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Abstract

We develop scalable algorithms for two-stage stochastic program optimizations. We propose
performance optimizations such as cut-window mechanism in Stage 1 and scenario clustering
in Stage 2 of benders method for solving two-stage stochastic programs. A naive implementa-
tion of benders method has slow convergence rate and does not scale well to large number of
processors especially when the problem size is large. We propose two decomposition schemes
namely the Split-and-Merge (SAM) method and the Lagrangean Decomposition and Merge
(LDAM) method that significantly increase the convergence rate of Bender’s decomposi-
tion. SAM method gives up to 74% reduction in solution time while also giving significantly
higher parallel speedups as compared to the naive benders method. LDAM method, on the
other hand, has made it possible to solve otherwise intractable stochastic programs. When
mixed-integer variables are present in the Stage 1 of the stochastic program, these methods
do not scale very well because of the increased size of the Stage 1 bottleneck. Paralleliza-
tion of stochastic integer programs pose very unique characteristics that make them very
challenging to parallelize. We develop a Parallel Stochastic Integer Program Solver (PSIPS)
that exploits nested parallelism by exploring the branch-and-bound tree vertices in parallel
along with scenario parallelization. PSIPS has been shown to have high parallel efficiency
of greater than 40% at 120 cores which is significantly greater than the parallel efficiency of
state-of-the-art mixed-integer program solvers. We further provide a computational engine
for many real-time and dynamic problems faced by US Air Mobility Command (AMC). We

first propose a stochastic programming solution to the military aircraft allocation problem

ii



with consideration for disaster management. Then, we study US AMC’s dynamic mission
replanning problem and propose a mathematical formulation that is computationally feasible
and leads to significant savings in cost as compared to myopic and deterministic optimiza-
tion. It is expected that this work will provide the springboard for more robust problem

solving with HPC in many logistics and planning problems
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CHAPTER

Introduction

In many real world situations, future outcomes such as weather in agriculture, product de-
mands in the manufacturing industry, stock prices for an investor, etc. are dependent on
myriad different factors that cannot be deterministically predicted. However, resource allo-
cation has to take place before the actual realization of these unknown parameters. When
resource use has to be optimized under such conditions, the resulting problem is called stoch-
astic optimization. Stochastic optimization provides a means of coping with the uncertainty
inherent in real- world systems. Unlike deterministic programming, stochastic programming
explicitly incorporates uncertain parameters by assuming a probabilistic distribution to make
a more rational decision for optimal resource allocation. Stochastic optimization algorithms
have applications in statistics, science, engineering, and business. Examples include making
investment decisions in order to increase profit (financial modeling), transportation (plan-
ning and scheduling logistics), design-space exploration in product design, supply chain and
scheduling, environmental and pollution control, economic dispatch and unit commitment
problem for power supply, etc. There are other applications in agriculture, energy, telecom-

munications, military, medicine, water management etc.



1.1 Stochastic Optimization

Equation 1.1 gives a standard representation of a stochastic program.

min cx + Zps(qsys)

S

s.t. Az <b

Vs, Wsys + Tsx < hg (1.1)

where, x corresponds to the strategic decisions corresponding to the known parameters that
are to be taken now, and y, corresponds to the operational decisions that will be taken when
the scenario s is realized, and p, is the probability that scenario s will occur. The objective
function is sum of the costs of strategic decisions and the weighted average of the cost of
operational decisions for all scenarios.

In multi-stage stochastic programs, decisions are made in multiple stages. For example, in
portfolio management, a fixed amount of cash available at time t; has to be invested across
times t1, to, ..., t,,. Decisions taken at time ¢; will depend on the decisions/outcomes from time
t;—1. Unlike the case of portfolio management in which the unknown parameters are realized
over a sequence of stages, in two-stage stochastic programs, all the unknown parameters are
realized in a single stage (as there are only two stages). In the first stage, strategic decisions
are made (the known resources are allocated to the different fields of activities) and in the
second stage operational decisions are made for every scenario. A specific instantiation of the
unknown parameters is called a scenario. Most applications can be formulated as two-stage
programs. We propose our work on two-stage stochastic programs but the strategy is easily
generalizable to multi-stage stochastic programs. Moreover, multistage stochastic programs
can be solved as a sequence of two-stage stochastic programs. Equation 1.2 and 1.3 shows
the first and second stage programs of the two-stage stochastic program, respectively.

Stage 1 Program:

s.t. Az <D (1.2)



Stage 2 Program:

min Qs(z,ys)
Wyys < hy — Tyx (1.3)

In this work, we focus on the two-stage stochastic programs whose Stage 1 can be a
linear /integer /mixed-integer program and Stage 2 is a linear program. The usual method
of solving such stochastic linear program uses Bender’s decomposition [1]. In this method,
a candidate Stage 1 solution is obtained by optimizing the Stage 1 program. The candidate
Stage 1 solution is evaluated against all the scenarios in Stage 2. Stage 2 optimization gives
the scenario costs for the given Stage 1 solution, and optimality /feasibility cuts that are fed
back to Stage 1. Stage 1 is re-optimized with the addition of new set of cuts to obtain another
candidate solution. The iterative Stage 1-Stage 2 optimization continues until the optimal
solution is found which is determined by a convergence criteria. A Stage 1 optimization
followed by a Stage 2 optimization is called an iteration.

There are two variants of the Bender’s approach. In one, a single cut using a weighted
combination of Stage 2 dual objective function is added to the Stage 1 in each iteration.
This method is called the L-shaped method [2]. In the other, in an iteration a cut constraint
is added to Stage 1 for each scenario. This multicut method [3] has the advantage that the
set of cuts in each iteration dominates a single L-shaped cut. However, the number of cuts
can become very large quickly, particularly for problems with large number of scenarios.

In most real world applications, the number of uncertain parameters are large, and there-
fore the number of scenarios are also very large. In addition to the complexity of the focal
application, factors such as the number of Stage 2 evaluations, number of rounds it takes to
converge to optimality (within the user-specified convergence criteria), and the size of the
Stage 1 linear program which increases with the increase in number of scenarios, add to the
computational complexity of the stochastic programs.

Our research focuses on multicut Bender’s method. Equation 1.4 shows the Stage 1



min(cz + i ps05) Stage 1 (strategic decision)
Cost of resource allocation +
Expected Cost of Stage 2
Decisions
(Integer) Linear Program

s=1
s.t. Ax < b
0s > mi(hs —Tx)

« costs, cuts
* 6s > ni(hs —Tx)

[ VA
= Stage 2 (operational decisions)
I X .

min qsy a Expected execution cost
\o .
st. Wy < hg —Ta™ |V /& (Integer) Linear Program
O

Figure 1.1: Benders decomposition and multicut L-shaped method for two-stage stochastic
programs.

program after r rounds.

s.t. Ax < B

Vsand l € [1,7], Egz+0s; <eg (1.4)

where, Eg + 0, < ey are the cut constraints obtained from Stage 2 optimization and 6, is
the cost of scenario s.

Because of the large number of cuts in the multicut method, it is imperative that the cuts
generated in each round are strong cuts in the sense that they allow the Bender’s program
to converge quickly. The multicut method is depicted in Figure 1.1.

Because of its heavy computational demands, stochastic optimization has been typically
restricted to a relatively small number of scenarios. However, to model an application with
fidelity requires hedging against hundreds to several thousands or more scenarios. This
makes it a computationally challenging problem and hence the need for scalable algorithms

and parallelization. Parallelization of stochastic optimization presents difficult, interesting
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Figure 1.2: A rough sketch of a distributed system. Multiple compute nodes (each with
possibly multiple cores sharing same memory) are connected to each other through an in-

terconnection network. The compute nodes also have a shared file system for storing data
files.

and unique challenges, which is probably why its extreme-scale parallelization has largely
remained an unchartered territory. A naive parallelization of the Bender’s decomposition
can be done using a simple master-worker design which comprises of a master process that
optimizes the Stage 1 linear program and multiple worker processes which will evaluate the
scenarios in parallel. This design is very far from being either efficient or scalable. We
discuss the scalability challenges by dividing our discussion over two classes of stochastic
programs. They are classified based on the types of variables - Stochastic Linear Programs
(Chapter 2, 4, 5) with integer variables in Stage 1 and Stage 2, and Stochastic Integer
Programs (Chapter 3) with mixed-integer variables in Stage 1 and linear variables in Stage

2.



1.2 Parallel Computing

In parallel computing, multiple compute nodes are connected to each other through a net-
work. The processes on the compute nodes communicate with each other by passing messages
to each other through the network. The interconnection network could be a 1D/2D/3D/4D
mesh/torus, a ring, a fat-tree, a fully-connected topology and so on. Each of the compute
nodes itself could be a multi-processor system, in which the processors share the same mem-
ory. Figure 1.2 shows a diagram of a distributed system, and its various components. The
various compute nodes can run jobs in parallel and exchange information if required either
via message passing or memory sharing (when processes are on the same compute node).
The total available memory in a distributed system is the sum of the memories of the in-
dividual nodes, and hence required number of nodes can be added to the system to have
sufficient memory to store the stochastic program in memory.

There are several parallel programming models available to write parallel programs for
distributed systems, such as, MPI [4], Charm++ [5], etc. Multiple processes are launched
on the system, and each process is assigned a global rank. Processes can communicate
messages amongst each other by specifying the rank of the sending/receiving process. The
parallel programming model handles the delivery of message to the target rank.

Stochastic optimization algorithms have been growing rapidly in popularity over the last
decade or two. Given the complexity of the systems and the scale at which the system pa-
rameters change, the time to solve stochastic models is very critical. It is therefore natural to
develop techniques to utilize parallel computing resources (in the form of multi-core desktops
and servers, clusters, super-computers) to cut down the solution times. An interesting de-
velopment in this context, is the widespread availability of cloud computing platforms which
offer computational resources and optimization solvers as services. Since users pay for the
time they use these resources/services, it is critical to optimize the application. We strongly

believe that this area has great potential for research in parallel computing community.



1.3 Thesis Organization

This thesis is divided into two major parts. Part 1 covers the proposed computational
methods for solving large scale stochastic optimization problems. It is divided into four
chapters - Chapter 2 to Chapter 5. Chapter 2 describes our parallel design of the stochastic
program solver, along with various proposed optimizations to improve the performance of the
solver. The design proposed in Chapter 2 has limited scalability for stochastic programs that
have large number of integer variables in Stage 1 and/ or large number of Stage 2 scenarios. In
Chapter 3, we propose a highly scalable BnB based solver design for solving large stochastic
programs with mixed-integer variables in Stage 1. We call our solver as Parallel Stochastic
Integer Program Solver or PSIPS. PSIPS shows strong scaling on up to 960 cores of a
cluster, with parallel efficiency above 40% with very high probability. On the contrary,
commercial state-of-the-art integer program solvers like Gurobi are known to have very poor
parallel efficiency. Chapter 4, and Chapter 5 propose two decomposition schemes, namely
the Split-And-Merge method and the lagrangean decomposition method, for accelerating the
convergence of Bender’s multicut method for stochastic program optimizations.

In Part 2 of the thesis, we propose models for scheduling military airlift assets. Unlike
commercial air carriers, military airlift faces demands that are highly uncertain because
they are subject to rapidly changing worldwide tensions and commitments of the military.
Because of these changes, more than 90% of airlift missions have to be changed during either
planning, or execution, or both. Our work proposes stochastic models that can significantly
improve the efficiency of this problem. In Chapter 6, we discuss a military aircraft allocation
problem, in which the aircraft are to be allocated to various missions and wings of the
military one month in advance, when their demands are now known with certainty. We
propose a stochastic optimization approach for obtaining robust solutions, and show its
superiority over solutions obtained from deterministic optimization of real data obtained
from US Air Mobility Command. In Chapter 7, we study the dynamic mission replanning
problem of the US Air Mobility Command, in which a currently executing schedule has to
be replanned because of dynamic disruptions such as weather events, aircraft breakdown,

etc. We demonstrate that our stochastic formulation gives significantly superior solutions as



compared to myopic and deterministic optimization.

We conclude the thesis by presenting thesis contributions and future work in Chapter 8.

1.4 Literature Review

In this section, we do a literature review on several aspects of stochastic optimization. We
first review the research and algorithmic advancement in the theoretical aspects of stoch-
astic optimization in the last few decades. This is followed by a literaturre review of the
applications of stochastic optimization. Finally, we do a survey of the related work on com-
putational methods for stochastic optimization. In addition to this, chapters in the thesis

also contain the relevant literature review wherever required.

1.4.1 Stochastic Optimization Theory

Stochastic programming was first introduced by George Dantzig [6]. He proposed the de-
composition of stochastic programs into two or more stages and proposed the use recourse
in the form of dual constraints to solve such stochastic programs [7]. Benders [| proposed
the paritioning procedure for mixed-variable problems, and therefore it is also known as the
Bender’s method. Later, L-shaped [8] and multicut methods [3] were introduced to solve
stochastic programs that need not have complete recourse, that is Stage 1 decisions are not
necessary to be feasible for every Stage 2 scenario. A detailed introduction to stochastic
programming can be dound in Birge and Louveaux [9].

Two-stage stochastic integer programs with mixed-integer variables in Stage 2 are com-
putationally very hard problems and beyond the scope of this thesis. More about them
can be found in [10-12]. In particular, for two-stage stochastic integer programs an excel-
lent introduction is [13]. Sougie and van der Vlerk [14] discuss approximation algorithms
and Ahmed [15] presents a comprehensive algorithmic perspective for stochastic integer pro-
grams. In our work, we deal with large scale parallelization of stochastic programs that have
integer variables only in Stage 1. Stochastic integer programs with integer variables in Stage

2 are computationally much harder and are beyond the scope of this work.



1.4.2 Applications of Stochastic Optimization

There are a variety of applications that can be formulated as two-stage stochastic integer
programs, for example, manufacturing [16], energy planning [17], logistics [18], etc. Gangam-
manavar et al [19] propose a stochastic programming framework for economic dispatch prob-
lem to address integration of renewable energy resources into power systems. Munoz et al [20]
propose an approach for solving stochastic transmission and generation investment planning
problem in which the reduce the number of scenarios by clustering the scenarios and using
a representative scneario (centroid) from each cluster. Yue et al [21] show that stochastic
programming model to schedule adaptive signal timing plans at oversaturated traffic signals
outperforms deterministic linear programming in total vehicle delay. Park et al [22] propose
a two-stage stochastic integer model for least-cost generation capacity expansion model to
control carbon dioxide (CO2) emissions. Ahmed et al [23] propose a multi-stage stochastic
integer programming approach for the problem of capacity expansion under uncertainty. Kim
and Mehrotra [24] employed a two-stage stochastic integer programming approach for inte-
grated staffing and scheduling problem with application to nurse management. Ariyawansa
et al [25] have given free web access to a collection of stochastic programming test problems.
SIPLIB [26] is another collection of test problems to facilitate computational and algorithmic
research in stochastic integer programming. Depth and breadth of applications of stochastic

optimization can be found in [27].

1.4.3 Computational Methods for Stochastic Optimizations

Guo et al [28] integrate progressive hedging [29] and dual decomposition [30] to accelerate the
convergence of dual decomposition in stochastic integer program optimization. Eric et al [31]
study of stage- and scenario-wise Fenchel decomposition for two-stage SIPs with special
structure. Kawas et al [32] have developed the Uncertainty Toolkit for decision optimization
under uncertainty. This is a user-friendly toolkit that solicits information on the uncertain
data, automatically generates models that incorporate the uncertainty, and includes visual
analytics for comparing outcomes. Becker discusses decomposition methods for stochastic

and robust optimization problems for large-scale real world applications in this thesis [33].
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Parallel processing for stochastic programming was proposed by Dantzig and Glynn [34], and
has since been employed by Gondzio and Kouwenberg [35] and [36-38] among others. Ryan
et al [39] propose a strategy for parallelizing Progressive Hedging (PH) to solve stochastic
unit commitment problem. Anthony et al [40] use high performance computing for solving
stochastic unit commitment subject to uncertainty in renewable power supply and generator

and transmission line failures.
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CHAPTER

Performance Optimizations for Two-stage

Stochastic Linear Program Optimizations

2.1 Introduction

This chapter explores the parallelization of two-stage stochastic linear programs for resource
allocation problems that seek an optimal solution in the first stage, while accounting for
sudden changes in resource requirements by evaluating multiple possible scenarios in the
second stage. Unlike typical scientific computing algorithms, linear programs (which are
the individual grains of computation in our parallel design) have unpredictable and long
execution times. This confounds both a priori load distribution as well as persistence-based
dynamic load balancing techniques. We present a master-worker decomposition coupled with
a pull-based work assignment scheme for load balance. We discuss some of the challenges
encountered in optimizing both the master and the worker portions of the computations,
and techniques to address them. Of note are cut retirement schemes for balancing memory
requirements with duplicated worker computation, and scenario clustering for accelerating
the evaluation of similar scenarios.

We base our work in the context of a real application: the optimization of US military
aircraft allocation to various cargo and personnel movement missions in the face of uncertain

demands. We demonstrate scaling up to 122 cores of an Intel®64 cluster; even for very small,
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but representative datasets. Our decision to eschew problem-specific decompositions has
resulted in a parallel infrastructure that should be easily adapted to other similar problems.
Similarly, we believe the techniques developed in this chapter will be generally applicable to
other contexts that require quick solutions to stochastic optimization problems.

We describe our design for a parallel program to solve a 2-stage stochastic linear opti-
mization model for an aircraft planning problem. We present our parallel decomposition
and some interesting considerations in dealing with computation-communication granular-
ity, responsiveness, and the lack of persistence of work loads in an iterative setting. Related
work is summarized in Section 2.2. In Section 2.3 we briefly describe the aircraft allocation
problem and its formulation as a two-stage stochastic program. In Section 2.4 we discuss
our parallel program design for the Benders decomposition approach. In Section 2.5, we
present challenges and strategies for optimizing the Stage 1 component of the computations
while in Section 2.6 we present our study of the Stage 2 computations. Scalability results

are presented in Section 2.7.

2.2  Related Work

Stochastic linear programs can be solved using the extensive formulation(EF) [9]. Exten-
sive formulation of a stochastic program is its deterministic equivalent program in which
constraints from all the scenarios are put together in a single large scale linear program.
e.g. the extensive formulation for a stochastic program corresponding to Stage 1 given in

equations 2.1, 2.2, 2.3 and Stage 2 in equations 2.4, 2.5 can be written as:

min c’x + Zszl PeaE Uk
s.t. Axr = b,
Thw+ Wy, =hy, k=1, K

x>0,y >0, k=1..K
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EF results in a large linear program that quickly becomes too large to be solved by a single
computer. Figure 2.1 shows the solution time for the extensive formulation of the problems
of our concern using the Simplex and Interior Point Method (IPM) available in Gurobi [41].
Solution time increases rapidly with increase in the number of scenarios and hence this is
not a practical way of solving the stochastic programs when the number of scenarios are

large in number.

Simplex IPM

10t -~ 10t

16384
8192
4096
2048
1024

512
256
128
64
32
16

time (in seconds)

5 10 15 30 60 120
number of scenarios

Figure 2.1: Time to solution using the Simplex and IPM methods in Gurobi for solving the
extensive formulation of the stochastic programs.

Liner program solvers are hard to parallelize, and other parallelization approaches become
necessary. Recently, there has been some work on parallelization of the simplex algorithms
for linear programs with dual block-angular structure [42]. Lubin et al [43] demonstrated
how emerging HPC architectures can be used to solve certain classes of power grid prob-
lems, namely, energy dispatch problems. Their PIPS solver is based on the interior-point
method and uses a Schur’s complement to obtain a scenario-based decomposition of the
linear algebra. However, in our work we choose not to decompose the LP solves, but instead
delegate them to a LP solver library. This reuses domain expertise encapsulated in the
library and allows performance specialists to focus just on parallel performance. Using a

library also allows the implementation to remain more general with the ability to use it for
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other problems.

Linderoth, et. al. [38] have studied the performance of two-stage stochastic linear optimiza-
tions using the L-shaped algorithm on distributed grids. Unlike modern supercomputers,
grids have high communication latencies and availability of nodes is sporadic. Hence, their
work focuses on performance of an asynchronous approach to the Benders decomposition.
In contrast, our work is based on a synchronous approach where a new iteration is initiated

only after completion of all the scenario solves from the previous iteration.

2.3 Model Formulation & Approach

The United States Air Mobility Command (AMC) ! manages a fleet of over 1300 aircraft [44]
that operate globally under uncertain and rapidly changing demands. Aircraft are allocated
at different bases in anticipation of the demands for several missions to be conducted over
an upcoming time period (typically, fifteen days to one month). Causes of changes include
demand variation, aircraft breakdown, weather, natural disaster, conflict, etc. The pur-
pose of a stochastic formulation is to optimally allocate aircraft to each mission such that
subsequent disruptions are minimized.

