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Motivation
The complexity of computer components is growing 
at a substantial rate.  Consider modern processors.

   - Intel’s Pentium 4
        - Prescott Core = 125 million transistors
        - Extreme Edition = 178 million transistors
   - AMD’s Athlon 64
        - Venice Core = 114 million transistors
        - X2 = 233.2 million transistors

GPUs have even more!

   - nVidia 7800 GTX = 302 million transistors
   - ATI x1800 Series = 321 million transistors

There is increased market pressure for high 
performance computing at a low cost.

   - High Demand for High Performance
         - Scientific Computing
         - Business Servers
         - Gaming Industry (both PC and console)

   - Must Stay Competitive to Survive
         - Keep costs down 
         - Reduce Time-to-Market / Development-Time
               - Verification of design is becoming a
                  bottleneck in the design cycle

Natural Solution: Speed-up simulation through the 
use of many processors.

   - Problem Sizes are Getting Larger and Larger
         - Requires greater amounts of compute power
         - Requires larger amounts of memory

   - Multicore Chips
         - Processor clock frequencies are leveling off
         - To utilize modern processors, applications will
           need to be designed to utilize multiple
           processing elements in parallel
               - Multiple chips
               - Multiple cores

Charm++
Charm++ is a runtime system which can be used by parallel programs.  In the Charm++ 
model, the application is broken up into a collection of objects called chares.  Each chare is 
capable of receiving messages from other chares in the application.  When the application 
runs, the chares are spread across all of the processors available to the application.

The mapping of which chare is located on which processor is handled by the Charm++ 
Runtime System.  This relieves the programmer of the details of placing objects manually.  
The programmer simply sends a message to the target chare and the runtime system takes 
care of “knowing” where that chare is and making sure the message gets to its target.

With the addition of “pup routines,” which describe how chares can be serialized into mes-
sages, the runtime system can automatically load balance the application while the applica-
tion continues running.  This allows the application to better utilize the processors that it is 
running on.  Additionally, the pup routines allow the runtime system to checkpoint an appli-
cation so its state can be saved.  At a later time, an application can be restarted at the exact 
point in its execution where the checkpoint occurred (in other words, it can pick-up right 
where it left-off).

User View

System Implementation

For more information, Please Visit the PPL Website: http://charm.cs.uiuc.edu

POSE
The Parallel Object-oriented Simulation Environment (POSE) is a framework for perform-
ing Parallel Discrete Event Simulations (PDES).  In a POSE simulation, each object in the 
simulation is called a “poser.”  A poser is a chare with some additional functionality to sup-
port PDES simulations.

   - What does POSE add?

         - Handles overhead of PDES (programmer would otherwise have to code)
               - Event queues for each poser
               - Keeps track of simulation time

         - Optimistic/speculative execution of events
               - Has several strategies for optimistic/speculative execution of events
                     - User defined strategies also supported
               - Periodically checkpoints posers during execution
               - Handles rollback when needed

         - Built on Charm++
               - Works with Charm++ load-balancing framework
               - Works with Charm++ communication library (communication optimization)
               - etc.

For More Information, Please Visit: http://charm.cs.uiuc.edu/research/pose/

VHDL - Basic Overview
VHDL stands for “Very High Speed Integrated Circuit Hardware Description Language”.  It 
is a hardware description language (HDL) that is used to model integrated circuits (IC).  
Another popular HDL is called Verilog.

VHDL supports two ways of describing an IC.  The first is structural.  In a structural model, 
only simple gate operations (and, or, etc.) are used.  More complex “components” are built 
from simpler “components”.  The second is behavioral.  In a behavioral model, more
complex language constructs are used (if statements, loops, etc.) which do not have a direct 
mapping to hardware.

Each “component” is comprised of two parts.  The first is an entity declaration which de-
fines the component’s interface to the outside world.  The second is an architecture 
declaration with defines the logic internal to the component.  In this poster, the combination 
of entity and architecture is referred to as a “component”.  The components can be nested 
which allows more complex component to be formed from simpler components.  This 
creates a design hierarchy as shown below.  (See the “VHDL File” at the top of “Translator 
Overview” to see code for the NAND sub-tree below).

Translator Overview
The VHDL code is first translated into a series of C++ files.  Each entity/architecture pair is 
translated into its own class.  The generated code uses the POSE framework which, in turn, 
uses the Charm++ Runtime System.  Once all of the code has been translated into C++, the 
simulation can be compiled using a standard C++ compiler.

