

Ti
m

e 
(s

ec
s/

st
ep

)

No. of Processors

WATER 256M 70Ry on Blue Gene/L

Default Mapping
Topology Mapping

GSpace

RealSpace

PairCalculator

Density

States

Planes

3D Torus of 
the machine

1 1 N

Planes
1 Ng

States

1

ns

States

1

States

Planes
1

1
ns ns

ns

Ng

Rectangular 
Gspace 
Prisms

RealSpace Prisms 
perpendicular to 
Gspace Prisms

block_size

 2

 3

 4

 5

 6

 7

 8

512 1K 2K

Ti
m

e 
(s

ec
s/

st
ep

)

No. of Processors

WATER 256M 70Ry on XT3

Default Mapping
Topology Mapping

OpenAtom presents a communication scenario where arrays communicate 
along orthogonal dimensions with other arrays. This makes the mapping 
problem difficult because of conflicting requirements for the optimal map-
ping of different arrays.

NAMD: Topology-aware Load Balancing 
NAMD is a widely used highly scalable parallel production Molecular Dynamics (MD) code
    - Objects called ‘patches’ multicast data to multiple other objects called ‘computes’
    - Every compute receives data from two patches
    - Patches are assigned statically to processors (using an ORB scheme on 3D topologies)
    - Computes are placed by a measurement-based load balancer

Load Balancing Strategy:
    - Pick the heaviest compute
    - Find an underloaded processor and place compute on it
    - Order of preference:
          -- Processor hosting one of the patches
          -- Processor with which one of the patches already interacts
          -- Any underloaded processor

Topology-aware Strategy:
    - Divide the entire torus into two regions
    - Inner box: region defined by the processors hosting the two
       patches with which the compute interacts
    - Outer Box: region defined by Entire Torus minus Inner Box
    - First look for a underloaded processor in the Inner Box
    - Otherwise place in the Outer Box

Y

Non-bonded
Computes

Patches

X

 

Bonded
Computes

Z

Patch 1

Patch 2

Outer 
Brick

Inner Brick

3D Torus

Naive
 Topology

  0.00

  500.00

  1,000.00

  1,500.00

  2,000.00

  2,500.00

  3,000.00

512 1,024 2,048 4,096 8,192

H
op

−b
yt

es
 (M

B
)

No. of processors

NAMD on Blue Gene/L (CO mode)

Naive
 Topology

  0.00

  500.00

  1,000.00

  1,500.00

  2,000.00

  2,500.00

  3,000.00

512 1,024 2,048 4,096 8,192

H
op

−b
yt

es
 (M

B
)

No. of processors

NAMD on Blue Gene/L (VN mode)

In NAMD, we see a specific scenario where each target of the multicast receives messages from only two sources. 
In general, there can be n sources from which a target can receive messages. Hence, this research can be ex-
tended into a section-multicast and topology-aware load balancer for multiple multicast sources and targets. 
This is useful, for example, in matrix multiplication where every object sends its part of the array to other objects 
in its row and also receives from all other elements in its row. Such strategies do not need manual identification 
of the communication patterns in the application.

Proposed Work
Building on the experience gained from mapping of specific applications, we propose to de-
velop an automatic topology-sensitive mapping framework
    - It will obtain topology information about the machine at runtime
    - It will gather information about the communication in the application
    - Using various heuristics, it will try to arrive at a near-optimal solution 

Topology Information

At runtime, when a partition is allocated for a job, we need information about the processor 
graph:
    - Number of processors in the partition
    - Size of each dimension (if the topology is a 3D torus)
    - Mapping of ranks to physical processors (XYZT or TXYZ or ...)
    - Number of cores per node

Communication Graph Information

Different communication scenarios:
    - Regular static communication, as in 3D Stencil
       or 3D implementation of matrix multiplication
       (point-to-point messages or multicasts to
       specific members of the 3D array)
    - Arbitrary static communication, as in meshing 
frameworks
    - Arbitrary dynamic communication graph, as 
in MD applications

The communication graph can be obtained at compile time (if the code is written in a static 
data-flow language) or at runtime (by instrumenting the code and saving the communica-
tion information). 

Finding an Optimal Mapping

Strategy changes depending on the scenario:
    - In case of regular scenarios, we can use pattern matching to find regular communica-

tion patterns and use straightforward mapping schemes
    - In case of arbitrary static graphs, we can do an intelligent initial mapping based on 

heuristics
    - If the communication graph is dynamic, then we can use different topology-aware 

strategies in the load balancing framework

Why does topology mapping make a di�erence?

Virtual cut-through and wormhole routing suggest that message latencies should be in-
dependent of the number of hops travelled by a message:

But tests using simple benchmarks and performance improvements for production appli-
cations suggest otherwise. While hardware latencies on 3D torus machines might be one 
factor, we need to investigate other possible causes for increased message latencies in 
the default case which gets reduced by topology-aware mapping:
    - Might be due to network congestion, or
    - Might be due to link contention

We plan to use performance tools on Blue Gene/L and Blue Gene/P (UPC, PAPI, HPM) to 
find the resource for which contention happens.

(Lf/B)*D + L/B

Image generated using http://bigben-monitor.psc.edu

Summary
Topology-aware mapping can improve the performance and scaling of parallel applications 
significantly. We have obtained encouraging results for 3D Stencil, OpenAtom and NAMD on 
IBM Blue Gene/L, Blue Gene/P and Cray XT3.

References

[1] Abhinav Bhatele, Laxmikant V. Kale, Application-speci�c Topology-aware Mapping for Three Dimen-
sional Topologies, Proceedings of Workshop on Large-Scale Parallel Processing (IPDPS '08), 2008

[2] Abhinav Bhatele, Eric Bohm, Laxmikant V. Kale, Improving parallel scaling performance using topology-
aware task mapping on Cray XT3 and IBM Blue Gene/L, Submitted to ICPP '08

[3] Abhinav Bhatele, Sameer Kumar, Chao Mei, James C. Phillips, Gengbin Zheng, Laxmikant V. Kale, Over-
coming Scaling Challenges in Biomolecular Simulations across Multiple Platforms, Proceedings of IEEE 
International Parallel and Distributed Processing Symposium (IPDPS), 2008

[4] Abhinav Bhatele, Application-speci�c Topology-aware Mapping and Load Balancing for three-
dimensional Torus Topologies, Master's Thesis, Department of Computer Science, University of Illinois, 2007

[5] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, R. Walkup, Optimizing task layout on the Blue 
Gene/L supercomputer, IBM Journal of Research and Development, Volume 49, Number 2/3, 2005

[6] IBM Blue Gene team, Overview of the IBM Blue Gene/P project, IBM Journal of Research and Develop-
ment, Volume 52, Number 1/2, 2008

[7] Deborah Weisser, Nick Nystrom, Chad Vizino, Shawn T. Brown, John Urbanic, Optimizing Job Placement 
on the Cray XT3. 48th Cray User Group Meeting 2006 Proceedings, 2006

We propose to build an automatic mapping framework which will arrive at near-
optimal mapping solutions for most communication scenarios and non-flat topolo-
gies. We also plan to extend this work to clusters built from n-way SMPs.