ACC (Tanker Airlift Control Center)? is responsible for allocating aircraft to three of the
primary mission types flown by AMC: 1) Channel missions - regularly scheduled missions
between the US and overseas locations, 2) Contingency missions - which are irregularly sched-
uled missions that deliver cargo to an international “hot spot,” and 3) Special assignment
airlift missions (SAAMs) - chartered by military units for a specific purpose. Aircraft are
allocated by aircraft type, airlift wing, mission type and day. In situations when self-owned
military aircraft are not sufficient for outstanding missions, civilian aircraft are leased. The
cost of renting civilian aircraft procured in advance for the entire planning cycle is lower
than the rent of civilian aircraft leased at short notice. Therefore, a good prediction of the
aircraft demand prior to the schedule execution reduces the execution cost.

We model the allocation process as a two-stage stochastic linear program (LP) with Stage 1

"http://www.amc.af .mil/
Zhttp://www.618tacc.amc.af.mil

14


http://www.amc.af.mil/
http://www.618tacc.amc.af.mil

generating candidate allocations and Stage 2 evaluating the allocations over many scenarios.
This iterative method developed by Benders [45] has been widely applied to Stochastic
Programming. Note that our formulation of the aircraft allocation model has complete
recourse (i.e. all candidate allocations generated are feasible) because any demand (in a
particular scenario) that cannot be satisfied by a candidate allocation is met by short term
leasing of civilian aircraft at a high cost while evaluating that scenario.

In Stage 1, before a realization of the demands are known, decisions about long-term
leasing of civilian aircraft are made, and the allocations of aircraft to different missions at

each base location are also decided.

K
min Cz + Y prb (2.1)
k=1
s.t. Az < b, (2.2)
Ex+0<e (2.3)

In the objective function(2.1), = corresponds to the allocations by the aircraft type, location,
mission and time. C' is the cost of allocating military aircraft and leasing civilian aircraft.
0 = {0k|k =1, ..., k} is the vector of Stage 2 costs for the k scenarios, py are the probability of
occurrence of scenario k, [ corresponds to the iteration in which the constraint was generated
and Ej(e;) are the coefficients (right hand sides) of the corresponding constraints. Constraints
in (2.2) are the feasibility constraints, while constraints in (2.3) are cuts which represents
an outer linearization of the recourse function.

In Stage 2, the expected cost of an allocation for each scenario in a collection of possible

scenarios is computed by solving LPs for that scenario.

min W’y (2.4)

st. Wy < hy—Tix (2.5)

The second stage optimization helps Stage 1 to take the recourse action of increasing the
capacity for satisfying an unmet demand by providing feedback in the form of additional

constraints (cuts) on the Stage 1 LP (2.6). Here, 7 are the dual multipliers obtained
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from Stage 2 optimization and x* is the allocation vector obtained from the last Stage 1

optimization.
Qk S L * (hk — Tk.l?*) — Wka(.CE — x*) (26)

A detailed description of our model and the potential cost benefits of stochastic vs deter-
ministic models is discussed in Chapter 6. To illustrate the size of the datasets of interest,
Table 2.1 lists the sizes of various airlift fleet assignment models. 3t corresponds to an

execution period of 3 days, 5t for 5 days, and so on.

Table 2.1: Size of stochastic linear program datasets (each with 120 scenarios)

Model Name | Num Stage 1 || Num Stage 2 | Num Stage 2
variables variables constraints
3t 255 1076400 668640
5t 345 1663440 1064280
10t 570 3068760 1988640
15t 795 4157040 2805000
30t 1470 7956480 5573400

2.4 Parallel Stochastic Linear Program Solver (PSLPS) Design

In this section, we discuss the various design aspects of our parallel stochastic linear program

sovler, called as PSLPS.

2.4.1 Parallel Programming Model

We have implemented the program in Charm++ [46,47], which is a message-driven, object-
oriented parallel programming framework with an adaptive run-time system. It allows ex-
pressing the computations in terms of interacting collections of objects and also implic-

itly overlaps computation with communication. Messaging is one-sided and computation
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is asynchronous, sender-driven; facilitating the expression of control flow which is not bulk

synchronous (SPMD) in nature.

2.4.2 Coarse Grained Decomposition

To exploit the state of the craft in LP solvers, our design delegates the individual LP solves
to a library (Gurobi [41]). This allows us to build atop the domain expertise required to
tune these numerically intensive algorithms. However, the same decision also causes a very
coarse-grain of computation as the individual solves are not decomposed further. Parallel
programs usually benefit from a medium or fine-grained decomposition as it permits a better
overlap of computation with communication. In Charm++ programs, medium-sized grains
allow the runtime system to be more responsive and give it more flexibility in balancing
load. Adopting a coarse-grained decomposition motivates other mitigating design decisions
described here. It also emphasizes any sequential bottlenecks and has been causative of some

of our efforts in optimizing solve times.

2.4.3 Two-stage Design

Since the unit of sequential computation is an LP solve, the two-stage formulation maps
readily onto a two-stage parallel design, with the first stage generating candidate allocations,
and the second stage evaluating these allocations over a spectrum of scenarios that are of
interest. Feedback cuts from the second stage LPs guides the generation of a new candidate
allocation. There are many such iterations (rounds) until an optimal allocation is found. We
express this as a master-worker design in Charm++ with two types (C++ classes) of compute
objects. An Allocation Generator object acts as the master and generates allocations, while a

collection of Scenario Evaluator objects are responsible for the evaluation of all the scenarios.

2.4.4 Unpredictable Grain Sizes

Experiments show that LP solves for different scenarios take different amounts of time.

Hence, an a priori static distribution of scenarios across all the Scenario Fvaluators will not
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achieve a good load balance. Unlike typical algorithms in parallel, scientific computing, the
time taken for an individual grain of computation (LP solve) is also devoid of any persistence
across different iterations (rounds). This precludes the use of any persistence-based dynamic
load balancers available in Charm++-. To tackle this fundamental unpredictability in the
time taken for a unit of computation we adopt a work-request or pull-based mechanism
to ensure load-balance. We create a separate work management entity, Work Allocator
object(Comm in Figure 2.2), that is responsible for doling out work units as needed. As
soon as a Scenario Evaluator becomes idle, it sends a work request to the Work Allocator

which assigns it an unevaluated scenario. Figure 2.2 is a schematic representing our design.

StglSolver

allocation

cuts

llocations

Stg2Solver | | Stg2Solver | @ @ @ | Stg2Solver

Figure 2.2: Parallel design schematic for two-stage Bender’s decomposition

2.4.5 Maintaining Responsiveness

A pull-based mechanism to achieve load balance requires support from a very responsive
Work Allocator. Charm++ provides flexibility in the placement of compute objects on
processors. We use this to place the Allocation Generator and the Work Allocator objects
on dedicated processors. This ensures a responsive Work Allocator object and allows fast
handling of work requests from the Scenario Evaluators; unimpeded by the long, coarse-

grained solves that would otherwise be executing.
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2.5  Optimizing Stage 1

Advanced Starts The two-stage design yields an allocation that is iteratively evolved
towards the optimal. Typically, this results in LPs that are only incrementally different
from the corresponding LPs in the previous round as only a few additional constraints may
be added every round. LP solvers can exploit such situations by maintaining internal state
from a call so that a later call may start its search for an optimum from the previous solution.
This is called advanced start (or warm start), and can significantly reduce the time required
to find a solution to an LP. We enabled advanced starts for the Stage 1 LP and observed

sizable performance benefits (Figure 2.3).

=—a With advanced start |
e With fresh start

[ R I
ST - -

1.0r

time(in seconds)

o 0.8r

0 10 20 30 40 50
round number

Figure 2.3: Stage 1 LP solve times with and without advanced start on 2.67 GHZ Dual
Westmere Xeon

Memory Footprint and Bandwidth An observation from Figure 2.3 is that the Stage
1 solve time increases steadily with the round number irrespective of the use of advanced
starts. Our investigation pointed to an increasing solver memory footprint as the cause for
such behavior.

During each round, the Allocation Generator incorporates feedback from the evaluation of
each scenario into the Stage 1 model. This feedback is in the form of constraints (cuts) which
are additional rows added to a matrix maintained internally by the library. The number

of cuts added to the model grows monotonically with the number of rounds; requiring an

19



increasing amount of memory to store and solve an LP. Figure 2.4 captures this trend by
plotting memory utilization for the Allocation Generator object (which includes LP library
memory footprint) and the time taken for the Stage 1 solves by round number. The memory

usage is as high as 5 GB and the solve time for a single grain of Stage 1 computation can

reach 100s.
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Figure 2.4: Stage 1 memory usage and LP solve times for 15 time period model on Dell 2.6
GHz Lisbon Opteron 4180

To improve the characterization of the LP solves, we designed an experiment that artifi-
cially limits the memory bandwidth available to a single LP solver instance by simultaneously
running multiple, independent LP solver instances on a multicore node. Our results (Fig-
ure 2.5) show that for the same problem size, the time to solution of an LP is increased
substantially by limiting the available memory bandwidth per core. As the Stage 1 model
grows larger every round, it becomes increasingly limited by the memory subsystem and

experiences dilated times for LP solves.
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Figure 2.5: The impact of artificially constraining memory bandwidth available for an LP
solve (10 time period model) on a system with Intel 64(Clovertown) 2.33 GHz dual socket
quad core processor with 1333MHz front size bus (per socket), 2x4MB L2 cache and 2
GB/core memory.

2.5.1 Curbing Solver Memory Footprint

For large Stage 1 problems, which take many iterations to converge, the increasing Stage
1 solve times and the increasing memory demands exacerbate the serial bottleneck at the
Allocation Generator, and pose a threat to the very tractability of the Benders approach.
However, an important observation in this context is that not all the cuts added to a Stage
1 problem may actually constrain the feasible space in which the optimum solution is found.
As new cuts are added, older cuts may no longer be binding or active. They may become
active again in a later round or maybe rendered redundant if they are dominated by newer
cuts. Such cuts simply add to the size of the Stage 1 model and its solve time, and can be
safely discarded. Figure 2.6 plots a histogram of the cut usage rate (defined by equation 2.7)
for the cuts generated during the course of convergence of a 5 time period model. Most of
the cuts have very low usage rates while a significant number of the cuts are not used at
all. This suggests that the size of the Stage 1 problem may be reduced noticeably without
diluting the description of the feasible space for the LP solution.

num rounds in which cut is active

Cut Usage Rate = (2.7)

num rounds since its generation
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Figure 2.6: Cut usage rate for 5¢ model

We therefore implemented a cut retirement scheme that discards/retires cuts whenever
the total number of cuts in the Stage 1 model exceeds a configurable threshold. After every
round of the Benders method, the cut score is updated based on it’s activity in that round.
Cuts with small usage rates (defined by Equation 2.7) are discarded. The desired number
of lowest scoring cuts can be determined using a partial sort that runs in linear time.

Discarding a cut that may be required during a later round only results in some repeated
work. This is because the Benders approach will cause any necessary cuts to be regenerated
via scenario evaluations in future rounds. This approach could increase the number of
rounds required to reach convergence, but lowers execution times for each Stage 1 LP solve
by limiting the required memory and access bandwidth. Figure 2.7 demonstrates these effects
and shows the benefit of cut management on the Stage 1 memory usage and solve times of
the 15 time period model solved to 1% convergence tolerance. The time to solution reduced

from 19025s without cut retirement to 8184s with cut retirement - a 57% improvement.
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Figure 2.7: Stage 1 LP solve times and memory usage for the 15 time period model solved
to 1% convergence with Cut Window of 75 (run on 8 cores of 2.6 GHz Lisbon Opteron 4180)

We define a Cut Window as the upper limit on the number of cuts allowed in the Stage
1 model, expressed as the maximum number of cuts divided by the number of scenarios.
Figure 2.8a and 2.8b describe the effect of different C'ut Windows on the time and number
of rounds to convergence. Smaller Cut Windows reduce the individual Stage 1 solve times,
leading to an overall improvement in the time to solution even though it takes more rounds to
converge. However, decreasing the Cut Window beyond a certain limit, leads to a significant
increase in the number of rounds because several useful cuts are discarded and have to
be regenerated in later rounds. Further reducing the Cut Window makes it impossible to
converge because the collection of cuts is no longer sufficient. These experiments demonstrate
the need to make an informed choice of the Cut Window to get the shortest time to solution,
e.g. for the 5 time period model with 120 scenarios, an optimal Cut Window size is close to

25 while for the 10 time period model with 120 scenarios it is close to 15.

2.5.2 Evaluating Cut-Retirement Strategies

We investigate cut management further to study it’s performance with different cut scoring
schemes. Three cut scoring schemes are discussed here namely, the least frequently used, the

least recently used and the least recently/frequently used. Each of these are briefly discussed
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(a) 5 time period model (solved to 0.1% convergence on(b) 10 time period model (solved to 1% convergence on
8 cores of 2.26 GHz Dual Nehalem) 32 cores of 2.67 GHz Intel Xeon hex-core processors)

Figure 2.8: Performance of 5¢ and 10t with different Cut Windows

here:

o Least Frequently Used (LFU) A cut is scored based on it’s rate of activity since it’s
generation (equation2.7).  This scoring method was used for results presented in

Figure 2.8a and 2.8b.

e Least Recently Used (LRU) - In this scheme, the recently used cuts are scored higher.

Therefore, a cut’s score is simply the last round in which it was active.

LRU_Score = Last active round for the cut

o Least Recently/Frequently Used (LRFU) This scheme takes both the recency and fre-
quency of cut activity into account. Each round in which the cut was active contributes
to the cut score. The contribution is determined by a weighing function F(z), where

x is the time span from the activity in the past to current time.

k
LRFU _Score = Z F(tpase — ti)

i=1

where t1, g, ..., t; are the active rounds of the cut and t; < t5 < ... <ty < tpgse. This
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policy can demand a large amount of memory if each reference to every cut has to be
maintained and also demands considerable computation every time the cut retirement
decisions are made. Lee, et. al. [48] have proposed a weighing function F(x) = (%)’\“”"
(p > 2) which reduces the storage and computational needs drastically. They tested
it for cache replacement policies and obtained competitive results. With this weighing

function, the cut score can be calculated as follows:
Stk = ‘F(O) + ./T"((S)Stkil,

where Sy, is the cut score at the kth reference to the cut, S;, , was the cut score at
the (k — 1)th reference and § = t;, — t;_;. For more details and proofs for the weighing

function refer to [48]. We use p = 2 and A = 0.5 for our experiments.

Figure 2.9 compares the result of these strategies. LRFU gives the best performance of
the three. The cut windows used for these experiments were the optimal values obtained

from experiments in Figure 2.8a and 2.8b.
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Figure 2.9: Performance of different cut scoring strategies for the 5 time period model(8 cores,
cut-window=25, 0.1% convergence) and the 10 time period model(32 cores, cut-window=15,
1% convergence)
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2.6 Optimizing Stage 2

2.6.1 Advanced Starts

In every iteration, there are as many Stage 2 LP solves as there are scenarios. This constitutes
the major volume of the computation involved in the Benders approach because of the large
number of scenarios in practical applications. Even a small reduction in the number of
rounds or average Stage 2 solve times can have sizable payoffs. In this section, we analyze

different strategies to reduce the amount of time spent in Stage 2 work.

2.6.2 Variability Across Runs
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Figure 2.10: Variation across runs with advanced-start and their comparison with fresh start
(10t model) on 8 cores of 2.67 GHz Dual Nehalem

Figure 2.10 also shows the number of rounds and time to solution for 25 runs on the same

model. An interesting note is the variability across various runs of the same program.
Scenarios are assigned to Scenario Evaluators in the order in which work requests are

received. This varies across different runs because of variable message latencies and variable

LP solve times. With advanced starts, this results in different LP library internal states as
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starting points for a given scenario evaluation; yielding different cuts for identical scenario
evaluations across different runs. This variation in cuts affects the next generated allocation
from Stage 1 and the very course of convergence of the execution.

Variation across different runs make it difficult to measure the effect of different optimiza-
tion strategies. Additionally in some situations, obtaining an optimal solution in predictable
time can be more important than obtaining it in the shortest possible time. Therefore,
mitigating the variability can be an important consideration.

Note that to verify that multiple solutions are not the artifact of a loose termination
criteria, we solved the problems to very tight convergence criteria (up to 0.00001%). Identical

runs resulted in different solutions implying that the problem is degenerate.

2.6.3 Clustering Similar Scenarios

Turning off the advanced start feature can significantly increase the time to solution and
hence is not a viable approach. However, the scenario evaluation order can be pre-determined
by assigning a fixed set of scenarios to each solver. This approach can potentially decrease
the efficiency of the work-request mechanism at balancing Stage 2 load because work is now
assigned in larger clusters of scenarios.

However, since some scenarios may exhibit similarities, it may be possible to group sim-
ilar scenarios together to increase the benefits of advanced starts. It may be beneficial to
trade coarser units of work-assignment (poorer load balance) for reduced computation grain
sizes. We explore this by implementing scenario clustering schemes and cluster-based work
assignment. Similarity between scenarios can be determined either by using the demands
in each scenario, the dual variable values returned by them, or by a hybrid of demands and
duals. Our current work has used the demands to cluster scenarios because they are known
a priori— before the stochastic optimization process begins. We use a k-means [49] algorithm
for clustering scenarios. Since, the clusters returned from k-means can be unequal in size, we
use a simple approach (described in Algorithm 1) to migrate some scenarios from over-sized

clusters to the under-sized clusters. We also implement random clustering for reference.
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Algorithm 1: The Scenario Clustering Approach
Input
D;- Demand set for scenario i (i = 1,2, ....,n)
k - number of clusters
Output
k equally sized clusters of scenarios
Algorithm
{label, centroids} = kMeans({D;, D2, Ds, ..., D,}, k)
IdealClusterSize = 7
size; = size of cluster ¢
{Identify Oversized clusters}
O = {c € Clusters | size. > IdealClusterSize}
{Identify Undersized clusters}
U = {c € Clusters | size. < IdealClusterSize}
S: set of adjustable points
for c€ O do
Find (size; — IdealClusterSize) points in cluster ¢ that are farthest from centroid.
and add them to the set S
end for
while size(S) > 0 do
Find the closest pair of cluster ¢ € (U) and point p € S
Add p to cluster ¢
Remove p from S
if size, == IdealClusterSize then
Remove ¢ from U
end if
end while

0.8 | == adv start(random clusters)
g — adv start(KMeans clustering)
c 0.7F 1 -- average solve time with adv start(random clusters)
8 - - average solve time with adv start(KMeans clustering)
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Figure 2.11: Comparison of average Stage 2 solve time between Stage 2 fresh start, advanced
start with clustering and advanced start without clustering on 2.6 GHz AMD Lisbon Opteron
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Figure 2.12: Parallel scalability for 5¢ and 10¢ models using optimized Bender’s decomposi-
tion

Figure 2.11 compares the improvement in average Stage 2 solve times when scenarios are

clustered using Algorithm 1.

2.7 PSLPS Scalability

With the optimizations described above, we were able to scale medium-sized problems up to
122 cores of an Intel-64 Clovertwon (2.33 GHz) cluster with 8 cores per node. For 120 scenar-
ios, an execution that uses 122 processors represents the limit of parallel decomposition using
the described approach: one Stage 1 object, one Work Allocator object, and 120 Scenario
Fuvaluators that each solve one scenario. Figure 2.12a and 2.12b show the scalability plots
with Stage 1 and Stage 2 wall time breakdown. The plots also demonstrate Amdahl’s effect
as the maximum parallelism available is proportional to the number of scenarios that can
be solved in parallel, and scaling is limited by the sequential Stage 1 computations. It must
be noted that real-world problems may involve several hundreds or thousands of scenarios,

and our current design should yield significant speedups because of Stage 2 parallelization.

29



2.8 Summary

Most stochastic programs incorporate a large number of scenarios to hedge against many
possible uncertainties. Therefore, Stage 2 work constitutes a significant portion of the total
work done in stochastic optimizations. For stochastic optimization with Benders approach,
the vast bulk of computation can be parallelized using a master-worker design described in
this chapter. We have presented experiments, diagnoses and techniques that aim to improve
the performance of each of the two stages of computation.