VHDL File
entity NOT_GATE is
   port (A: in BIT; Y: out BIT);
end NOT_GATE;

entity AND_GATE is
   port (A, B: in BIT; Y: out BIT);
end AND_GATE;

entity NAND_GATE is
   port (A, B: in BIT; Y: out BIT);
end NAND_GATE;

architecture NAND_GATE_struct of NAND_GATE is
   signal andOutput : BIT;
   component NOT_GATE port (A: in BIT; Y: out BIT); end component;
   component AND_GATE port (A, B: in BIT; Y: out BIT); end component;
begin
   myAndGate : AND_GATE port map (A=>A, B=>B, Y=>andOutput);
   myNotGate : NOT_GATE port map (A=>andOutput, Y=>Y);
end NOT_GATE_struct;
Currently, there is only a single special requirement for the input VHDL files.  The upper most component in the design hierarchy needs to be named “Testbench”.

Eventually, as more support for VHDL is added, this requirement should be removed.

Translator
The translator is a basic source-to-source 
translator.  It uses lex and yacc to generate 
an Abstract Syntax Tree (AST) which is later 
used to generate the C++ files.

Generated Source Code Files (C++/POSE/Charm++)

Source files specific to 
entity/architecture pairs in VHDL 
source code.
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------

General source files needed by all 
simulations.

-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------
-----------------------------------------

Makefiles are also created so compiling the collection of source files is easy for the user.

A C++ Compiler
A C++ compiler and the Charm++ environ-
ment is now used to compile the code that 
was generated by the translator.

Compiled Simulation
The output of the C++ Compiler is a single executable that, when executed, 
will simulate the circuit from the described in VHDL source code.  Because 
both C++ and Charm++ are available on so many platforms, an executable can 
be created for most machine configurations.

Run the Simulation
At this point, the compiled simulation is ready to be executed on the target 
cluster/supercomputer. (See “Simulation Overview”)

Simulation Overview
After the VHDL source code has been compiled into an executable, this executable can be used to simu-
late the circuit the VHDL source code describes.  Each “instance” of a “component” becomes a separate 
poser.  Messages are used to pass the values of ports between components.  

Each VHDL simulation cycle is represented as zero or more drive events followed by a single process 
event.  The VHDL simulation cycles are grouped so that each grouping starts with a full VHDL simula-
tion cycle followed by all the VHDL delta cycles that occur before the next full VHDL simulation cycle.  
In other words, simulation time only changes at group boundaries.

- Zooming out, this is what the simula-
tion timesteps for several components 
over several timesteps would look like.

- This assumes processing is done for 
each component for each VHDL simula-
tion cycle.

- Not all components do work each cycle
     - Timelines look more like this
     - Components skip over empty cycles

- A component only does work on
  demand (when it receives a message)
      - Send self a wakeUp
      - Send self a drive (earlier in time)
      - Other component sends a drive

As components update their values (ports, signals, etc.), any values that need to be passed onto other 
components are passed through messages.  The figure below illustrates what would happen if a drive 
message for a input to a NAND_GATE (see VHDL File example) was received.  (Downward arrows 
relate to inputs and upward arrows relate to outputs)

As a later optimization, the 
translator can remove messages 
from the critical path if it deter-
mines the receiving component 
just forwards the value on.

As values (ports, signals, etc.) are modified, the values 
changes are passed onto special posers called VCDGenerators.  
Each processor has a single VCDGenerator.  VCDGenerators 
are responsible for recording all value changes that occur on 
that processor to disk.  A single pvcd file is generated per pro-
cessor.  These files are later combined to generate a vcd file 
which can be opened with a vcd viewer of the user’s choosing.
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VHDL Support So Far
The translator supports a subset of the VHDL language.  Arbitrary VHDL 
files can be parsed as long as they only use the supported subset of the VHDL 
language.  Currently, there is only one special requirement for the VHDL file; 
the root component in the design hierarchy must be named “Testbench”.  
Though, this requirement should be removed with the addition of an addi-
tional IR (see “Future Work”).

Some Specific Items Include:

   - Most Expression Operations
   - Several Basic Types Defined in VHDL
   - Concurrent Signal Assignments
   - Concurrent Processes
   - Most Sequential Statements
   - etc.

Some specific circuits that have been designed and simulated include:

   - Clock generator  (continuous processes)
   - Mux  (test simple control signals)
   - Counter  (test simple control signals, some behavioral constructs)
   - Parity Generator  (several sub-components that interact, test correctness
     of message propagation)
   - etc.

Future Work
Translator:

   - More support needs to be added for the VHDL language.  Currently, the translator only recognizes a 
small subset of the VHDL language.

   - Support for other HDL languages (specifically Verilog) and mixed-HDL simulations.