We presented an LRFU based cut management scheme, that completely eliminates the
memory bottleneck and significantly reduces the Stage 1 solve time, thus making the op-
timization of large scale problems tractable. We analyzed different aspects of the Stage 2
optimization and have presented some interesting avenues for further studies in improving
Stage 2 performance. With our techniques, we were able to obtain a speedup of about 21 and
11 for the 5 and 10 time period problems, respectively with 120 scenarios each as we scaled
from 4 cores to 122 cores. Much higher speedups can be obtained for real-world problems
which present much more Stage 2 computational loads. In our current design, Stage 1 still
presents a serial bottleneck that inhibits the efficiency of any parallel implementation. We
are currently exploring methods such as Lagrangean decomposition to alleivate this. We
believe that some of our strategies can be applied to other stochastic programs too; and that
this work will be of benefit to a larger class of large, commercially relevant, high impact

stochastic problems.
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CHAPTER

Parallel Branch-and-Bound for Two-stage

Stochastic Integer Programs

Many real-world planning problems require searching for an optimal integer solution in the
face of uncertain input. If integer solutions are required, then branch-and-bound techniques
are the accepted norm. However, there has been little prior work in parallelizing and scaling
branch-and-bound algorithms for stochastic optimization problems.

In this chapter, we explore the parallelization of a two-stage stochastic integer program
solved using branch-and-bound. We present a range of factors that influence the parallel de-
sign for such problems. Unlike typical, iterative scientific applications, we encounter several
interesting characteristics that make it challenging to realize a scalable design. We present
two design variations that navigate some of these challenges. Our designs seek to increase the
exposed parallelism while delegating sequential linear program solves to existing libraries.

We evaluate the scalability of our designs using sample aircraft allocation problems for
the US airfleet. It is important that these problems be solved quickly while evaluating large
number of scenarios. Our attempts result in strong scaling to hundreds of cores for these
datasets. We believe similar results are not common in literature, and that our experiences

will feed usefully into further research on this topic.
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3.1 Introduction

This chapter presents our parallel algorithms for scalable stochastic integer optimization.
Specifically, we are interested in problems with integer solutions, and hence, in BnB ap-
proaches. Although BnB is a well-studied method, there has been little prior work in
parallelizing or scaling two-stage, stochastic Integer Programs (IPs). Unlike typical, iter-
ative scientific applications, we encounter some very interesting characteristics that make
it challenging to realize a scalable design. The total amount of computation required to
find optima is not constant across multiple runs. This challenges traditional thinking about
scalability and parallel efficiency. It also implies that reducing idle time does not imply
quicker runs. The sequential grains of computation are quite coarse. They display a wide
variation and unpredictability in sizes. The structure of the branch-and-bound search tree is
sensitive to several factors, any of which can cause significantly alter the search tree causing
longer times to solution. We explore the causes for this fragility and evaluate the trade-offs
between scalability and repeatability.

We structure this chapter to expose the design influences on parallel solutions of stochastic
[Ps. Once past the introductory sections (3.2-3.4), we present our approach to parallelizing
stochastic IPs (3.5), and discuss the factors we considered while designing a parallel BnB
for such optimization problems (3.6). This section presents some of the challenges that
set this problem apart from typical parallel computational science applications. We pick a
programming model that enables the expression and management of the available parallelism
in section 3.7. Finally, we present two primary design variations (3.8 and 3.9), and analyze
their performance in section 3.10.

The context for our work is a US fleet management problem where aircraft are allocated to
cargo movement missions under uncertain demands (3.3). However, the design discussions

and parallelization techniques are not specific to it.
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3.2 Two-stage Stochastic Integer Optimization

As in the case of stochastic linear programs, two-stage stochastic integer optimization with
integer variables only in Stage 1 is commonly solved using Benders decomposition [1], where
candidate solutions are generated in Stage 1 and are evaluated in Stage 2 for every scenario
(Figure 3.1). Stage 1 (Eq.3.1) gets feedback from Stage 2 (Eq.3.2) in the form of cuts (Eq.3.3),
which are used by the Stage 1 to improve the candidate integer solution. The process iterates

until no improvement can be made.

min cx + Zpsﬁs s.t. Axr < b (3.1)

s=1
0, = min(q'y) st Wy<h,—Tx (3.2)
0s > wi(hs —Tx*) (3.3)

where, z is the candidate integer solution, ¢ is the cost coefficient vector, 8 = {f;|s = 1..5}
are the Stage 2 costs for the S scenarios, py is the probability of occurrence of scenario s, 7}
is the optimal dual solution vector for Stage 2 LP of scenario s. This method is also called
the multicut L-shaped method [3] in which one cut per scenario is added to the Stage 1 in
every iteration/round.

We restrict our work to the problems in which Stage 2 has only linear variables. When
only linear variables are present in Stage 1 also, we call it a stochastic LP. And when Stage
1 has integer variables, we call it a stochastic IP or a stochastic Mixed Integer Program
(MIP). Louveaux and Schultz [50], Sahinidis [51], in the broader context of decision-making

under uncertainty, give excellent overviews of stochastic IP problems.

3.3 Case Study: Military Aircraft Allocation

As in Chapter 2, we use stochastic integer program datasets that model the military aircraft

allocation problem. Integer solutions are required because aircraft need to be dedicated
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S

min(cx + Zpsﬁs)

s=1
st. Ax <b

0s > i (hs — Tx)

min g,y

st. Wy < hg —Tx*

Figure 3.1: Benders decomposition for 2-stage stochastic integer programs

Table 3.1: Size of Stage 1 IP and Stage 2 lp of stochastic integer program models

Stage 1 Mixed-Integer Program

cuts
0s > mi(hs — Tx)

Stage 2 Linear Program

Test 1st Stage 2nd-Stage Scenario Nonzero Elements
Problem Vars. Constrs. Vars. Constrs. A W T;
2t 54 36 6681 4039 114 20670 84
3t 81 54 8970 5572 171 27991 88
4t 108 72 11642 7216 228 36422 140
5t 135 90 13862 8669 285 43518 168
8t 216 144 20944 13378 456 66881 252
10t 270 180 25573 16572 570 82797 308

completely to individual missions. These models are classified based on the number of time
periods (days) in the planning window and the number of possible scenarios that need to
be evaluated to account for the uncertainty. The sizes of the LPs are given in Table 3.1.
For e.g., the 5t-120 dataset has approximately 135 integer variables in the Stage 1 IP, 1.6 M
variables in the Stage 2 LP, and about 1M Stage 2 constraints when evaluating 120 Stage

2 scenarios. Similarly, 3t-240 stands for the 3t model with 240 scenarios, and so on. These

models can be downloaded in SMPS! format from our website?.

Thttp://myweb.dal.ca/gassmann /smps2.htm
http://ppl.cs.illinois.edu/jet Alloc/
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3.4  Prior Work

Parallelizing IP optimizations using BnB is in itself a challenging problem. Large scale
solvers for Mixed Integer Programs (MIPs) have been studied before [52,53]. The difficulty
in achieving high efficiencies has been documented. Kale et al [54] have studied the challenges
of dynamic load balancing in parallel tree search implementations. Gurobi [41] has a state-
of-the art mixed integer program solver that exploits multi-core architectures. However,
Koch et al in [53] observe that Gurobi suffers from poor efficiency (typically about 0.1) as
it scales from 1 to 32 threads, the reason being that the number of BnB vertices needed to
solve an instance varies substantially with different number of threads.

Our work involves optimization of stochastic IPs, which have decomposable program struc-
ture and large size. It presents further challenges that make it even harder to parallelize
than just IPs. Examples of the uses of stochastic integer programming can be found in
literature. Bitran et al [55] model production planning of style goods as a stochastic mixed
IP. Dempster et al [16] consider heuristic solutions for a stochastic hierarchical scheduling
problems. A comprehensive listing of work on stochastic IPs can be found here [56].

A stochastic program can be solved using its extensive formulation, which is its deter-
ministic equivalent in which variables and constraints from all the scenarios are combined
together in a single large LP. This LP can then be fed to any of the several open or commer-
cial LP/IP solvers. However, Escudero et al [57] note that MIP solvers such as CPLEX [5§]
do not provide solution for even toy instances of two stochastic IPs in a viable amount of
time.

We have not found systematic studies of large-scale stochastic integer optimization in
literature. PySP [59,60] is a generic decomposition-based solver for large-scale multistage
stochastic MIPs. It provides a Python based programming framework for developing stoch-
astic optimization models. For the solution of the stochastic programs, it comes with parallel
implementations of algorithms such as Rockafellar and Wets’ progressive hedging [29]. The
basic idea of Progressive Hedging (PH) approach is to obtain the solution for every scenario
independently. Every scenario will possibly give a different solution for Stage 1 variables, and

hence is not an implementable solution. Therefore, penalty terms corresponding to Stage

35



1 variables are added to the objective function for violating the lack of implementability:.
These penalty terms are the lagrangean multipliers that are iteratively updated by using a
subgradient method. The iterations continue until an implementable solution is obtained.
This method tends to be a heuristic method and require significant parameter tuning by
the users. To the extent of our knowledge, the computational and scaling behavior of this
framework have not been explored and the solver suffers from poor parallel efficiency be-
cause of MIP solve times. Recent work of Lubin et al [61] is based on parallelizing the dual
decomposition of Stage 1 integer program by using interior-point solvers. Their study is

limited to 32 cores and the approach suffers from load imbalance.

3.5 Parallelization Approach

Two-stage stochastic optimization problems have a natural expression in a two-stage soft-
ware structure. The first stage proposes candidate solutions and the second stage evaluates
multiple scenarios that helps refine the solution from the first stage. In Chapter 2 on stoch-
astic LP, we focused on an iterative, two-stage master-worker design for the solution of
stochastic linear programs. This tapped the readily available parallelism in Stage 2 by eval-
uating multiple possible scenarios simultaneously (Figure 3.2a). Although such a design
captured much of the low-hanging, easily exploitable parallelism, it was quickly limited by

the serial bottleneck of performing Stage 1 computations (Figure 3.3).
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(b) Nested parallelism with Branch-and-Bound and Benders decomposition

Figure 3.2: Exploiting nested prallelism in stochastic integer programs
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Figure 3.3: Scaling limited by Amdahl’s law in a master-worker design for stochastic linear
optimization. Results for 10t-1000 model obtained on Abe (dual quad-core 2.33GHz Intel
Clovertown nodes with GigE)

In contrast to earlier work, this chapter focuses on the solution of stochastic integer pro-
grams (IP), which requires that Stage 1 solve an IP for every iteration. Since solving an IP is
much more computationally expensive than an LP, this will magnify the serial bottleneck of
the master-worker design such that it becomes completely untenable. Thus, it is imperative
to reduce and hide this sequential bottleneck by exposing more parallelism.

Our approach to parallelizing stochastic IPs is by using BnB to obtain integer solutions to
Stage 1 variables. We start by relaxing the integrality constraints in Stage 1 and solve the
stochastic LP. BnB proceeds by branching on fractional parts of a solution obtained from
the stochastic LP and restricting each branch to disjoint portions of the search space until
gradually all variables in the solution become integral. This yields a tree where each vertex
has one additional constraint imposed on the feasible space of solutions than its parent. We
find a solution to this additionally constrained two-stage stochastic LP at this vertex, and
then continue to branch. Therefore, each vertex in our BnB tree is a stochastic LP. The
stochastic LP at each vertex permits evaluating each of the multiple scenarios in parallel.
Additionally, the BnB search for integer solutions permits exploring the disjoint portions of
the search space (i.e. the tree vertices) in parallel. Thus there are two sources of parallelism

- simultaneous evaluation of Stage 2 scenarios and the simultaneous exploration of BnB
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tree vertices. This nested parallelism (Figure 3.2b) has to be exploited for any reasonable
scalability.

A relevant observation that influences processor utilization is the mutual exclusivity of
the two stages of the stochastic programs. For a given vertex, Stage 1 cannot proceed
while it is waiting for feedback from Stage 2, and Stage 2 is necessarily dependent on Stage
1 for each new candidate solution. Ensuring high utilization of compute resources will
therefore require interleaving the iterative two-stage evaluation of multiple BnB vertices.
This is also what makes this application distinct from the traditional applications of BnB.
In traditional applications of BnB such as integer programming, traveling salesman problem
(TSP), game tree search algorithms, etc. each tree vertex is an atomic unit of work i.e. when
a vertex is processed it is either pruned or tagged as an incumbent solution or branches to
generate children. No further processing of that vertex is required. On the other hand, in
our application, each tree vertex is a stochastic LP optimization and therefore can require
multiple rounds of Stage 1 and Stage 2 computations for optimization. While a vertex is
being processed in Stage 2, its Stage 1 state has to be saved, so that it can be retrieved for
the next Stage 1 computation (which will happen when the corresponding current Stage 2

finishes).

3.6 Design Considerations

In this section, we discuss the various factors that play an important role in deciding the
parallel design for the nested parallelism of stochastic integer programs proposed in the

previous section.

3.6.1 Coarse-Grained Decomposition

In our designs, we choose to delegate sequential LP solutions in Stage 1 and Stage 2 to an
existing optimization library. This allows us to leverage the expertise encapsulated in these
highly tuned libraries and focus on the parallelization and accompanying artifacts. Hence,

the fundamental unit of sequential computation in our designs is a single linear program
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Figure 3.4: Sample execution profile of evaluating multiple Stage 2 scenarios for candidate
Stage 1 solutions. Each processor (horizontal line) is assigned a specific Stage 2 scenario,
and evaluates multiple candidate solutions from Stage 1 one after the other. Colored bars
represent an LP solve, while white stretches are idle times on that processor. LP solve
times vary significantly and show no persistence, both across scenarios and across candidate
solutions.

solve. This results in very coarse grain sizes.

3.6.2 Unpredictable Grain Sizes

There is sizeable variation in the time taken for an LP solve in both Stage 1 and Stage 2.
Additionally, there is no persistence in the time taken for LP solves. A single Stage 1 LP for
a given vertex may take widely varying times as a result of the addition of a few cuts from
Stage 2. Likewise, we do not observe any persistence in Stage 2 LP solve times either across
different scenarios for a given Stage 1 candidate solution, or for the same scenario across

different candidate solutions. An illustrative execution profile is presented in Figure 3.4.



3.6.3 Varying Amounts of Available Parallelism

The BnB tree exposes a varying amount of parallelism as the search for an optimum pro-
gresses. The search starts with a single vertex (the tree root) being explored. More paral-
lelism is gradually uncovered in a ramp-up phase, as each vertex branches and creates new
vertices. However, once candidate integer solutions are found, the search tree can be pruned
to avoid unnecessary work. For large enough search trees, there is usually a middle phase
when there are a large, but fluctuating number of vertices on the exploration front depending
on branching and pruning rates. Once the optimum is found, the remaining work involves
proving its optimality by exploring the tree until all other vertices are pruned. Towards the
end, pruning starts to dominate and the front of exploration shrinks rapidly. Any parallel

design has to necessarily cope with, and harness these varying levels of available concurrency.

3.6.4 Load Balance

The utter lack of persistence in the sizes of the sequential grains of computation and the
constantly varying amount of available parallelism imply that a static a priori partition of
work across different compute objects (or processors) will not ensure high utilization of the
compute resources. It also precludes the use of any persistence-based dynamic load balancing
solutions. Hence, our designs adopt pull-based or stealing-based load balancing techniques
to ensure utilization. To avoid idle time, a parallel design must maintain pools of available

work that can be doled out upon pull requests.

3.6.5 Solver Libraries Maintain Internal State

Unlike other numerical libraries, LP solvers maintain internal state across calls. They main-
tain the optimal basis of the previous problem that was solved. Most use cases for such
solvers involve iterating over a problem with repeated calls to the library. Typically, each
call supplies only mildly modified inputs as compared to the previous invocation. In such
cases, the search for an optimum can be greatly sped up by starting from the previous so-

lution. Hence, it is highly desirable to retain this internal state across calls as it greatly
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shortens the time to solution. This is known as a “warm” start or “advanced” start.

The two-stage optimization problems that interest us follow this pattern too. There
are many iterations (rounds) to converge to a solution. In Stage 1, each iteration only
adds/deletes a few constraints on the feasible search space. In Stage 2, the coefficient matrix
of the LP remains the same, and only the right-hand sides of the constraints are modified
across calls. A more detailed discussion on the impact of advanced starts can be found in
Chapter 2.

Hence, it is beneficial to (a) allow all the solver library instances in the parallel execution
to maintain state across calls and, (b) to maintain an affinity between the solvers and the
problems that they work on across iterations. It is desirable to pick a parallel program-
ming paradigm that will permit encapsulating and managing multiple solver instances per

Pprocessor.

3.6.6 Concurrency Limited by Library Memory Footprint

The lowest levels of the BnB tree that have not been pruned constitute the “front” of explo-
ration. The number of vertices on this front at any given instant represents the maximum
available concurrency in exploring the tree. Each vertex on this front represents a unique
combination of branching constraints. Since each vertex goes through multiple iterations
(rounds), it is desirable to exploit warm starts for each vertex. This can be achieved by
assigning one solver instance for each vertex that is currently being explored. However, LP
solvers have large memory footprints. The memory usage required for a LP solver instance
for 3t, 5t, 10t, 15t are 50MB, 100MB, 230MB, 950 MB, respectively in Stage 1 and 10MB,
15MB, 30MB, 45MB, respectively in Stage 2. This implies that the number of solver in-
stances is limited by available memory, and can be substantially smaller than the number of
vertices in a large BnB search tree.

The actual subset of vertices on the front that are currently being explored are known
as “active” vertices. The parallel design should account for the memory usage by solver
instances, carefully manage the number of active vertices, and expose as much parallelism

as permitted by memory constraints.
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3.6.7 Stage 2 Feedback Can Be Shared Across the BnB Tree

While the set of branching constraints for each vertex are unique to it, the cut constraints
from Stage 2 are not. The branching constraints influences the candidate allocations that
are generated in Stage 1. These, in turn, only affect the right hand sides in the Stage 2 LPs,
which simply alters the objective function in dual of the Stage 2 LP. The dual polytope of
the Stage 2 LPs remains the same across all the vertex in the BnB tree. This implies that
the dual optimal solutions obtained in Stage 2 for a candidate solution from the Stage 1 LP
of a given vertex, are all valid dual extreme points for any vertex in the BnB tree. Hence,
the Benders cuts that are generated from the Stage 2 LPs remain valid irrespective of the
branching constraints imposed on a vertex, implying that cuts generated from evaluating
scenarios for a given vertex are also valid for all vertices in the BnB tree.

This observation provides a powerful solution to increasing the exposed parallelism while
remaining within the memory usage constraints. Since cuts can be shared across vertices,
two vertices only differ in the branching constraints unique to them. By applying this delta
of branching constraints, a Stage 1 LP solver instance can be reused to solve a Stage 1
LP from another vertex. Solver libraries typically expose API to add / remove constraints.
Hence, it becomes possible to reuse a single solver instance to interleave the exploration of
multiple BnB vertices. We can simply remove branching constraints specific to the vertex
that was just in a Stage 1 LP solve, and reapply constraints specific to another vertex that
is waiting for such a Stage 1 solve. This permits exploring more vertices than the available
number of solver instances, and also retains the ability to exploit warm starts for Stage 1
LP solves.

The reasoning presented here also implies that the same Stage 2 solver instance can eval-
uate scenarios across multiple vertices. Hence, we can share both Stage 1 and Stage 2

solvers.

3.6.8 Total Amount of Computation is Variable and Perturbable

The total amount of computation performed to complete the BnB exploration depends on

the number of BnB vertices explored and the number of Stage 1-Stage 2 rounds for each
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vertex. Unlike traditional iterative HPC algorithms, this total work required is variable and
not known a priori. This is compounded by the fact that the shape and size of the BnB tree
is easily perturbed. The number of vertices explored depends on the branching and pruning
decisions during the exploration. Any factor that affects these decisions can alter the time

to solution.

Incumbent Ordering

A parallel exploration of the BnB tree implies that even if the explored trees are identical
across two runs, the order in which incumbent solutions are generated can vary slightly
because of LP solve times, system noise, network interference in message communication,
etc. This order affects the pruning of vertices from the tree. Some cases might even cause
a slightly worse incumbent to prune a vertex that would have yielded a slightly better
incumbent (but within the pruning threshold) simply because the worse incumbent was

generated slightly early on another processor.

Degeneracy

Degeneracy occurs when the same extreme point on the feasible space polytope can be
represented by several different bases. When this happens at the optimal extreme point,
there can multiple dual optimal solutions. LPs often have degenerate solutions. While
solving LPs, depending upon the starting point of the simplex method, one can end up
with different solutions. If we share solver resources in an attempt to circumvent memory
limitations, we cause an LP solve to start with an internal state that was the result of the
previous LP solve for a different vertex. Thus, sharing solvers can yield different solutions
to an LP depending on the order in which vertices use the shared LP solver instance. This
can happen in both Stage 1 and Stage 2. Different LP solutions can impact the branching
decisions under that vertex in the BnB tree. This reasoning implies that sharing LP solver

instances can lead to different BnB tree structures.
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3.6.9 Better Utilization # Better Performance

For many parallel, HPC applications, load balance ensures minimal overall compute resource
idle time, and hence results in better performance by maximizing the rate of computations.
However, parallel, BnB search confounds such thinking. Indeed, reducing idle time by eagerly
exploring as much of the tree as possible might be counter-productive by using compute

resources for exploring sub-trees that might have been easily pruned later.

3.7 Parallel Programming Model

The designs that we discuss here are implemented in an object-based, sender-driven parallel
programming model called Charm-++ [62,63] . Charm++ is a runtime-assisted parallel pro-
gramming framework in C++. Programs are designed using C++ constructs by partitioning
the algorithm into classes. Charm-++ permits elevating a subset of the classes and methods
into a global space that spans all the processes during execution. Parallel execution then
involves interacting collections of objects, with some objects and methods being invoked
across process boundaries. Data transfer and messaging are all cast in the form of such re-
mote method invocations. Such remote methods are always one-sided (only sender initiates
the call), asynchronous (sender completes before receiver executes method), non-blocking
(sender’s side returns before messaging completion) and also do not return any values (re-
mote methods are necessarily of void return type). Charm++ supports individual instances
of objects, and also collections (or chare arrays of objects). Some features of Charm++ that

enable the designs discussed in this chapter:

One-sided messaging helps express and exploit the synchronization-free parallelism found
in parallel BnB. Extracting performance in a bulk synchronous programming model can be

quite challenging.

Object-based expression of designs facilitate the easy placement and dynamic migration
of specific computations on specific processors. It also permits oversubscribing processors

with multiple objects to hide work-starvation of one with available work in another.
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Non-blocking reductions for any required data collection, notifications etc avoids any
synchronization that could be detrimental to performance. A programming model well
suited to such problems, should unlock all the available parallelism without bridling it with

synchronization constructs.

Prioritized execution allows us to simply tag messages with appropriate priorities and
allow the Charm++ runtime system to pick the highest priority tasks from the available
pool.

3.8 Design A: Each BnB Vertex is an Isolated Two-Stage LP

3.8.1 Stage 1 Tree Explorers

A collection of compute objects (chare array in Charm++) explore the BnB tree in parallel.
Each Allocation Generator hosts an instance of the Gurobi LP library. Tree Explorers are
constrained to explore only one vertex at a time. Whenever a new vertex is picked, the
library instance is reset and reloaded with a known collection of cuts from an ancestor
vertex. When the vertices are waiting on Stage 2 feedback, the Allocation Generator idles.
The processors dedicated to exploring the tree are oversubscribed by placing multiple Tree
Explorers on each. The Charm+-+ runtime automatically overlaps idle time in one object
with computation in another object by invoking any objects which are ready to compute.
In the situation when multiple objects on a processor are ready to compute, execution is
prioritized according to the search policy. This is indicated to the Charm-++ runtime by
tagging the messages with a priority field. This field can be an integer (tree depth), a fraction

(bounds / cost), or a bitvector (vertex identifier).

3.8.2 Cut Dump Manager

Solving stochastic LP at each vertex from scratch can be very expensive as this potentially

repeats a lot of avoidable Stage 1-Stage 2 rounds to regenerate all the cuts that would have
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been generated by vertex’s ancestors. Each vertex, therefore, starts with the cuts of its
parent. This significantly reduces the number of rounds required to optimize the stochastic
LPs.

We precompute the available memory on the system and corral a portion of it for storing
dumps of cut collections. Whenever a vertex converges, we extract its collection of cuts
from the library instance and store it in the available memory. The dump is tagged with
the bitvector id of the vertex. Whenever an immediate child of this vertex is picked for
exploration, the parent’s cut collection is retrieved and applied to the library instance. Once
both children of a vertex are explored, the parent’s dump is discarded. Hence, at any given
time, the number of cut dumps stored is a linear function of the number of vertices on the
tree frontier. The cut collection dumps are managed by a third chare collection called the
Cut Manager. Objects of this collection are not placed on processors with Tree Explorers in

order to keep them reasonably responsive to requests.

3.8.3 Scenario Evaluators

Akin to the Tree Explorers, the Scenario Evaluators are a collection of compute objects
each of which hosts an LP instance. These evaluate the candidate solutions for one or more
scenarios and send the generated cuts directly back to the Allocation Generator that hosts
the specific BnB vertex. We dedicate a collection of Scenario Evaluators to each Allocation
Generator. Each Allocation Generator object interacts directly with its collection of Scenario
Evaluators. We place these multiple collections of Scenario Evaluators on the same subset
of processors. Idle time in one is overlapped with computation in another. The execution of
Stage 2 computations for the most important vertices is again achieved by simply tagging

the messages with the priorities of the corresponding vertices.

3.8.4 Load Balancing

When a Allocation Generator converges to an LP solution on a vertex, on its currently

assigned vertex, further work is generated only if the vertex branches. In this case, the
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children are deposited with the Stage 1 Manager vertex queue. After every Stage 1 LP
convergence, the Allocation Generator requests the Stage 1 Manager for a new vertex to
work on. The Stage 1 Manager dequeues the highest priority vertex from its vertex queue
and sends it to requesting Allocation Generator. Thus all Tree Explorers always pull from
a global pool of available work. This effectively balances Stage 1 load and also ensures a

globally prioritized tree exploration.

3.9 Design B: BnB Vertices Share Cut Constraints, Tree Explorers
and Scenario Fvaluators

3.9.1 Stage 1 Tree Explorers

Each Allocation Generator object stores and explores several vertices. The vertices are
divorced from the library instance by separately storing the set of branching constraints
specific to each vertex. Every object maintains a set of private vertex queues to manage
the vertices in different stages of their lifespan. When the LP library completes a solve, the
next vertex is picked from a “ready” queue. This queue is prioritized according to the search
policy (depth-first, most-promising-first, etc). The delta of branching constraints between
the previously solved vertex and the currently picked vertex is applied to the LP library to
reconstruct the Stage 1 LP for the newly selected vertex. The Stage 1 LP is then solved
to yield a new candidate solution for the current vertex. This candidate solution is sent for
evaluation against the set of Stage 2 scenarios and the vertex is moved to a “waiting” queue.
The compute object repeats the process as long as there are vertices waiting to be solved
in the ready queue. Vertices move back from the waiting queue into the ready queue when
the cuts from evaluating all the scenarios for the generated candidate allocation are sent
back to the Allocation Generator. When a vertex “converges”, that is, when the optimal
fractional solution to the stochastic LP described by the vertex is found, it is “retired” by
either pruning it or branching further.

The number of Allocation Generator objects is smaller than the number of vertices in the

search tree. We also find from experiments that it is sufficient for the number of such Tree
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Explorers to be a small fraction of the number of processors in a parallel execution.

Cuts generated from a scenario evaluation can be used in all the Stage 1 LPs. However,
we have found that this results in a deluge of cuts added to the Stage 1 library instances.
In earlier work [64], we have observed a strong correlation between the number of cuts
added to a library instance and the time taken for the LLP solve. Hence, instead of sharing
the cuts across the entire BnB tree, we share cuts only across vertices hosted by a single
Allocation Generator. Cuts generated from the evaluation of a candidate solution are hence
messaged directly to the solver hosting the corresponding vertex. However, the collection
of cuts accumulated in a library instance continues to grow as more vertices are explored.
Since some of these may be loose constraints, we discard them to make space for newer
constraints. If these constraints are required again later on, they will be regenerated by
the algorithm. We implement bookkeeping mechanisms that track the activity of cuts and
retires cuts identified as having low impact (longest-unused, most-unused, combination of
the two, etc). This maintains a fixed window of recent cuts that are slowly specialized to
the collection of active vertices sharing that library instance. The impact of cut retirement

on solve times is illustrated in [64].

3.9.2 Stage 2 Manager

Candidate solutions from the Tree Explorers are sent to a Stage 2 Manager object. This
object helps implement a pull-based work assignment scheme across all Scenario Evaluators.
To do this, it maintains a queue of such candidate solutions and orchestrates the evaluation
of all scenarios for each candidate. In order to remain responsive and ensure the quick
completion of pull requests, the object is placed on its own dedicated core and other compute
objects (which invoke, long, non-preempted LP solves) are excluded from that core. The
Stage 2 Manager ensures that each Allocation Generator gets an equal share of Stage 2

evaluation resources by picking candidates from Tree Explorers in round-robin fashion.
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3.9.3 Stage 2 Scenario Fvaluators

In this design variant, all Tree Explorers share the same collection of Scenario Evaluators. A
Scenario Fvaluator request the Stage 2 Manager for candidate Stage 1 solutions and evaluate
these solutions for one or more scenarios. Upon evaluation, they send the generated cuts
directly back to the Allocation Generator that hosts the specific BnB vertex. This pull-
based scheme ensures good utilization of the processors hosting Scenario Fvaluators, and
also balances the scenario evaluation workload across all the Stage 2 processors. Given that
the Stage 2 LP solve times are typically much larger than the messaging overhead to obtain

work, the pull-based approach has negligible overhead.

3.9.4 Load Balancing

A Allocation Generator maintains a private list of vertices. It regularly updates the Stage
1 Manager of the total number of vertices that it currently has. Whenever a Allocation
Generator runs out of work i.e. has evaluated all its vertices, it requests the Stage 1 Manager
for work. Stage 1 Manager selects the most loaded Allocation Generator and sends it a
request to offload half of its workload to the starving Allocation Generator. The max loaded
Allocation Generator sends half of its vertices and its LP solver state (cuts) to the starving

Allocation Generator.

3.10 Performance and Analysis

All experiments were performed on the 300 node (3600 cores) Taub cluster installed at
University of Illinois. Each node has Intel HP X5650 2.66 GHz 6C processors and 24GB
of memory. The cluster has a QDR Infiniband network communications with a Gigabit
Ethernet control network. We used Gurobi [41] as the LP solver.

As noted in Figure 3.5a and 3.5b, Stage 1 Manager and Stage 2 Manager (in Design
B) are placed on processor 0. Allocation Generator and Scenario Evaluator are place on
disjunct set of processors, with Allocation Generator objects placed on processors 1 through

M, and Scenario Fvaluator objects placed on processors M + 1 through N, where M + N +1
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Table 3.2: Average Stage 1 LP solve time comparison between Design A and Design B of
PSIPS

Model Stage 1 LP solve time (s)
Design A Design B

3t-120 0.38 0.04
3t-240 0.98 0.08
ot-120 2 0.25

is the total number of processors. We use depth first search as the BnB vertex prioritization
policy, where depth is determined by the total number of branching decisions taken on the
path from the root node to that vertex. For vertices with the same depth, one with a smaller

lower bound is given higher priority.

3.10.1 Variability in Execution time

As discussed in Section 3.6.8, both designs suffer from variability in execution times across
runs with identical configurations. Design A ensures that the branching order remains the
same across all runs of the same model. However, as discussed in 3.6, the chronology
of incumbent discoveries might vary slightly across runs, thereby causing different pruning
decisions and different BnB tree sizes. Design B, in addition, has another source of variation.
The order in which the Stage 1 and Stage 2 solves are done can alter the LP solutions to
the same problem because of the combined effect of advanced start and degenerate Stage 1,
Stage 2 LPs. This changes the branching decisions and hence different trees are generated.
This can cause significant variation in the time to solution.

Figure 3.6 plots the performance of the two designs for 3t-120. On x-axis is the number of
Tree Explorers. Each color corresponds to a scale e.g. p3 is for 3 processors, p6 for 6, and so
on. At each scale, we measured the performance for varying number of Tree Explorers. For
every configuration, we did 5 trials to measure the variability. The time to solution in these
trials is plotted with markers in the same vertical line. Design A has much less variability as
the markers are very close to each other as compared to the Design B, where performance

varies even by an order of magnitude in some cases. In Figure 3.7, we plot the BnB trees
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Figure 3.8: Analyzing the cause of slower performance of Design A as compared to Design
B. (a) and (b) plot the histogram of the number of rounds taken to solve the stochastic LP
at the BnB tree vertices in the 5t-120 model.
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explored in two identically configured executions of Design B on the 5t-120 model. This

explains the large variation in performance of Design B.

3.10.2 Performance Comparison

The number of Tree Explorers at any given execution scale has a significant effect on the
performance. Expectedly, increasing the number of Tree Explorers too much inundates Stage
2 with work and deteriorates performance. We have also ascertained that the concurrent
execution of several Stage 1 LPs on the same compute node of the machine increases the
individual solve times because of memory bandwidth limitations. From Figure 3.6 it is
clear that Design B, despite having high variability has significant advantage in terms of
solution speed over Design A. This advantage is two-fold. First, the number of rounds to
achieve convergence at the tree vertices is much smaller in Design B. This effect is shown in
Figure 3.8a, Figure 3.8b in which we plot a histogram of the number of rounds vertices take
to converge in the two designs. This difference can be attributed to the difference in the set of
Benders cuts that are maintained by the two designs. In an effort to maintain repeatability,
Design A always starts with the cuts from the parent vertex. On the other hand, Design
B uses the most current set of cuts resident on the processor being used. This means that
Design B has access to cuts generated in different parts of the tree and is therefore likely to
have more cuts that are binding and thus speed up convergence. Secondly, the stage 1 linear
programs also take less time to solve in Design B (Table 3.2). Since in Design A, every new
vertex starts with a fresh start of the Gurobi library instance, a significant number of simplex
iterations are required to optimize the LP in the first round for each vertex. Conversely,
Design B always uses advanced start and the most recent cut set. The LPs differs from the
previous vertex LP only in the few branching constraints and thereby, the LP solves very
quickly using advanced start.

Even though Design A has better repeatability, the worst performance using Design B
is better than the best performance using Design A. Therefore, Design B is the design of
choice because of quicker time to solutions. Additionally, Design A suffers from large memory

requirements for cut dump collection, which can become a bottleneck for larger data sets in
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Table 3.3: Cumulative distribution of trials of Design B for a target minimum parallel
efficiencies on 3t-120 (baseline: 3 cores)

Efficiency(%) > | Number of processors

6 | 15| 30 60 | 120
100 1.0 0.9 0.95 | 0.066 | 0.0
90 1.0 1 1.0 | 0.95 | 0.066 | 0.2
80 1.0 1.0 ] 0.95| 0.466 | 0.4
70 1.011.0] 1.0 [ 0.733] 0.4
60 1.0 1.0} 1.0 | 0.866 | 0.6
40 1.0 10| 1.0 1.0 1.0

Table 3.4: Cumulative distribution of trials of Design B for a target minimum parallel
efficiency on 5t-120 (baseline: 3 cores)

Efficiency(%) > | Number of processors

6 15 | 30 | 60 | 120
100 095 0.7 | 0.8 {02 0.0
90 0951075 085|04| 0.0
80 095 08 | 0.8 |04 0.0
70 1.0 1 0.8 | 09 | 1.0] 0.2
60 1.0 1085 ] 09 | 1.0] 0.6
40 1.0 | 085 | 1.0 | 1.0 | 0.8

which the tree frontier becomes very large before the solution is found.

3.10.3 Performance of Design B

Using large-scale parallel computing for an application is advantageous when it is guaranteed
that running the application on more processors will give faster times to solution. Unlike
typical scientific iterative applications, Design B for this application suffers from large vari-
ability in execution times for runs with identical configurations, which makes it difficult to
measure its parallel efficiency. We therefore need a different method to quantify its parallel
efficiency in the wake of variation. Our method is to measure the probability of getting a
certain parallel efficiency. To measure the performance of Design B with this metric, we did
20 trials of Design B with each of 3t-120 and 5t-120 datasets. In Table 3.3 and Table 3.4,
first column has the parallel efficiencies. Rest of the columns report, at different scales, the

fraction of trials that achieved greater efficiency than the corresponding entry in the first
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column. For example, for 3t-120, the parallel efficiency was greater than 90% in 95% of the
trials at 6 processors and in 75% of the trials at 15 processors. These results show that in
majority of the cases efficiency was greater than 40% at all scales for both the datasets. Also
note the super linear speedup in some cases. As compared to Gurobi’s typical efficiency of
10% for IPs [53], our algorithms yield significantly higher parallel efficiencies even at larger
scales.

We further report the scaling of Design A and Design B in Figure 3.9. We identify the
best performing Allocation Generator count at each scale by comparing the average time to
solution across 5 trials. Average times to solutions for these Allocation Generator counts are
presented in Figure 3.9 for several datasets. We get very good incremental speedups on up to
480 processors for several datasets. The scaling at large scales is limited by the root vertex
optimization, which takes many rounds to converge as compared to the other vertices. During
root node optimization there is only 1 vertex and hence no Stage 1 parallelism. Scaling at

large scales is additionally limited by the critical path to reach the optimal solution.

3.11  Summary

We have discussed and presented several factors that influence the design and performance
of parallel, two-stage stochastic integer programs solved using Branch-and-Bound. We have
also presented two designs that prioritize different factors: 1. a nested parallel decomposition
that solves each BnB vertex in isolation and 2. a design variant that shares LP library solvers
as well as Stage 2 feedback across BnB vertices. The interplay between some of the factors
like memory usage, solver sharing, degeneracy and tree structure are borne out by the
performance results for both these designs on multiple datasets. Sharing solvers and cuts
results in more variable, yet better performance. We also show strong scaling from 6 cores
up to 480 cores of a dual hex-core, 2.67 GHz, Intel Xeon cluster. Because of the inherent
variability in the amount of computation required, we also report the spread in performance
by tabulating the fraction of trials that achieved various parallel efficiencies. We believe
these are noteworthy results for strong scaling such an unconventional problem.

However, there is still a need for further characterizing the behavior of parallel stochastic
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integer programs; and for further research into techniques for improved scalability. We feel
our experiences and findings are a useful addition to the literature and can seed further work

in this direction.
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CHAPTER

Split-and-Merge Method for Accelerating

Convergence of Stochastic Linear Programs

Stochastic program optimizations are computationally very expensive, especially when the
number of scenarios are large. Complexity of the focal application, and the slow convergence
rate add to its computational complexity. In this chapter, we propose a split-and-merge
(SAM) method for accelerating the convergence of stochastic linear programs. SAM splits the
original problem into subproblems, and utilizes the dual constraints from the subproblems to
accelerate the convergence of the original problem. Our results are very encouraging, giving

up to 74% reduction in the optimization time.

4.1 Introduction

In this chapter, we focus on the stochastic linear programs, that is, problems that have linear
variables and constraints both in Stage 1 and Stage 2. However, the proposed approach can
be extended as it is to stochastic integer programs that have mixed-integer variables in Stage
1. We leave the evaluation of the proposed method to stochastic integer programs for future
work.

As we have studied before, the usual method of solving stochastic linear program uses the

multicut Bender’s method [3]. However, the number of cuts can become very large quickly,
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particularly for problems with large number of scenarios. In most real world applications,
the number of uncertain parameters are large, and therefore the number of scenarios are
also very large. In addition to the complexity of the focal application, factors such as the
number of Stage 2 evaluations, number of rounds it takes to converge to optimality (within
the user-specified convergence criteria), and the size of the Stage 1 linear program which
increases with the increase in number of scenarios, add to the computational complexity of
the stochastic programs.

The convergence of the multicut method can be very slow in cases when the number of
Stage 1 variables are large and/or there are large number of Stage 2 scens. This chapter
focuses on accelerating the convergence of multicut Bender’s method. Equation 4.1 shows

the Stage 1 program after r rounds.

s.t. Axr < B

Vsand [ € [1,7], Egz+0s<egy (4.1)

where, Ey + 0, < ey are the cut constraints obtained from Stage 2 optimization and 6, is
the cost of scenario s.

This chapter considers a scenario split-and-merge approach to accelerate the convergence
of multicut Bender’s method. In Section 4.2, we do a literature review on stochastic opti-
mization methods and their convergence properties. In Section 4.3, we propose the split-
and-merge method for accelerating the convergence of multicut L-shaped method. We cor-
roborate our ideas with results in Section 4.6. Finally, we conclude the chapter with the

summary in Section 4.7.

4.2  Related Work

Magnanti and Wong in their seminal paper [65], proposed a method for accelerating Bender’s

decomposition by selecting good cuts to add to the master problem. A cut § < 7jh + 7{Tx
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dominates or is stronger than the cut, 8 < n3h + n3Tx, if mih +7{Tx < w5h + 75T x for all
x € X with a strict inequality for at least one x € X, where 7] and 73 are any two dual
optimal solutions of the degenerate Stage 2 problem. They define a cut as pareto optimal
if it has no dominating cut. The corresponding Stage 2 dual optimal solution is called the
pareto optimal solution. Given the set of Stage 2 dual optimal solution set S(z*), the pareto

optimal solution (7?) solves the problem:

min wh + 7Tz
meS(z*)

where, ¢ is a core point of X i.e. 2¢ € relative interior of X and S(z*) = {m|m maximizes Q(z*)}.
The downside of this approach is that it requires solving additional optimization problem to
identify pareto optimal cuts in every iteration which can trade-off the benefit of reduction
in total number of iterations.