   - Create an additional intermediate representation (IR) that can be used as a storage format for com-
piled components and structured such that optimizations/transformations are easy to apply
         - Flattening of the design hierarchy
         - Splitting/combining components for better granularity
         - Removing messages from the critical path

Simulation:

   - Create strategies specifically designed to accommodate the behavior of components and VCDGen-
erator posers (specifically, the difficulty of ‘clock’ based simulations).

   - Further development of load balancers for the POSE framework.

   - With additional support for the VHDL language, comparison of this simulator to other VHDL simu-
lators using some standard benchmarks.
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Initial Results

This is a Projections time profile graph.  It shows the amount of time spend executing the different 
entry methods (message handlers) during the course of the simulation.  The shades of blue relate to 
the various entry methods of the components (wakeUp, drive, process, generateOutput).  The other 
colors relate to various other entry methods used in both the POSE framework and the Charm++ 
runtime system.  In the beginning of the simulation (left) there is a great deal of overhead (initial 
values being passed around, etc.).  Once, the simulation gets passed this initial overhead, it stabi-
lizes into a more clear routine with less overhead (in particular, the narrow yellow spikes in the 
right half of the graph are GVT calculations that POSE uses to move the simulation time forward.)

The above picture is a screenshot of the gtkwave waveform viewer being used to inspect signal 
values generated by the simulation.  Gtkwave can be found at: http://www.cs.manchester.ac.uk/apt/

This is a Projections summary graph.  It 
shows the overall utilization of all the pro-
cessors as the simulation runs.  As can be 
see from this graph, the utilization of the 
processors is approximately 70% to 75%.  
Clearly, more work is needed to speed up 
both sequential portions of the simulation 
along with increasing parallelism so the pro-
cessors are better utilized overall.

This is a Projections overview graph.  It 
shows the utilization of each individual 
processor as time passes.  As can be seen 
from this image, the overall load balance 
between the processors is fairly even.  The 
white indicates 100% utilization, black in-
dicates 0%, and shades of red are used for 
the percentages in-between (the lighter the 
shade of red the higher the utilization).

VHDL Design File Used
   - Clock Generator
   - 12bit Counter (counts clock pulses)
   - Parity Generator
         - Generates odd parity for output of counter
         - Tree of XOR gates and single NOT gate

Note: For these tests, the parity generator was duplicated many times to increase the number of compo-
nents in the simulation.

Machine used for Testing
   - Turing Cluster at UIUC (see http://www.cse.uiuc.edu/turing for details)

Note: The projections images below represent a runs that was made without collecting vcd information.

This graph shows the performance of the 
simulator as more processors are used to 
simulate the exact same problem (as the 
number of processors doubles, the work per 
processor halves).  As can be seen from the 
graph, scaling works fairly well up to 32
processors.  After 32 processors, doubling 
the processor count no longer halves the
execution time.

This graph shows the performance of the 
simulator as the problem size is varied 
with the number of processors (double the 
number of processors, double the problem 
size; a horizontal line represents perfect 
scaling).  As can be seen from the graph, 
scaling is alright up to 32 processors.  
Both performance graphs indicate there is 
still plenty of scaling work to be done.

The upper three graphs in this section are from a performance visualization tool called Projections.  
Projections has been developed along side of Charm++ and is a powerful tool for allowing a devel-
oper to understand the behavior of an application.  With the profile data it collects, it can display a 
wide variety of information from the high-level graphs shown here to the low-level details of indi-
vidual messages.

Another POSE Related Project: BigNetSim
Architecture and Objective of BigNetSim

Motivation:
  - How to write a Peta-Scale parallel application?
  - What will be the performance like?
  - Will the applications scale?

Objective:
  - Develop techniques to facilitate the develop-
ment of efficient peta-scale applications
  - Based on performance prediction of applica-
tions on large simulated parallel machines

Simulation-based Performance Prediction model:
  - Focus on Charm and AMPI programming 
models – Structured Dagger
  - Performance prediction based on PDES

Simulation Details
 - Emulate large parallel machines on smaller existing 
parallel machines – run a program with multi-million way 
parallelism
 - Ensure Time-stamp correction

 - Emulator layer API built 
on top of machine layer
 - Charm++ implemented 
on top of emulator
 - Emulator layer supports     
all Charm++ features:
    - Load-balancing
    - Communication opt

Bigsim Emulator – Functional Diagram

Interconnection Network Simulator 
in BignetSim

Predict Performance based on:
 - Processor Model – wallclock time; user supplied timing info.
 - Network Model – contention based Interconnection Networks

Network Simulation Details:
 - Can specify any network for the machine being simulated
 - Implements Collective hardware communication

For More Information, Please Visit the PPL Website: http://charm.cs.uiuc.edu
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