Linderoth et al [37] developed asynchronous algorithms for stochastic optimization on
computational grids. They use a multicut method and add a cut of a particular scenario
to the master program only if it changes the objective value of the proposed model func-
tion corresponding to that scenario. This requires solving several additional optimization
problems at each iteration to determine the usability of each cut, which can be prohibitive.

Initial iterations in the multicut method are often inefficient because the solution tends to
oscillate between different feasible regions of the solution space. Ruszczyniski [66] proposed
a regularized decomposition method that adds a quadratic penalty term to the objective
function to minimize the movement of the candidate solution. Linderoth and Wright [37]
use a linearized approach to this idea by binding the solution in a box called the trust region.
Trust region method is used to decide the major iterates that significantly change the value
of the objective function in each iteration. This requires doing several minor iterations at

each major iteration to come-up with a good candidate solution x*

. Trust-region method
at minor iterations limits the step-size by adding constraints of the form ||z — z¥||. < A.
Heuristics are used to decide and update A. The cuts generated during the minor iterations
can be discarded without affecting the convergence of the problem.

The Progressive Hedging algorithm proposed by Rockafellar and Wets [29] solves each

63



scenario independently by introducing lagrangean multipliers for the Stage 1 variables in the
objective function of the individual problems. This approach requires search for the optimal
lagrangean multipliers which can be computationally prohibitive. In Chapter 2, we proposed
clustering schemes for solving similar scenarios in succession that significantly reduces the
Stage 2 scenario optimization times by use of advanced /warm start. However, this does not
address the slow convergence rate of the problem. Other stochastic program decomposition

studies can be found in [67-69].

4.3 Split and Merge Algorithm

In each iteration of the multicut method, as many cut constraints are added to the Stage
1 program as there are scenarios. In the initial iterations of the multicut Bender’s method,
all the scenario cut constraints are not active in the Stage 1 linear program optimization.
This is because few cuts are needed to perturb the previous Stage 1 solution and provide
a new candidate solution. Therefore, the cuts from the Stage 2 evaluation of most of the
scenarios remain inactive in Stage 1 during the initial iterations of the Bender’s method.
For such scenarios, similar cuts will be generated in successive iterations, and hence a lot of
computation is wasted.

We propose a split-and-merge (SAM) algorithm (Algorithm 2) that divides the scenarios
into N clusters (57, S, ...., Sp).
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Algorithm 2: Split-and-Merge (SAM)

© 0 N 3 o W N

_ e
—= O

12
13
14

16
17
18
19
20
21
22
23
24
25
26
27
28

Input: S (set of scenarios), Original Stochastic Program (P)
Divide S into n clusters, 51,5%,....,5,

Generate n stochastic programs, P, Ps,.....FP,, with

scenarios from Si,59,....,5,, respectively

Scale scenario probabilities in each of these subproblems
such that they sum up to 1

for i in range(1l,n):
scosts; = [] #scenario costs
cuts; = [] #scenarios cut constraints
while 7; < r or hasConverged(i):

x; = solveStagel(F;, scosts;, cuts;)
scosts;, cuts; = solveStage2(x;)
ri=r; + 1

end while

#wait until all the subproblems have returned

cuts = []

scosts = []

for i in range(1l,n):
cuts.add(getCutConstraints(F;))

#now solve the original problem
while not hasConverged(P):
x = solveStagel (P, scosts, cuts)
scosts,cuts = solveStage2(x)
end while
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Figure 4.1: Schematic of the Splt-and-Merge (SAM) method

In SAM, n stochastic programs (P, P, ..., P,) are created and each of these is assigned one
cluster of scenarios (lines 3-4). Probabilities of the scenarios in each of these subproblems
are scaled up so that they add up to 1 (lines 5-6). We then apply the Bender’s multicut
method to these n stochastic programs independently of each other (lines 8-16). Bender’s
decomposition is applied to these subproblems for a fixed number of rounds (r) or till the
subproblem has converged to optimality, whichever is the earliest (line 12). Once this criteria
has been met for all the subproblems, the cut constraints from these problems are collected
(lines 21-22). The cuts from subproblems are also valid for the original problem with all the
scenarios. These cuts are used as the initial set of cut constraints for applying the multicut
Bender’s method to the original stochastic linear program.

There are several benefits of this approach. The chances of a scenario having active cuts
is higher in the subproblems because of the smaller number of scenarios present in the
subproblems. Scenario cut activity helps in generating newer and different cuts for those

scenarios, and thus doing more useful work, as compared to the original problem in which
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most of the scenarios remain inactive in the initial iterations.

Stage 1 optimization is often a serial bottleneck in Bender’s decomposition, especially when
the number of scenarios is large. In the decomposition approach, the number of scenarios
per subproblem are much smaller than the original problem, which speeds up the Stage
1 optimization and thus the candidate solutions for Stage 2 evaluation become available
much earlier. Additionally, this also gives an opportunity to have parallelism in Stage 1, in
addition to the obvious Stage 2 parallelization available in stochastic linear programs. These

subproblems being independent of each other, can be optimized in parallel in Stage 1.

4.4 Parallel Design of SAM

MO EER AGE 1 DECISION,
NARIO

STAGE 1 - STAGE 2

STAGE 1

DECISIONS STAGE 2 SOLVER

SUBPROBLEM O

SUBPROBLEM 1 STAGE 2 SOLVER

PROCESSORS

SUBPROBLEM 2 \ STAGE 2 SOLVER
STAGE 2 SOLVER

STAGE 2 SOLVER

STAGE 2 SOLVER

Figure 4.2: Parallel design for Split-and-Merge (SAM) method

Parallel design for implementation of the SAM method is depicted in Figure 4.2. Processor
0 is dedicated for Stage 2 manager. Stage 2 manager is responsible for receiving Stage 1
decisions from Stage 1 solvers and assigning them to Stage 2 solvers when they request for

work. Stage 1 of each of the subproblems is assigned to different processors so that they can
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run in parallel. Stage 2 solvers are shared by all the subproblems. When Stage 2 manager
assigns work to a Stage 2 solver, it sends the Stage 1 decision for one of the subproblem
and also the scenario that it should solve. Since Stage 2 solver execution is interleaved with
Stage 1 solver on the same processor, Stage 1 solver execution is given higher priority so

that a subproblem’s progress is not stalled.

4.5 FExperimental Setup

Our experiments of the proposed SAM approach are based on the military aircraft allocation
problem (Chapter 6). As in Chapter 3, the parallel implementation of the SAM method is
done in Charm++ parallel programming language and runtime system.

For our experiments, we consider two stochastic programs, the details of which are given
in Table 5.2. We consider two variants of each of the two stochastic programs in Table 5.2,
one with 120 scenarios and another with 1000 scenarios. These models are named as 8t120s,
8t1000s, 10t120s and 10t1000s, respectively. The total number of variables and constraints

in these models is given in Table 5.3.

Table 4.1: Stage 1 LP and Stage 2 LP sizes of the stochastic linear program datasets

Test 1st Stage 2nd-Stage Scenario Nonzero Elements

Problem Vars. Constrs. Vars. Constrs. A W; T;

8t 216 144 20944 13378 456 66881 252
10t 270 180 25573 16572 270 82797 308

Table 4.2: Size of stochastic linear program datasets

Model Name Num Stage 1 Vars. Num Stage 2 Vars. Num Stage 2 Constrs.

8t120s 336 2513280 1605360
8t1000s 1216 20944999 13378000
10t120s 390 3068760 1988640

10t1000s 1270 25573000 16572000
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All experiments were performed on the 300 node (3600 cores) Taub cluster installed at
University of Illinois. Fach node has Intel HP X5650 2.66 GHz 6C processors and 24GB
of memory. The cluster has a QDR Infiniband network communications with a Gigabit

Ethernet control network. We used Gurobi [41] as the LP solver.

4.6 Results

In Figure 4.3a, we show the scenarios that have active cuts in Stage 1 in each iteration of the
Bender’s multicut method applied to 8t120s dataset. The x-axis is the iteration number, and
y-axis is the scenario number. In the vertical line corresponding to any iteration number,
a dot in the horizontal line corresponding to a scenario number means that a cut obtained
from the Stage 2 optimization of that scenario was active in that iteration. As can be seen
in the figure (Figure 4.3a), very few scenarios have active cuts in the initial few rounds.
As the optimization progresses, the number of scenarios with active cuts increases with the
increase in the iteration number. And eventually, after approximately 220 iterations, all the
scenarios have active cuts in Stage 1. The total number of active cuts in each iteration are
shown in Figure 4.3b. The upper line shows the upper bound, and the lower line shows the

lower bound as the number of iterations increase.
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Figure 4.3: Multicut Benders Method. Total Iterations = 495, Time to Solution = 1190s
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Figure 4.4: SAM with decomposition into 2 subproblems for 300 iterations. Total Iterations
= 415, Time to Solution = 784s

For testing the proposed SAM algorithm, we divided the original problem with 120 scenar-
ios into two subproblems each with 60 scenarios. The subproblems are solved for a maximum
of 300 rounds, after which the cut constraints are collected from both of them and these
cut constraints are used as the initial set of constraints for solving the original problem with
120 scenarios. Figure 4.4a shows the scenario activity for this method. As can be seen in
the figure, the overall scenario activity is much higher in the initial iterations of the SAM
approach than in the original Bender’s method. Figure 4.4b shows the number of cuts that
were active in each of the subproblems. The two bar shades correspond to the two subprob-
lems. The bars are stacked on top of each other to show the total number of active cuts
in both the subproblems. Bars after iteration 300 show the number of active cuts for the
original problem (P), which begins optimization at iteration 301. As in Figure 4.3b, the
lower and upper lines correspond to the lower and upper bounds, respectively - initially of
the subproblems, and then of the original problem. Total time to optimization is 784 seconds
with the SAM approach as compared to 1190 seconds with the original Bender’s method.

We have extended our algorithm to split-and-hierarchical-merge (SAHM) algorithm, in
which the merging of the subproblems into the original problem is done in stages instead
of at once as in the SAM algorithm. Figure 4.5 shows a schematic diagram of the SAHM
approach. In the SAHM method, as the hierarchical phases progress, number of subproblems
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and hence the number of Stage 1 solvers are reduced by half. For instance, SAHM method
that begins with 8 subproblems in Phase 0 has 4 subproblems in Phase 1, 2 subproblems in
Phase 2 and finally 1 problem, that is the original problem. The user specifies the number of
rounds for which the split phase should be run. These rounds/iterations are equally divided
across the phases, that is, each phase of the SAHM method is run for the same number of
rounds such that the total number of rounds sum up to the user specified rounds for the
split phase. At the end of each phase, subproblem ¢ of the current phase sends its cuts to

the 5 subproblem of the new phase. Figure 4.6 shows the cut activity for SAHM approach.
The original problem is first divided into 6 subproblems each with 20 scenarios. In the
next stage, sets of two subproblems combine to form one subproblem, giving a total of three
subproblems. Finally, these three subproblems are combined into the original problem. Each
of these stages is executed for 150 rounds, after which optimization of the original problem
begins. Various colors in Figure ?? correspond to different subproblems. Total time to

solution using SAHM was 507 seconds, giving us an improvement of 58% over the Bender’s

method.
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Figure 4.6: SAHM with decomposition into 6 subproblems for 150 iterations followed by 3
subproblems for 150 iterations. Total Iterations = 360, Time to Solution = 507s

Figure 4.7 presents the timeline view of processors during naive Bender’s method and
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SAHM method execution. Processor activity is shown for 12 processors, where each processor
is represented by a horizontal line and the bars on top of the line show the activity on that
processors at that time. Red bars correspond to Stage 2 optimizations and the yellow bars
correspond to Stage 1 optimization. White space means that the processor is sitting idle at
that time. Therefore, larger white space means poor parallel efficiency. In Naive Bender’s
method, there is only one Stage 1 solver, which is insufficient to keep keep the Stage 2
solvers busy (Figure 4.7a). On the other hand, in the SAHM method with 4 as the initial
number of subproblems, there are 4 and 2 Stage 1 problems in Phase 0 and 1, respectively.
These keep the processors busy as they can generate sufficient Stage 2 work because of the
smaller Stage 1 bottleneck (Figure 4.7b). The three phases in the SAHM method can be
seen in Figure 4.7b. They are distinguishable by the different processor utilizations during
the three phases and also by the the number of Stage 1 solvers. SAHM method, therefore,
also has higher parallel efficiency and therefore higher speedup as the number of processors

are increased to solve the same problem.
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Figure 4.7: Timeline view of parallel naive Bender’s method and SAHM method execution

Tables 4.3-4.5 shows the solution time for the various datasets using the SAHM method
(with different number of rounds of the split-phase) and the naive Bender’s method. As we

know from Chapter 2 and Chapter 3 that multiple runs of parallel benders method with
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identical configuration can have different execution time, we report the average of at least 3
runs done for each configuration in these tables. SAHM outperforms the benders method in
all the cases. For example, SAHM method leads to a reduction in solution time by as much
as 74% as compared to the naive Bender’s method for 10t1000s dataset at 192 procesors
(Table 4.5b). Additionally, it has significantly higher parallel speedups. For example, we
get up to 7.8x speedup with SAHM for 81000s as the number of processors are scaled from
12 to 192, while the naive Bender’s method gives a speedup of only 4.2x (Table 4.4b). Our
results also show that while the solution time decreases as we increase the number of initial
subproblems from 4 to 8, we do not see any significant improvements as the number of initial
subproblems are increased further to 16 (Table 4.4). We also observe that the benefits of
SAHM are much higher when the number of scenarios are larger e.g. benefits of SAHM for
10t1000s (Table 4.4) are much higher than they are for 8t120s (Table 4.3).

Table 4.3: Solution time of 8t120s model with Naive Bender’s and SAHM method with
different number of split-phase rounds

(a) SAHM method with 4 initial subproblems

#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
100 200 300 400 500 Best Time Speedup Time Speedup
12 837 800 TTT 729 758 729 1.0 876 1.0
24 506 479 508 413 437 413 1.8 571 1.5
48 409 317 255 265 278 255 2.9 449 2.0
96 637 258 213 208 202 202 3.6 345 2.5
(b) SAHM method with 8 initial subproblems
#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
100 200 300 400 500 Best Time Speedup Time Speedup
12 939 868 787 748 844 748 1.0 889 1.0
24 604 481 446 443 477 443 1.7 580 1.5
48 413 313 266 243 254 243 3.1 425 2.1
96 301 320 207 202 205 202 3.7 354 2.5
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Table 4.4: Solution time of 8t1000s model with Naive Bender’s and SAHM method with
different number of split-phase rounds

(a) SAHM method with 4 initial subproblems

#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
100 200 300 400 500 BestTime Speedup Time Speedup
12 5639 4966 4138 4550 4469 4138 1.0 5970 1.0
24 3020 2557 2145 2241 2315 2145 1.9 3398 1.8
48 1975 1575 1267 1180 1173 1173 3.5 2507 2.4
96 1417 1033 858 916 771 771 5.4 1901 3.1
192 1142 852 699 652 643 643 6.4 1491 4.0
(b) SAHM method with 8 initial subproblems
#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
100 200 300 400 500 BestTime Speedup Time Speedup
12 4954 4475 4098 4279 4216 4098 1.0 6062 1.0
24 2942 2005 2025 2054 2179 2005 2.0 3293 1.8
48 1820 1644 1151 1181 1296 1151 3.6 2510 2.4
96 1328 997 790 713 783 713 5.7 1863 3.3
192 1006 665 600 536 526 526 7.8 1445 4.2
(¢) SAHM method with 16 initial subproblems
#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
200 300 400 500 BestTime Speedup Time Speedup
48 1312 1465 1361 1288 1288 1.0 2507 1.0
96 989 820 812 837 812 1.6 1901 1.3
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Table 4.5: Solution time of 10t1000s model with Naive Bender’s and SAHM method with
different number of split-phase rounds

(a) SAHM method with 4 initial subproblems

#Split-phase Rounds ~ SAHM SAHM  Benders Benders
#Processors
200 300 400 500 BestTime Speedup Time Speedup
24 6477 4944 4291 3555 3555 1.0 10699 1.0
48 3958 2318 2402 2041 2041 1.7 5583 1.9
96 2440 2033 1632 1611 1611 2.2 3847 2.8
192 2188 1513 1321 1118 1118 3.2 3367 3.2

(b) SAHM method with 8 initial subproblems

#Split-phase Rounds SAHM SAHM  Benders Benders
#Processors
200 300 400 500 Best Time Speedup Time Speedup
24 6753 3484 3502 @ - 3502 1.0 10699 1.0
48 3292 2032 1903 2036 1903 1.84 5583 1.9
96 2449 1490 1282 1299 1282 2.73 3847 2.8
192 1706 1266 982 890 890 3.93 3367 3.2

Figure 4.8 shows the scaling plot of two datasets with SAHM and naive Bender’s method.
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Figure 4.8: Solution time with SAHM (with 8 initial subproblems) and Naive Bender’s
method

47 Summary

We plan to evaluate and extend the proposed scenario decomposition schemes in the following

ways:

e Currently, the number of rounds for which the subproblems are executed before they
are merged is specified by the user/programmer. An important milestone is to dynam-
ically determine during the execution of the program, the optimal time to merge the
subproblems into the original problem. This could be based on the cut activity of the

subproblems.

e Explore clustering schemes such that either similar or different scenarios are in the
same subproblem during the split phase of the SAM algorithm. Study the affect of

clustering on the solution time of the stochastic programs.
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CHAPTER

Accelerating Two-stage Stochastic Linear

Programs Using Lagrangean Decomposition

In this chapter, we propose a lagrangean decomposition based approach for accelerating
the convergence of stochastic linear programs. With the proposed approach we are able
to significantly reduce the solution time of many datasets and solve some of the previously

intractable problems. We show scalability of the proposed approach to up to 192 processors.

5.1 Introduction

As in the previous chapter, our focus is on two-stage stochastic linear programs but the
approach can be applied as it is to two-stage stochastic integer programs that have mixed-
integer variables in Stage 1 but only linear variables in Stage 2. In two-stage stochastic
linear programs, first stage optimizes over the Stage 1 decision variables (also called the
strategic decisions) which are evaluated against several scenarios in Stage 2 (which makes
the operational decisions). Stage 2 provides a feeback in the form of cuts to Stage 1, which
then reoptimizes itself with the new set of constraints. The iterative process continues, until
an optimal solution within the convergence threshold is found.

The design of a parallel implementation of stochastic linear program consists of a master

that solves the Stage 1 problem and then the workers evaluate the Stage 2 scenariors for
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the current Stage 1 solution. Because of the uncertain and variable solve times of linear
programs, the work assignment to workers can be implemented as a pull-based scheme in
which a worker requests work from the master whenever it runs out of work. This parallel
design has been described in detail in Chapter 2.

In each iteration of the multicut L-shaped method [3], every scenario adds 1 cut to the
Stage 1. Therefore, size of the Stage 1 linear program increases as the computation pro-
gresses, making it a serial bottleneck. In Chapter 2 we defined the concept of cut-window
to alleviate the severity of this bottleneck. Cut-window is defined as the maximum number
of cuts that are kept in the Stage 1 linear program at any time. Cut-window is maintained
by discarding cuts that have low usage rate (details in [64]). While this approach makes
certain problems tractable, larger problem still emain intractable. This is because of the
large cut-window and the large number of iterations required by such problems to converge.
A large cut-window increases the Stage 1 bottleneck (Fig 5.1) which decreases the parallel
efficiency significantly. In this work, we propose an appraoch in which we decompose the
Stage 1 and Stage 2 linear programs using lagrangean decomposition.

In Section 5.2, we give a preliminary to the lagrangean decomposition method. We then
briefly describe the two-stage stochastic formulation of the military aircraft allocation in
Section 5.3. In Section 5.4, the proposed decoposition scheme is described. Section 5.5 de-
scribes the application of the proposed approach to the military aircraft allocation problem.
In Section 5.6 we present our parallel design of Lagrangean Decompose And Merge (LDAM)
method and analyze its performance in Section 5.7. Finally, the conclusion and future work

are given in Section 5.8.

5.2 Introduction to Lagrangean Decomposition

Simplex algorithm and Interior point methods, used for solving linear programs, are in-
herently difficult to parallelize. Hence alternative ways are sought for solving large scale

linear programs. Lagrangean decomposition is an approach in which a large linear program
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Figure 5.1: Stage 1 and Stage 2 solve times of a sample run of 15t problem

is decomposed into multiple independent smaller linear programs which can be solved effi-
ciently. The results of these subproblems can then be combined to obtain the optimal value
of the original linear program. For a simple working example of lagrangean decomposition,
consider the linear program in Table 5.1 with 3 variables and two constraints. This linear
program is to be optimized by decomposition into two subprograms with one constraint

each. Lagrangean decomposition involves the following steps:

Step 1: Identify linking variables (only x5 in this case) and introduce a cloned variable
(z3) for each such linking variable. Transform the linear program into an equivalent
problem by using that copy of the variable that corresponds to the subproblem to
which the constraint belongs. Add copy constraints of the form 5 —x, = 0 to equalize

the values of the cloned variables. The resultant LP is called as the LDP.
Step 2: Dualize the copy constraints (x5 — z, = 0) with multiplier \.

Step 3: Now the linear program can be decomposed into two independent smaller linear

programs.

Methods such as subgradient search [70,71] are used for searching optimal value of A that

minimizes the value of the dual term in the objective function. Subgradient search for opti-
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max —2xr; — 39 — 4x3
1+ 2£L'2 S 2
31‘2 + 5%’3 < 5
x1, 9, w3 € {0,1}

Step 1 max —2xr; — 3x9 — 4x3
T+ 2w9 < 2
31y + 513 <5
Ty — x5 =0
T1, T, Ty, 23 € {0,1}

Step 2 max —2x; — 31y — 4xs + M2y — 22)
T+ 21’2 S 2
31y + 513 <5
Ty, Ty, Tyrs € {0, 1}

Step 8 max —2x; — (3+ N)xy max Az, — 43
Ty + 275 < 2 37y + 5x3 <
r1, 29 € {0,1} Ty, 73 € {0,1}

Table 5.1: Steps in lagrangean decomposition applied to a sample linear program

mal \ starts with an initial guess of A and the objective value. Subproblems are evaluated
in each iteration, and a new A and objective value are proposed. The process continues until
the obtained objective value converges with the proposed objective value. In this way, the
optimal solution to the original linear program is obtained using lagrangean decomposition.
Lagrangean decomposition has been used to solve a variety of problems in literature. Shah
et al [72] proposed a new lagrangean decomposition algorithm to solve realistic large scale
refinery scheduling problem in reasonable computation time. Hosni et al [73] propose a la-
grangean decomposition approach to solve the problem of assigning passengers to taxis and
computing the optimal routes of taxis, also known as the shared-taxi problem. They show
lagrangean decomposition approach leads to tighter bounds in shorter computational time
as compared to solving the full mixed integer program using CPLEX. Ghaddar et al [74] use
lagrangean decomposition to solve the pump scheduling problem in water netowrks that ac-
comodates the changing price of energy (dynamic pricing) for pumping water while ensuring
continuous supply of water. Raidl [75] has done a literature review of how metaheuris-

tics alongwith lagrangean decomposition has been used to solve some complex optimization
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problems [76-79]. Mouret et al [80] propose a lagrangean decomposition approach solve a
large-scale mixed-integer nonlinear program (MINLP) that integrates two main optimization
problems in the oil refining industry: crude-oil operations scheduling and refinery planning.
Rosa et al [81] study the application of lagrangean decomposition method on convergence
of multistage stochastic programs. Ruszczynski et al [82,83] review various decomposition
methods proposed in literature for stochastic program optimization. Saeed et al [84] propose
a modified version of the L-shaped method that uses augmented lagrangean to reduce the

number of iterations and time of solving a two-stage stochastic linear program.

5.3 jetAlloc: The Military Aircraft Allocation Problem

The Air Mobility Command (AMC) of the U.S. Department of Defense has to deal with
allocation of 1,300 military aircraft over a period of 30 days. The allocation to different
missions at different locations and days is to be optimized in the presence of uncertainty in
the demands. We model this problem as a two-stage stochastic linear program. Stage 1 does
the aircraft allocation to different missions during the month. These allocation decisions are
evaluated in Stage 2 by scheduling the aircraft to meet the demand requirements. Details
of the problem and its stochastic formulation are given in Chapter 6. The structure of the
formulation is given in Figure 5.2. Stage 1 linear program allocates a fixed number of aircraft
to different missions and operating wings every day for a fixed number of upcoming days.
Stage 2 schedules these aircrafts to meet the mission demands. Unmet demands on a given
day are carried over to the following day. New mission demands on day ¢t added to the
unmet demands from the previous days constitutes the total mission demand on a given day

t. Unmet demands are penalized at a given rate ($/day).

5.4 Lagrangean Decomposition for Two-Stage Stochastic Problems

Lets say that Stage 1 allocates aircrafts over a period of ¢, days. We decomposed Stage

tp

= subproblems, where subproblem ¢ (i = 0,1,..,ny — 1)

1 linear program into ng, =

corresponds to aircraft allocation from day i * ty, to (i + 1) * 5, — 1. These subproblems
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are independent of each other. Similar decomposition in Stage 2, however, does not lead to
independent subproblems as there are linking variables e.g. the unmet demand variables that
are present in more than one subproblem. See Chapter 6 for other linking variables in the
Stage 2 LP of the stochastic formulation of military aircraft allocation problem. Figure 5.3a
shows the lagrangean decomposition of Stage 1 and Stage 2 of the stochastic program. Since,
Stage 1 subproblems are independent of each other, there are no lagrangean mulitpliers in
Stage 1, while the Stage 2 optimization involves search for the optimal dual multipliers. Since
search for optimal dual multipliers is required in every iteration of the L-shaped method,
this can be computationally prohibitive as the linking variables can be large in number and

the subgradient methods for optimal multiplier search are known to be slow in convergence.
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Figure 5.2: Structure of the two-stage stochastic program for military aircraft allocation
problem. Vertical bars correspond to columns. Stage 1 LP can be divided by time index of
variables into independent subproblems. Stage 2 LP has variables that are present across
the subproblems and hence subproblems are not completely independent of each other.

Theorem 1 below shows that the optimal dual multipliers for the subproblems are equal to
the dual values corresponding to the respective copy constraints in the LDP (See Section 5.2
for definition of copy constraints and LDP). We further show that the optimal solution of
the subproblems is same as the solution of the lagrangean decomposed problem. Therefore
the cuts from the subproblems can be computed without actually having to optimize the
subproblems and do the expensive search for the optimal lagrangean multipliers. Since, Stage
2 solve times are significantly lesser than the Stage 1 solve times, solving the lagrangean
decomposed problem does not hamper the parallel efficiency. Additionally, this avoids the

computationally prohibitive lagrangean multiplier search. The schematic for this approach
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is given in Figure 5.3b.

Decomposing the cut from the lagrangean decomposed problem into cuts of Stage 2
subproblems eliminates part of the Stage 1 search space when these cuts are added to
the Stage 1 LP. This is easily understood in this way that the search space for con-
straints 0y > dyy, + dayo, 03 > dsys + duy, is a subset of the search space of the constraint
01 + 03 > diyy + doys + dsys + days. Therefore, to get to the optimal solution, the original
stochastic program needs to be solved. The cuts obtained from the lagrangean decomposed
stochastic program can be merged together and used as the initial set of cuts for optimization
of the original stochastic program. We solve the lagrangean decomposed stochastic program
for a fixed number of iterations and then solve the original stochastic program.

Theorem 1

Dual values corresponding to copy constraints in LDP are equal to the optimal lagrangean
multipliers of the decomposed subproblems.

Proof

We call a constraint that has variables from different time-periods as the linking constraints.

Let P be a linear program with n variables and m constraints of :the form:

(P): min cx

st. Az =0

where A € R™" is the coefficient matrix, x € R™! is the decision variable vector, b € R™!
is the vector of the constant terms in the constraints and ¢ € R is the cost coefficient
vector. The problem can be decomposed into two subproblems P1 and P2 such that ml
constraints are in P1 and the remaining m2(= m—ml) constraints are in P2. Let x; € R™!
be the set of variables that appear only in the constraints of P1 and x5 € R"*! be the the
set of variables that appear only in constraints of P2. Each of the remaining variables
which appear in both the subproblems can be assigned to one of the two subproblems. Let

T19 € RM21 (25 € R™11) be the set of variables that are assigned to P1(P2) but also appear
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(a) Schematic for lagrangean decomposition of the two-stage stochastic program that
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(b) Optimal lagrangean multipliers in Stage 2 can be obtained by solving the Stage 2 la-
grangean decomposed problem. This eliminates the search for lagrangean multipliers and
thus also reduces the computation required for calculating cuts of Stage 2 subproblems

Figure 5.3: Lagrangean decomposition of the 30 day two-stage stochastic program and the
proposed method to obtain cuts of Stage 2 subproblems

86



in the constraints of P2(P1). The coefficient matrix A can now be written as:

1 1

A A% o Al
A=

0 A 4, AP

Here, A;(As) is the coefficient matrix of variables x;(z3) in subproblem P1(P2). Aglz)(A%))
is the coefficient matrix of variables 15 in P1(P2).

In order to decompose P into two independent subproblems, P1 and P2, one copy(or
cloned) variable corresponding to each of the variable in x5 and 9 is added to P. Let those
variables be x{, and z§,, respectively. Subsequently, terms corresponding to x5, variables in
P1 are replaced by their corresponding cloned variables in z§,. Copy constraints of the form
T19 — x{5 = 0 are added to ensure that the value of the cloned variables equals that of their

corresponding original variables. Let this lagrange-decomposed problem be named LD:

(LD): max cx

s.t. ADxD = bD

where,

A AY o o o a4l

T
Ap = ,bp = [bT 0} ,and (5.1)

T
— T T T T c T c T
LD Ty Tyg Lo Ty T Toy ]
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The only linking constraints between P1 and P2 in LD are the copy constraints. These
constraints can be relaxed and corresponding penalty terms are added to the objective

function, giving the Lagrange-relaxation problem (LR):

LR : min cr + )\12(37(1:2 — .T12) + )\21 (.Tgl — 3721)

|

Z12
A AY 0 0 0 AW
T2 by

x21 by
0 0 A, AP 4% o

C
T12

c
_$21_

where, A\ and Aoy are the dual variables corresponding to the copy constraints in LD.

Independent subproblems P1 and P2 can now be obtained from LR.

xrq T
Pl : min C1 Ci2 — )\12 /\21] 19 s.t. [Al Aglz) Agll)] Tio| = bl
x5 5
T2 T2
P2 : mi — a1 A to (A, AP AP =b
-min- |G C21 21 12] |29 | st [As 21 12] |21 2
Ty Ty

Theorem: Let x*, \* be the optimal primal and dual solution to the linear program P.
Then the optimal primal and dual solutions of the subproblems P1 and P2 in which A2 = A},

and \g; = A3, are x1", A\] and x5, A}, respectively.
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Proof: The dual problem LD, corresponding to LD (which is equivalent to P) is:

LD, : max Abp
st. Mp<c (5.2)

where A = [\ Ay A2 Ag] is the dual variable vector. The dual problems corresponding
to P1 and P2 with dual multipliers obtained from the optimal solution to LD), can now be

written as:

P1, : max w1by

s.t. w4 A%) Aéll)]Z[ﬁ ci2 — Ay A3y

P2, : max wWabsy

st owldy AR AP =l en— My A

Since A\* is the optimal solution to the linear program (5.2), using the definition of Ap from

(5.2) we have:

ANA < ¢
NAG + M, < e

ANy As < ¢y
NAS + X5 < o
AAR = Ay <0

NAS — x5 <0 (5.3)

Feasible solution of P1, and P2, will satsify the constraints in Equations (5.4) and (5.5),

respectively.
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wA < ¢ waAy < ¢
1 . 2 .
wAY + A5, < ey Wy AR + N5y < e

wiAY) — A5 <0 (5.4) wrAY — X1, <0 (5.5)

Equation 5.3 implies that A}, A\j are also feasible solution to P1, and P2y, respectively as
they satisfy constraints in Equations (5.4) and (5.5), respectively. Lets say there exists better
solutions wj and wj to P1y and P2, respectively such that wib; > Ajb; and wiby > A3b,.
Then optimal value of LDy at A = [w] wi Ajy A5] is wiby + wiby > Aiby + Aby, which is
contradictory to the fact that A = [A\f A5 A}, A%,] is the optimal solution to LD,. Hence, A}

and A\ are also the optimal solutions to P1, and P2), respectively. Q.E.D.

5.5 Lagrangean Decomposition for Military Aircraft Allocation
Problem

In the military aircraft allocation problem, aircraft allocations are made to different missions
on day-to-day basis. These allocation decisions are made in the Stage 1 of the two-stage
stochastic formulation. Allocation decisions on a given day do not affect the decisions on
any other day. Equations in Appendix A.4 are the constraints in the Stage 1 linear program.
Since variables from two different time-periods are never present in the same constraint, the
Stage 1 linear program can be trivially decomposed into subproblems without introducing
any cloned variables. Each subproblem corresponds to the allocation problem for a given
time range. The objective value of the original linear program is then simply the sum of the
objective values of its subproblems.

Unlike Stage 1, in Stage 2 variables from different time periods are linked with each other
via constraints. We tag each constraint with the time-period it corresponds to e.g. Consider

a simplified constraint from the Stage 2 of our formulation (Equation 5.6). a constraint
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that assigns load to aricrafts on day ¢ is tagged with the t index.
— Ut—1 + Zt + U = Dt (56)

This constraint corresponds to load assignment at time ¢. u;_; is the unment demand at
time t — 1, D, is the new demand at time ¢, u; is the unment demand at time ¢, and z; is the
met demand at time . We assign this constraint to subproblem that corresponds to time
t. The variables of the form wu; can belong to more than one subproblems and hence their
clones are introduced.

Following steps are involved in extracting subproblem cuts from the solution of the original
problem in Stage 2. Lets assume that the original problem schedules aircraft over a period
of ¢, days. This original problem is divided into ny, subproblems and hence each subproblem
schedules aircrafts for ¢, = 7:—1; days. Subproblem i (i € 0,1, ...,ns, — 1) schedules aircraft
from day t, * ¢ to day ts, % (i + 1) — 1. Based on the ¢ index, each constraint and variable
is assigned to one of the subproblems, also called the native subproblem of that constraint
or variable, respectively. Lets say subp(v), subp(c) gives us the native subproblem of the
variable v, constraint ¢, respectively. Let V,C be the set of variables and constraints in the

original problem, respectively. Algorithm 3 gives the psuedocode for generating LDP.

Algorithm 3: Pseudocode for generating LDP
for all v € V do
if Jc € C s.t. subp(v) # subp(c) then
add new variable v*oP(¢)
add equality constraint v = v
end if
end for
for all c € C do
for all v € varlist(c) do
if subp(c) # subp(v) then
v Usubp(c)
end if
end for
end for

subp(c)

In Lagrangean relaxation, the equality constraints for the cloned variables are removed
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and added to the objective function. Algorithm 4 gives the pseudocode for generating the
objective functions of the subproblems which are in turn used for generating the cuts for the

subproblems.

Algorithm 4: Pseduocode for generating objective function of the subproblems
for all i € [0,n,, — 1] do
objexpr(subp;) =0
end for
for all v € objexpr(P) do
objexpr(subp(v))+ = coeff(v, objexpr(P)) x v
end for
for all constraints of the form v — v’ = ( and dual optimal value = \***7 do
objexpr(subp(v)) += NP1 x
objexpr(subpy) -= NP1 4y
end for

The objective value of each of the subproblem can be obtained by evaluating the cor-
responding objective expressions with the solution of the original problem i.e. if y* is the
solution of the original problem then val(objexpr(subp;),y*) gives the objective value of the
subproblem 7. Dual values of the allocation variables are used to obtain the cuts for each

subproblem.

5.6 Parallel Design of LDAM and Experimental Setup

We do a parallel implementation of the LDAM scheme using Charm++ [5,62] as the parallel
programming language and the parallel runtime system. Stage 1 subproblems can be solved
independent of each other and hence also in parallel. Stage 1 decomposition, therefore, gives
us parallelism in Stage 1 which is not present in the naive Bender’s design. Additionally,
since the size of the subproblems is much smaller than the original Stage 1 problem size, size
of the individual Stage 1 bottleneck is also reduced because of the simultaneous optimization
of the Stage 1 subproblems on parallel processors. The processor distribution is as follows.
Processor 0 is dedicated to Stage 1 and Stage 2 manager. Each of processor 1 to ng, are
assigned one Stage 1 subproblem each. Processor 1 to p—1 also act as Stage 2 solvers, where

p is the total number of processors. The parallel design is depicted in Figure 5.4.
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Waits until it has received Stage 1
decisions from all Subproblems

STAGE 1 STAGE 2

SUBPROBLEM 0 STAGE 2 SOLVER
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STAGE 2 SOLVER
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SUBPROBLEM 2

CuTS FOR
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STAGE 2 SOLVER

STAGE 2 SOLVER

STAGE 2 SOLVER
v

Figure 5.4: Parallel design of the bootstrap phase with lagrangean decomposition. In each
iteration, Stage 2 Manager waits until it has received Stage 1 decision from each Stage 1
subproblem solver. It then combines the Stage 1 decision from the subproblems and sends
it to Stage 2 solvers. Stage 2 solvers solve the full lagrangean decomposed problem and send
the respective cuts to the Stage 1 subproblem solvers.

93



The stochastic program datasets that we use are from the military aircraft allocation
problem (Chapter 6). Table 5.2 gives the number of variables, contraints, and non-zeroes
in Stage 1 LP and Stage 2 scenario LP. Table 5.3 gives the total number of variables and
constraints in the specific instance of these problems, that we use for demonstrating the

benefits of LDAM method.

Fix the size of models in this table

Table 5.2: Size of Stage 1 and Stage 2 LP in the stochastic linear program datasets

Test 1st Stage 2nd-Stage Scenario Nonzero Elements
Problem Vars. Constrs. Vars. Constrs. A W; T;
8t 216 144 20944 13378 456 66881 252

10t 270 180 25573 16572 570 82797 308
12t 270 180 25573 16572 570 82797 308
15t 270 180 25573 16572 570 82797 308

Table 5.3: Size of the stochastic linear program datasets

Model Name Num Stage 1 Vars. Num Stage 2 Vars. Num Stage 2 Constrs.

8t120s 336 92513280 1605360
10t120s 390 3068760 1988640
12t120s 1270 25573000 16572000
15t120s 1270 925573000 16572000
5.7 Results

Figure 5.5 shows the timeline view of processors during the execution of naive Bender’s
method (Figure 5.5a) and LDAM method (Figure 5.5b). During the decomposition phase,
LDAM method has a higher processor utilization (average of 60%) as compared to the naive
Bender’s method (averagoe of 54%). This is because of the smaller size of the Stage 1
bottleneck during the decomposition phase of the LDAM method.
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Figure 5.5: Timeline view of processors for the naive Bender’s and LDAM method

Table 5.4-5.7 gives the performance of the LDAM method and NB method for several
datasets. Each of the reported numbers are average of at least 3 runs for every configura-
tion. While the benefits are not significant for smaller datasets, LDAM method significantly
reduces the solution times for larger datasets (for example, 12t120s in Table 5.6) and makes
otherwise intractable problems tractable (for example, 15t120s in Table 5.7).

LDP has higher number of variables and constraints than the original Stage 2 LP used in
the NB method (Table 5.8). This leads to higher Stage 2 optimization time in the LDAM
method as compared to the NB method. Therefore, parallel scalability of the LDAM method

is smaller as compared to NB method.
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Table 5.4: Solution time of LAHM (with different decompositions) and comparison with
naive Bender’s time for 8t120s dataset

(a) With 2 subproblems

#Bootstrap Rounds LDAM Naive Ben-
#Processors 0 50 30 10 50 Best Time Speedup ders Time Speedup
6 1338 1444 1702 1810 1434 1338 1.0 1696 1.0
12 851 1024 969 906 862 851 1.57 943 1.8
24 571 646 606 616 577 571 2.34 587 2.89
48 408 464 469 449 432 408 3.27 454 3.73
96 395 400 377 336 307 307 4.36 386 4.39
(b) With 4 subproblems
#Bootstrap Rounds LDAM Naive Ben-
#Processors 0 50 30 10 50 Best Time Speedup ders Time Speedup
6 1664 1952 1656 1543 1590 1543 1.0 1696 1.0
12 940 840 1015 906 831 831 1.86 943 1.8
24 573 600 589 629 597 573 2.69 587 2.89
48 410 493 447 425 400 400 3.85 454 3.73
96 381 372 381 359 366 359 4.29 386 4.39

Table 5.5: Solution time of LAHM (with different decompositions) and comparison with
naive Bender’s time for 10t120s dataset

(a) With 2 subproblems

#Bootstrap Rounds

LDAM

Naive Ben-

#Processors - 195 175 225 Best Time Speedup ders Time Speedup
6 - 3609 3133 - 3133 1.0 5722 1.0
12 2414 5163 1563 2070 1563 2.0 2276 2.51
24 1269 1282 986 0 986 3.17 1233 4.64
48 708 584 661 680 584 5.36 704 8.12
96 452 410 413 524 410 7.64 420 13.6
(b) With 5 subproblems
#Bootstrap Rounds LDAM Naive Ben-
#Processors 50 0 &0 80 Best Time Speedup ders Time Speedup
12 2167 2457 1601 1371 1371 1.0 2276 1
24 1516 814 698 934 698 1.96 1233 1.85
48 695 488 525 506 488 2.8 704 3.23
96 449 348 386 392 348 3.93 420 5.4
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Table 5.6: Solution time of LAHM (with different decompositions) and comparison with
naive Bender’s time for 12t120s dataset

(a) With 2 subproblems

#Bootstrap Rounds LDAM Naive Ben-
#Processors 50100 200 300 400 Best Time Speedup ders Time Speedup
24 - - - 0 2983 2983 1.0 13435 1.0
48 - - - 2000 2476 2000 1.49 10962 1.23
96 - 3074 1550 1407 1502 1407 2.12 - -
(b) With 4 subproblems
#Bootstrap Rounds LDAM Naive Ben-
#Processors 50100 200 300 400 Best Time Speedup ders Time Speedup
24 - 2237 2656 2977 3149 2237 1.0 13435 1.0
48 - 1694 1708 1865 2071 1694 1.32 10962 1.23
96 - 1161 1315 1420 1541 1161 1.92 - -

Table 5.7: Solution time of LAHM (with different decompositions) and comparison with
naive Bender’s time for 15t120s dataset

(a) With 3 subproblems

#Bootstrap Rounds  LDAM Naive Ben-

#Processors 100 200 300 400 Best Time Speedup ders Time Speedup

48 - - - 6515 6615 1.0 - -

96 - - 5157 4920 4920 1.34 - -

(b) With 5 subproblems
#Bootstrap Rounds LDAM Naive Ben-

#Processors 100 200 300 400  Best Time Speedup ders Time Speedup

48 9421 8522 9448 10072 8522 1.0 - -

96 5852 6599 7264 7146 5852 1.46 - -
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Table 5.8: Stage 2 variables, constraints count and optimization times for various LDPs and
the original Stage 2 LP

Dataset
Parameter 10t120s 12t120s
1 Subp 2 Subp 5 Subp 1 Subp 2 Subp 5Subp
Num Vars (per scenario) 25573 27497 30460 29262 31537 34161
Num Constrs (per scenario) 16572 18496 21459 19369 21644 24268
Optimization Time 0.12s 0.16s 0.18s 0.13s 0.18s 0.24s

5.8 Summary

Decomposing the original problem into smaller problem using lagrangean decomposition
significantly improves the convergence rate of stochastic linear programs. We obtain up to
75% reduction in solution time for some problems while being able to solve some otherwise
intractable problems. There is a significant amount of future work that ensures from here.
The Lagrangean decomposition approach presented in this approach is used for solving
problems with larger complexity, while the SAM approach proposed in Chapter 4 is used
to solve stochastic programs with large number of scenarios. We intend to combine these
two approaches to solve problems with higher complexity that also have large number of

scenarios.
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CHAPTER

Stochastic Optimization for Military Aircraft
Allocation with Consideration for Disaster

Management

The allocation of military aircraft to different operating wings and military functions must
often be done without complete knowledge of demand. Such planning must provide for
aircraft capacity in the event of imminent disaster threats. The problem is particularly
difficult for militaries with large airlift capabilities such as the US military. In this work, we
propose a two-stage mixed-integer stochastic optimization approach with complete recourse
that can model the special requirements imposed by disaster relief. We demonstrate, using an
imminent disaster scenario, a 35% benefit in cost as compared to deterministic optimization
that does allocation assuming a nominal scenario in the future. The number of scenarios in
the problem can also be very large because of the presence of large number of uncertainties.
This makes the problem intractable for state-of-the-art commercial integer program solvers,
such as, Gurobi. We show up to 57x speedup in time to solution while scaling from 4 to 242
processors, using our distributed solver for two-stage stochastic program, and compare its

performance with the Gurobi mixed integer program solver.
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6.1 Introduction

Most nations with large militaries have the ability to rapidly deploy forces using military and
civilian aircraft. Such capabilities allow these nations to carry out military, humanitarian,
and diplomatic activity across large geographic regions. These missions ship cargo, move
military personnel and distinguished visitors, and serve during contingencies such as wars
and natural disasters. Most of these activities are inherently unpredictable. In particular,
natural disasters seldom provide any advance warning. Even in cases of hurricanes, the scale
and extent of the disaster is difficult to predict. The challenge to military planners is that
aircraft used to provide assistance during such disasters much be cannibalized from other
planned operations. For large military nations such as the US, it is common to allocate
aircraft to various geographic regions or operation wings months in advance. This poses a
difficult challenge as the allocation of aircraft must be done under enormous uncertainty.

The US has an air mobility command which plans the allocation of aircraft for different
types of missions and to different operating wings [85]. The air mobility command must pro-
vide periodic working operations plans (WOPs) in the face of uncertain demands, uncertain
aircraft availability, etc. These plans must be robust; they must be sufficiently flexible to
address myriad random changes while being cost- and mission-effective. They must also be
sufficiently detailed to account for the unique details of military logistics. The WOP cycle is
nominally one month. WOPs specify what mission types will be flown by which aircraft types
using which operating wings. These plans primarily allocate aircraft to missions; details such
as aircraft assignment, crew pairing, and mission routing are addressed subsequently. The
WOP must incorporate sufficient buffer between aircraft allocated and available to address
changes not only in cargo requirements, weather delays and aircraft breakdowns but also
special requests for aircraft to assist in disaster recovery. When allocations are insufficient
to meet these anomalies, the air mobility command must choose between delaying deliveries
or potentially chartering civilian aircraft at a significantly higher cost to fill the void.

This chapter describes a stochastic mixed integer program that allocates aircraft to three
of the primary mission types 1. Channel missions, which are regularly scheduled missions,

2. Contingency missions, which are irregularly scheduled missions that deliver cargo to an
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international “hot spot,” and 3. Special assignment airlift missions, in which military air-
craft are chartered by organizations for a specific purpose such as disaster recovery. We
model the allocation problem as a two-stage stochastic mixed integer program with com-
plete recourse. Aircraft are allocated in the first stage while in the second stage subproblems
conduct more detailed planning with probability-weighted mission and cargo demands over
tens to hundreds of scenarios. The recourse is assured by allowing missions to be not flown,
and penalizing the unflown missions. We use Bender’s decomposition to iteratively solve
the problem by passing allocations from the first stage to the second stage and dual infor-
mation back. The iterative process is continued until a threshold convergence tolerance is
met. Because of the scale of the problem caused by both the number of aircraft involved
and the number of potential scenarios we use parallel processing to speed up the solution of
the problem.

In this paper, we present the design of a distributed solver and demonstrate the feasi-
bility of using large scale parallel computing for such problems and analyze the benefits of
using stochastic optimization for such stochastic aircraft allocation problems. In particular,
we show that in cases of imminent disaster, the stochastic approach leads to much lower
expectation and variability of the cost of operation.

The chapter is organized into 5 sections. A survey of related work is given in Section 6.2.
We present our stochastic formulation of the Air Mobility Command (AMC)’s aircraft allo-
cation problem in Section ?7. Results are presented and analyzed in Section 6.4. Finally,

the conclusion and future work are discussed in Section 6.5.

6.2 Literature Review

There has been significant work in optimization methods for providing relief during disaster.
Natarajarathinam et al [86], Altay et al [87] and Paulsson [88] review how disasters and
disruptions in supply chains have been handled in academic literature. Natarajarathinam
et al classify the literature based on the scientific research method employed to address
the crisis. 38% of the literature uses analytical approach, that is, simulation and mathe-

matical modeling, while other approaches - conceptual, applied and empirical are used in
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only 31%, 22%, 9% of the literature. In particular, Oh et al [89] have developed multi-
commodity, multi-modal network models for predicting detailed routing and scheduling of
commodities during a disaster using given modes of transportation. Stochastic optimization
has been used previously for planning in disaster. Barbarosoglu et al [90] propose a two-
stage stochastic programming model to plan the transportation of first-aid commodities to
disaster-affected areas. They develop a multi-commodity, multi-modal network formulation
with resource supply, resource requirements, and transportation system capacities treated as
random variables. Goh et al [91] present a stochastic model of the multi-stage global supply
chain network problem, with supply, demand, exchange, and disruption as the stochastic
parameters. Rappoport et al [92] propose a airlift-planning heuristic (APH) for planning
the allocation of airlift resources for moving cargo and passengers during peacetime and
crisis situations. Being a heuristic, APH can only give approximate solutions and provides a
user-interface for the user to evaluate multiple options. In our work, we propose a stochastic
formulation that aims at finding globally optimal solution, as even minor improvement in
solution can lead to significant savings in cost. Stochastic models were also developed by
Beamon et al [93] for inventory control during long-term emergency relief response. Bar-
barosoglu et al [94] develop a hierarchical multi-criteria mathematical model for helicopter
logistics planning in disaster relief operations.

Optimization methods have been applied successfully to several different problems in the
commercial airline industry, for example, Teodorovic [95], Yu et al [96], Barnhart et al [97].
However, nature of the problems faced by the military airlift planners differ significantly from
the commercial airline decision makers. For example, airlines face demands that have con-
siderably less variability as compared to military airlift requirements that are driven largely
by infrequent visits that can be of huge magnitude. Additionally, commercial airlines can
chose the market that they want to serve and also with what frequency while the military
airlift does not have this flexibility, although in many cases, they have much greater control
over the transportation network infrastructure. Currently, CAMPS [98], Consolidated Air
Mobility Planning System, is used to manage US military airlift. CAMPS consists of a Win-
dows program, a set of web and application servers, and a database management system.

It is essentially a rule based system that does automated scheduling of missions based on
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a host of rules/criteria that the planner can model with CAMPS. However, more analyti-
cal methods are required for military operations and logistics. Baker et al [99] describe a
large-scale linear programming model for routing cargo and passengers through a specified
transportation network of U.S. Air force, subject to many physical and policy constraints.
Salmeron et al [100] employ stochastic programming for planning the wartime, sealift deploy-
ment of military cargo that is subject to attack. Their approach shows that the stochastic
solution incurs only a minor penalty when no attacks occur, but outcomes are much better
in worst-case scenarios. To handle the uncertainty of aircraft reliability, Goggins et al [101]
add a stochastic extension to the optimization model for determining the maximum on-time
throughput of cargo and passengers that can be transported with a given fleet over a given
network. On the other hand, our work addresses the problem aircraft assignment in the
presence of stochasticity in military mission requirements. A wide range of applications of

stochastic programming can be found in [27].

6.3 Stochastic Model for Aircraft Allocation Problem

The intended output of this model is the vector of aircraft allocations produced in Stage 1 of
the stochastic mixed integer program. Realizations of future outcomes in Stage 2 influence
this output. The second stage realizations consist of aircraft capacity constraints, aircraft
flow constraints, cargo demand satisfaction constraints, and limits on usage of allocated
aircraft. Currently, only cargo and aircraft demand fluctuations are modeled as random
variables; incorporating random mission durations is ongoing. The objective function seeks
to minimize the probability-weighted costs of aircraft operation and leasing, plus the cost of
late and undelivered cargo.

While the categorization of missions may vary for different countries, in the context of the
US Air Mobility Command, the missions can be categorized as follows. Any of these may

require aerial refueling and transshipment of cargo, which are also incorporated.

e Channel These missions originate and terminate at an aircraft’s home base, making

several enroute stops to pick up and drop off cargo and passengers at major aerial
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ports. The routes are regularly scheduled based on forecast cargo demand patterns.
A realization consists of random cargo and passenger draws for each day along each
route (outbound and inbound). The routes are fixed, but the frequency and aircraft
used may be varied for the purposes of this model. Non-delivery penalties occur if

channel cargo is undelivered for more than seven days.

Contingency These are similar to channel missions in that they require cargo and
passengers to be carried between specified locations, generally from the US to an over-
seas region. However, they differ from channel missions due to high demand variance
and localized destinations. A realization consists of a Bernoulli draw for each type
of contingency, each of which requires between a few and (potentially) hundreds of

sorties. Late and non-delivery penalties are similar to those used for channel missions.

Special Assignment Airlift Missions (SAAM) These aircraft are chartered for
a specific time frame by a military organization for its exclusive use. A realization
consists of daily aircraft required, aircraft type, mission routing, and mission duration.
Demand is aircraft, not cargo centric, and is of moderate variance. There are oppor-
tunities for special airlift assignment missions to carry channel cargo while positioning
to or from the customer’s specified location. The unmet missions are penalized above

the short-term rental rate of the associated aircraft.

Assignment of airlift capacity for disaster relief can be modeled as a mixture of contin-

gency and special assignment airlift missions. While some relief supplies can be viewed as

contingency cargo, other requirements may require charting entire planes to move cargo to

the affected regions. We now discuss the Stage 1 and Stage 2 formulations (See Appendix A

for the linear programs).

6.3.1 Stage 1 Formulation

The first stage determines the values of y;; ,,, the allocation of aircraft by type (j), location

(1), and mission (m). The optimal Stage 1 values (y*) are sent to Stage 2 for scenario

evaluations. Stage 2 sends back the optimal cost Opt(y=*,s), and the dual value information
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for every scenario (), which together forms Stage 2 cuts. Stage 2 cuts are added successively
until a convergence tolerance is met.

The objective function seeks to minimize the cost of civilian aircraft allocation, plus the
probability-weighted sum of Stage 2 cuts. Military aircraft are excluded from the objective
function because they do not incur allocation costs. The feasible allocation constraints limit
the total allocated aircraft to the number available at each base. The Stage 2 cuts represent
the dual costs from the mission and flight time constraints as affected by the Stage 1 y

variables.

6.3.2 Stage 2 Formulation

The second stage models the execution of channel, contingency, and special airlift assign-
ment missions for a large number of stochastic realizations. The constraints are given in
Appendix A.5, and are referred along with the descriptions in this section. The values of
Yjm generated from Stage 1 are used as inputs to this program. The Stage 2 objective
function minimizes the sum of short-term rental costs incurred to meet SAAM and other
disaster related requirements, the cost of late channel and contingency cargo, the cost of
very late or undelivered cargo, and the cost of aircraft operations.

The demand constraints are represented as cargo inventories for each requirement across
time periods; the difference between previous and current inventories, adjusted for deliveries,
equals demand. There are separate constraints for cargo that must be directly delivered
(Constraint 1), and cargo that may be either directly delivered or transshipped (Constraint
2). The transshipment constraints (Constraint 3) ensure cargo delivered in the first leg of a
transshipment equals cargo delivered in the second leg. The aggregate capacity constraints
(Constraints 4a, 4b) limit cargo deliveries by the cumulative capacity of the aircraft assigned
for delivery. The specific capacity constraints (Constraint 5) are similar, but constrain the
individual cargo types separately to account for their unique loading characteristics. The
price break constraint (Constraint 6) enforces limits on late cargo.

Mission time constraints (Constraints 7, 8) ensure that no more aircraft are away from

home base than have been allocated. Similarly, the flying time constraint (Constraint 9)
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limits aircraft flight hours throughout the model time horizon to their historical maximum.
Finally the air refueling constraint (Constraint 10) ensures that tankers are flown in support
of aircraft sent along routes that transit air refueling locations.

Since, Stage 2 program does the aircraft scheduling for an entire month, it is very large
in size and has many integral variables. The total number of Stage 2 scenario evaluations
required for stochastic optimization can be very large in number and hence make the ap-
proach computationally intractable. The intended output of the problem is the Stage 1
decisions. Stage 2 optimizations are done only to obtain the cost of the Stage 1 decision and
the optimal values of the Stage 2 optimizations are not used. Therefore, in order to make
the problem computationally tractable, we relax the Stage 2 program to a linear program.
The cost of the relaxation is then used as a proxy for the cost of the original Stage 2 integer

program.

6.4 Results

The data used to implement this model have a variety of sources. Aircraft characteristics,
costing, basing, and routing are based on historical patterns and publically available in-
formation. Channel and Special airlift assignment mission demands are historically based;
contingency demands and locations are derived from a commonly used analytical data set.
Tradeoff between leasing additional aircraft and delaying cargo is subject to a variety of con-
ditions, but we generalize as follows: the maximum penalty for a planeload of non-delivered
cargo is 10 percent higher than the cost of the most appropriate short-notice leased aircraft,
multiplied by the duration of a typical mission length for that aircraft.

In this section, we discuss the cost benefits of stochastic optimization, followed by parallel
speedup of our distributed solver and its comparison with a commercial state-of-the-art

mixed-integer program solver.
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Figure 6.1: Hedging against future uncertainty can play a significant cost-saving role. In this
6-scenario example with an imminent disaster, squares correspond to each scenario’s cost
using deterministic optimization of expected demands; the horizontal average is depicted as
a dashed line. In contrast, the circles correspond to stochastic optimization costs for each
scenario (with the dashed-line average). Stochastic optimization yields only slightly more
costly solutions when actual demands are low (scenarios 1, 4, and 5), but are much less
costly when demands are elevated due to the disaster (scenarios 2, 3, and 6). The average
cost savings in this example is approximately 35 percent.

6.4.1 Benefits of Stochastic Optimization

We do comparison of stochastic optimization as compared to deterministic optimization by
dividing our analysis in two cases. In Case 1, we look at a scenario provided to us and
add the needs from an imminent disaster relief operation in some scenarios. Case 2 is a
larger scale problem in which there is no imminent disaster threat but some capacity is to

be allocated as a routine requirement for disaster relief.

6.4.2 Casel

We consider the case of an imminent hurricane which may or may not cause disaster de-

pending upon whether it hits the shores. If it hits the shore, it will cause disaster leading
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Figure 6.2: For randomly generated scenarios with no imminent disaster, hedging against
future uncertainty usually leads to cost saving. In this 120-scenario example, the stochastic
programming solution has a lower cost in all scenarios. The average cost savings in this
example are 3 percent

to dedicated aircraft requirement for disaster relief depending upon the extent of disaster
caused by it. This situation is captured by scenario 2, 3 and 6. On the other hand, if
the hurricane does not hit the shores, there is small regular perturbations in channel and
contingency missions. This is captured by scenario 1, 4 and 5. Figure 6.1 illustrates this
6-scenario example. It shows that deterministic optimization of average demands yields low
cost solutions when actual cargo and aircraft demands are small or average, but perform
very badly when actual demands due to the disaster are elevated. In contrast, stochastic
modeling incorporates hedging against uncertainty and yields much improved solutions when
actual demands due to disaster are elevated. The cost of hedging is approximately 5 percent,
but reduces overall costs by as much as 57 percent and an average of 35 percent. Addition-
ally, the cost variance is reduced by 66 percent. This finding supports the planner’s goal of
finding not a point solution at an unstable minimum, but a stable “trough” on the solution
surface that balances cost savings with re-planning needs, while minimizing disruption to
the existing plan. When implemented, this methodology could realize a significant reduction

in cost, and/ or a significant increase in timely mission accomplishment.
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6.4.3 Case 2

While Case 1 demonstrated the potentially large benefits that are obtainable from using
stochastic programming when there is a specific demand scenario, Case 2 is more generic
where there is no imminent knowledge of a disaster and hence no specific aircraft require-
ment. Here we randomly generate 120 scenarios using poisson distribution. These scenarios
are used to obtain the stochastic programming solution. The figure shows the percent im-
provement of the stochastic solution over the corresponding deterministic solution obtained
using average values for demand. Notice that in all cases the stochastic solution does better
than the deterministic solution, albeit the differences are not as significant as in Figure 6.1.
Because the scenarios are randomly generated, the average scenario is not one of the ran-
domly generated scenarios. Moreover, in random scenarios, the chance that all demands
will be higher or lower than their expected demand is very small. Accordingly, the benefits
obtained from stochastic programming are somewhat smaller - averaging approximately 3
percent and with a maximum of 6 percent. The stochastic program performs better in all
cases because it provides higher allocations to hedge against the chance that there will be
high demands, especially where the recourse involves mission cancellation. Thus, it incurs
higher costs of short term leases for demands that can be satisfied by commercial aircraft,

but ensures that missions that require military only aircraft are suitably covered.

6.4.4 Parallel Performance

Our experiments were performed on a cluster of 300 compute nodes, each with two 2.67 GHz
Intel® Xeon hex-core processors and 24 GB of RAM. The interconnection network is a high
speed Voltaire QDR Infiniband switch.

The Stage 1 mixed-integer program has 57 integer variables and 18 constraints. Cut
constraints are added to the Stage 1 problem after every iteration of the multicut method.
Each Stage 2 scenario has 60281 variables, 42822 constraints, and 220018 non-zeroes. An
equivalent extensive formulation of the stochastic program with 120 scenarios has 7233777
variables, and 5138658 constraints. Figure 6.3 shows the time it takes to solve the extensive

formulation of the stochastic program using the parallel Gurobi IP solver. Gurobi has a
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Figure 6.3: Time to solution of the extensive formulation of the stochastic program for
different number of scenarios. The extensive formulation ILP is solved with Gurobi parallel
integer solver running on 12 processors. Total time is broken down in to 3 components:
Generation time - time it takes to generate the extensive formulation ILP from individual
scenarios, Root Solve Time- time taken by Gurobi to solve the root relaxation of the extensive
formulation ILP, Optimization time After Root Solve - time after the root solve to obtain
the integer solution that is within 1% of the optimal. Optimization of the problem with 240
scenarios was terminated after walltime limit of 14000 seconds.
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Figure 6.4: Time to solution using our distributed solver for the aircraft allocation problem
with 240 scenarios.

parallel IP solver that can explore the vertices of the BnB tree simultaneously on multiple
cores of the same node. In our experiments Gurobi was configured to launch 12 threads
on 12 cores of the compute node. Total time to solution increases superlinearly with the
increase in number of scenarios, rendering the problem intractable in the required walltime
when the number of scenarios become large. Time to solve the relaxed linear program of
the extensive formulation also increases superlinerarly. Therefore, benders decomposition is
used to speedup the optimization time of stochastic programs.

Figure 6.4 shows the parallel speedup of the problem with 240 scenarios. Note that
even with 4 processors, the solution time is lower than Gurobi solver with 12 processors.
We obtain up to 57x speedup (94.2% parallel efficiency) while scaling from 4 to 242 cores.
The maximum number of cores that can be used for a 240 scenario problem is 242 - one
core for Stage 1 solver, one for Stage 1 manager, and 240 Stage 2 solvers for simultaneous
evaluation of the 240 scenarios. During Stage 1 optimization, Stage 2 cores are sitting idle.
We could use other cores on the same node as the Stage 1 solver for solving the Stage 1 mixed-

integer program in parallel using Gurobi’s parallel integer program solver for shared memory
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machines. However, we observed that this did not give us any observable improvements in
performance. This has been verified by Koch et al [53], that Gurobi integer program solver
suffers from poor parallel efficiency.

We get superlinear speedups, for example, while scaling from 16 to 32 processors, the time
to solution reduces from 2620 seconds to 1135 seconds. This is a result of degeneracy present
in the Stage 1 and Stage 2 linear programs. Across scenarios and iterations, Stage 2 linear
programs vary only in the right hand sides of the constraints. Successive optimizations can
therefore be significantly faster, if the optimization starts from the basis and solution of the
previous optimization. This is also called as warm start or advanced start. Using warm starts
significantly reduces the optimization time. However, the optimal solution depends on the
starting basis, because a degenerate program can have multiple optimal solutions with the
same objective cost. Different optimal solutions can result in different dual values and hence
also the cut constraints. The sequence in which scenarios are optimized in Stage 2 can also
vary across multiple runs of the same problem. This is because the order in which Stage 1
manager receives work requests from Stage 2 solvers can vary because of network interference
during the sending of messages and different optimization times because of operating system
noise. Different optimization sequences cause different cuts to be generated, and therefore
the course of convergence can vary across multiple runs of the same problem on the same
cores. This causes some variation in the number of iterations to convergence across multiple

runs on the same/varying number of processors and hence leading to superlinear speedups.

6.5 Summary

Our research clearly demonstrates the applicability of stochastic optimization in planning
for disaster related airlift capability. Significant costs savings are obtainable when disasters
are imminent as shown in Case 1. More generally smaller but still significant benefits are
obtained when allocating aircraft without a specific disaster threat as shown in Case 2. Our
work also shows the effectiveness of using high performance parallel computing when solving
large stochastic optimization problems. We obtain speedup of 57x while scaling from 4 to

242 processors.
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CHAPTER 7

Responding to disruptive events at execution

time: a stochastic integer programming
approach to Dynamic Mission Replanning by
the Air Mobility Command of the Department

of Defense

7.1 Introduction

The most dynamic component of the department of defense’s (DoD) logistics domain involves
airlift operations. As discussed in Chapter 6, the airlift missions are subject to a great deal
of uncertainty in the timings and amounts of demands that they have to serve. Further
complicating matters are disruptions that arise due to airfield closures on account of weather
or other events and aircraft breakdowns.

The management of DoD’s airlift operations is the responsibility of the 618th Tanker Airlift
Control Center (TACC), an element of AMC. The AMC publishes a planned schedule which
consists of a list of itineraries and a pairing of aircraft and crew with these itineraries. This

plan is typically generated with a nominal set of anticipated demands and the published
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schedule also includes details of how much of a demand is served by any given leg of any
given itinerary. At the time of execution of this schedule the barrel master must take into
consideration the nature of actually realized demands and the associated cargo and passenger
quantities. Anticipated and already occurring service- and weather-related disruptions must
also be taken into consideration. Therefore the barrel master must impose some changes on
the published schedule. However, she must aim to minimize the impact of these changes on
crew schedules, delivery delays, and the number and magnitude of further future changes.
The current approach used by the AMC relies on experienced barrel masters who use various
visualization tools to identify and eliminate infeasibilities in the schedule. In particular, such
an approach is myopic and ignores the impact of the changes on future missions.

This chapter describes an analytical approach to the barrel master’s problem. Given that
different instances of this problem need to repeatedly be solved at ezecution time, one desires
a solution approach that finds the optimal solution quickly. We present the details of our
modeling and computational approach. Within the framework of optimization, there are
several possible approaches. For example, one may wish only to eliminate the current set
of infeasibilities in the system or one may focus only on a ‘most likely’” future scenario and
optimize the schedule for that. Finally, one may consider several (probability weighted)
scenarios and try to find the schedule changes that not only restore feasibility but also
optimize the ‘expected value’ of the objective. We propose the third approach for this
problem and compare it with the other two approaches.

However, there are some significant challenges that arise with this approach. For ex-
ample, with more scenarios, the problem size increases beyond the capability of sequential
machines. Secondly, one has to formulate scenarios in such a way that we maintain fidelity
with reality while also keeping the model structure simple enough to analyze and code. Fur-
thermore, standard packaged MIP solvers scale quite poorly as problem size increases. We
use our parallel PSIPS solver (described in Chapter 3) to solve these large sized stochastic
mixed-integer programs. PSIPS solver exploits scenario parallelism, and branch-and-bound
parallelism on a distributed, high-performance cluster to solve these problems in a timely
manner. The major contributions of this work are the mathematical modeling of the very

complex Dynamic Mission Replanning (DMR) problem of the US AMC. We propose a com-
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putationally feasible stochastic optimization formulation for this problem and demonstrate
how this outperforms the myopic and deterministic optimization approaches.

This chapter is divided into 11 sections. Section 7.2 does a brief literature review on
optimization of airline operations. Section 7.4 gives a detailed description of the military
dynamic mission replanning problem. Section 7.3 gives a description of the various terms
used in the chapter. We then discuss the prominent features of our model and the modeling
approach in Section 7.5 and Section 7.6, respectively. The proposed stochastic formulation
is explained in Section 7.6. Some implementation details are mentioned in Section 7.8.
This is followed by the experimental setup (Section 7.9) and the computational results

(Section 7.10). Finally, the findings of the chapter are summarized in Section ?7.

7.2 Related Work

Most of the research in optimizing airline operations has focused on cargo and passenger
movement in the commercial airline sector; please see papers by Barnhart [102-104], Klabjan
[105-113], and Nemhauser [114,114-136] and the references therein for an overview. Mulvey
et al. [137] give an overview of robust optimization approaches to several real-world problems
including air-force airline scheduling and describe the suitability of parallel and distributed
computer architectures for the solution of such models. In the last chapter (Chapter 6) we
demonstrated the applicability of parallel computing to Air Mobility Command’s aircraft
allocation problem, which is modeled as a stochastic mixed-integer program.

Baker et al. [138,139]) discuss military applications of airlift optimization; McGarvey
et al. [140] at RAND corportation developed an optimization model examining the cost-
effectiveness of commercial intratheater airlift (CITA) movements in the U.S. Central Com-
mand (USCENTCOM) area of responsibility. Approaches such as those in the master’s thesis
of Williams [141] share some characteristics with ours, for example, route and itinerary gen-
eration is not a part of the optimization model — these are generated separately in accordance
with various business rules. In the master’s thesis [142], Pflieger indicates an optimization
approach to minimizing the cost of a single airlift mission which requires air-refueling. In

Stojkovic et al [143], an extension of PERT/CPM models is proposed for solving “Day of
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Operations Scheduling” problem. However, this model only allows small ground delays as
recourse decisions and as such it can only handle ‘small” disruptions. In the master’s the-
sis [144], Kopp adapts the approaches used in the motor carrier industry to AMC’s context
and seeks to optimize the operating ratio. In [145], Kramer et al describe AMC’s Barrel
Allocator tool which assigns missions to air wings. An assignment specifies an air crew
and an aircraft of a specified type at a particular base. The Air Tasking and Efficiency
Model (ATEM), proposed by Brown et al [146] is a deterministic optimization model that
has been used for a few years by the US CENTCOM. Rushmeier et al. [147] model and
handle schedule planning, fleet assignment, and crew scheduling as three separate steps in
the commercial sector. Smith et al. [148] present an incremental optimization approach for
the Barrel Master’s problem at Air Mobility Command (AMC). Wilkins et al [149] propose
a decision support system for AMC flight managers that identifies disruptions that require
corrective actions and offers suggestions for dynamic rescheduling of missions. Finally, Wu
et al [150] give a unified view of various simulation and optimization approaches that one

may take for airlift problems.

7.3 Terminology

In this section we give precise definitions of some of the terms that we use throughout this

chapter.

MOG This stands for Maximum On Ground space for aircraft parking at a base. This
could either be specific to the aicraft type (for example, two wide body aicraft, three
narrow body aircraft) or an aggregated total amount of space. Rules are available for

converting parking space for one type of aircraft to parking space for another aircraft.

Itinerary An itinerary is an aircraft type or tail number together with an alternating se-
quence of legs and stops; the legs specify their flying time, load capacity, fuel require-
ment, crew requirement, and flying cost; the stops specify the minimum stop length,

fuel requirement, etc.
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Demand A demand consists of a point of embarkation, a point of disembarkation, an earliest
time (epoch) at or after which the demand may be loaded onto an aircraft, an earliest
arrival time at which the demand may be delivered at its destination, and the latest
arrival time at which the demand may be delivered without incurring a non-delivery

penalty.

Weather event This is a disruption event that leads to unavailability of an airbase for
either landing or takeoff or both. The event description consists of the affected airbase,
the time at which the event becomes known, the start time of the event, the duration
for which the event affects the airfield, and an alternative location (generally close to
the affeced base) where the itineraries destined to the affected base can be diverted if

required.

Breakdown event This is a disruption event due to an aircraft breakdown. It consists of
the itinerary number of the affected aircraft, the stop number of the itinerary at which

the aircraft breaks down, and the time required to repair the aircraft.

Command and Control delay event These are either TACC or other command-directed

delays of an aircraft at a base. paper work.

Demand event This event corresponds to any change in the existing demand, for example,
change of load, change in latest arrival time, etc. A demand event can also include

addition of a new demand.

Resource event A resource event corresponds to a change in the available resources for
carrying out the planned set of itineraries. The change could be in the available amount
of MOG space at a base, the number of aicraft, the number of crews or the amount of

fuel at a base.
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7.4  Dynamic Mission Replanning

90% of the airlift missions by US Air Mobility Command (AMC) do not execute as planned
and approximately 5% of them end up with delays'. The missions are disrupted because of
1) command and control delays, 2) airfield and weather delays, 3) cargo requirement changes
and cargo delays, and 4) aircraft and crew delays. In the occurrence of such disruption events,
all the missions need to be adjusted. For example, consider a situation in which a Tanker
Airlift Control Center (TACC) duty officer (Figure 7.1) receives a phone call informing him
that the C5 aircraft, tail number 451, that was about to takeoff in an hour from Dover
airbase for Tripoli International airbase has been called off. The plane is still loading and
will be ready to takeoff in three hours from now. The job of the duty officer in such a
situation is to consider the effect of this event on this mission and all other missions around

the world.

Figure 7.1: TACC duty officer

While doing this, the duty officer must consider the following at all the airbases: 1) Maxi-
mum on Ground (MOG) parking space limitations, 2) weather events, 3) cargo and passenger
available times for loading, 4) target delivery time and priorities of cargo/passenger, 5) fuel
availability, 6) air refueling requirements, 7) country over-flight permissions, etc. The current
systems available to TACC officers for doing mission replanning consists of a set of applica-
tions that provide an effective way of visualizing various factors that could result in delay
or deviation of a planned mission. These help the duty officer to decide the recourses for

all the affected missions. The decisions are taken ad-hoc and need not be globally optimal.

'Source: DMR Business Case Analysis
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Additionally, the process is very cumbersome, error-prone and leads to cumulative delays
in mission. This also leads to crew dissatisfaction (which impacts crew retention rate), fuel
costs inefficiencies, inefficient cargo velocity, and so on. Hence, there is a general agreement
that AMC missions should be optimized for variables that are within AMC control like the
mission itineraries that are selected, the aircraft type chosen for each mission, recourse de-
cisions that are taken at the time of disruptions, etc. Business rules and realities that are
outside of AMC control constitutes the constraints and input parameters of the optimization
problem.

In this section, we give a more detailed description of the U.S. Dynamic Mission Replan-
ning (DMR) problem. As the name suggests this is concerned with recovery from disrup-
tions. The basic outline of the problem is as follows. We are given the following pieces of

information:

7.4.1 Static Information

There are resources available with the AMC that it can use for executing the planned set of
missions. These include the MOG space at each of its airbase at any given time, fuel influx
at each airbase, aircraft and crew availability at a base at any given time. In addition, the

static information includes the currently executing schedule, consisting of:
1. A list of itinerary that are flying (or are scheduled to be flying).

2. The list of demands that were known when the currently executing schedule was gen-

erated.
3. The crew and aircraft assignments to various itineraries.

4. The amount of each load (demand) that each itinerary carries on its various legs.

7.4.2 Dynamic Information

The dynamic information consists of all the dynamic elements that can disrupt the planned

execution of the schedule. This consists of:
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e A list of disruptive events that affect the current schedule. These effects include making

the cost too high or even making the currently planned schedule infeasible.

e A list of newly realized demands, or changes in the amounts of various demands, since

the currently executing schedule was generated.

e The changes in amount of available resources from the time when the currently exe-

cuting schedule was generated.

e A list of future scenarios, which consist of demands (which may be either new or
modified versions of known demands) and disruptions, along with their associated

probabilities of occurrence.

As noted above, the presence of disruptive events can make the currently excuting schedule
impractical, expensive, or even infeasible. The primary goal of dynamic mission replanning
is to make replanning decisions that make the modified schedule feasible. Secondly, we aim
to take the possible future scenarios into consideration and come up with a modified schedule
that has a high chance of either remaining feasible or requiring fewer changes when future
disruptions occur. Finally, we also wish to make sure that we do it as cheaply as possible.

Therefore, the output of any DMR algorithm must include the following:

e A modified schedule. This consists of:
1. A mapping that indicates what changes, if any, are to made to the previous
itineraries, loads, and aircraft /crew assignments.

2. A list of newly added itineraries, loads, and aircraft/crew assignments.

7.5 Model Features

In this section, we discuss some of the prominent features or methods that we took to
formulate the DMR problem. At first, we discuss the way we define a scenario and various
types of disruption events in our modeling approach. This is followed by the description of

the disruption handling.
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7.5.1 Scenarios

An important question is: what constitutes a scenario in the context of this problem. We

define a scenario to be a random variable w = (w,., Wg, Wy, wp) as follows:

1. The component w, of w characterizes the state of resources (aircraft, crew, fuel, etc.)
at the time of execution i.e. the available resources could be different from what was
assumed at the time of planning in Stage 1. Any change in the resources is characterized

as a Resource Change Event (RSCCHNGEVE).

2. The component w, of w characterizes a specific set of realized demands. Any change
in existing demand or addition of a new demand is characterized as a Demand Event

(DMDEVE).

3. The component w,, of w characterizes a specific set of realized events that lead to a
base becoming unavailable for landing or take-off or both, for example, weather events.
We call these types of events as Base Unavailable Event (BASEUNAVAILEVE). For a
weather event, we assume that it has the following features: ¢, a time at which we
become aware of the (imminent) weather event, 0 < t, < ¢, a time at which the weather
event begins, and d > 0 the duration of the weather event, and [ a location (base) at
which the weather event occurs. Furthermore, we assume that the effect of a weather
event is simply to make the specified location unavailable for takeoffs and landings for
the duration of the weather event (¢, to ¢, + d). We also have the potential to handle

reduced landing and take-off capacities at a given base.

4. The component w,, of w characterizes a specific set of realized on ground delays, for
example, aircraft breakdowns. We call these types of events as Ground Delay Event
(GNDDELAYEVE). We assume that a GNDDELAYEVE has the following features: 7
an itinerary thatgets delayed, IC a leg of the said itinerary during which the delay
occurs, D a numerical measure of the event intensity, expressed as the time delay that

is introduced into the itinerary because of the breakdown.

Scenario formation is depicted in Figure 7.2. We have a set of Resource Change Events

(RscCHNGEVES), Demand Events (DMDEVES), Base Unavailable Events (BASEUNAVAILEVES),
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and Ground Delay Events (GNDDELAYEVES). We take a cartesian product of all of these
event sets to get as many as #RSCCHNGEVES x #DMDEVES x #BASEUNAVAILEVES X

#GNDDELAYEVES scnearios.

Demand Base Unavailable Ground delay Resource

Events Events events Scenarios

U Demands changes U Weather disruption U Airplane breakdown d Crew
U Cargo delays Q Airbase Unavailable 0O Command and Control Q Fuel
O New demands Q MOoG

O Aircraft
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Y
1N
1 \
1
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Figure 7.2: Different types of disruption events and scenario formation

7.5.2 Handling Disruptions

It is easy to check which itineraries are directly affected and thus must be modified in light

of the disruption events in a given scenario. Therefore, for each itinerary ¢ we precompute

and keep a continuation set of ‘derived’ (or recourse or continuation) itineraries, denoted D; ;
that will be chosen as the continuation if 7 is (known to be) directly affected at time ¢. These
derived itineraries include a set of delayed continuations as well as rerouted continuations.

In particular this set also includes itineraries that get terminated before reaching their final
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destination.

1. We note that if a breakdown event affects an itinerary 7 then we assume that it affects

all itineraries in all its continuation sets.

2. At this stage we have some flexibility in deciding weather we reroute or delay only those
itineraries that are “directly affected” (keeping the rest of the schedule unchanged) or
if we should allow a greater set of itineraries to be modified with the view that this
might yield a better or more robust schedule given the altered state of the system. To
this end, we may wish to compute D;, for all the selected itineraries that fall in the
so-called “cone of causality” of the given disruptive event. (See ‘light cone’ for a fuller
motivation, replacing the speed of light by a suitably tight upper bound for the speed

of the jets in question.)

Some other features of the D, set are:

1. Itineraries in D;; can only start at or after ¢ and only at the location of itinerary ¢ at

that time.

2. ITtineraries which simply introduce a delay of a specified length into i at all times after

t but are otherwise identical are included in the set D, ;.

3. Also included are itineraries that get rerouted to different (nearby) locations at and

after time ¢.

7.6 Modeling Approach

In this section, we discuss the various ways of formulating the DMR problem.

7.6.1 A nalve approach

A naive approach to the DMR problem is to simply solve a deterministic optimization

problem at each time ¢ when we become aware of a disruptive event, i.e., assuming that
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no further disruptions will occur in the future. Therefore, at the first time of awareness
of a disruption event, we simply try to optimally find a feasible set of recourse itineraries
while assuming that there will be no disruptive events. The solution (i.e., new execution
schedule) that is thus obtained is followed until the awareness time of the next disruption
event. In other words, this solution gives us the state of the system at all times prior to
the next disruptive event (or the next time at which we have the awareness of an imminent
disruption). At the next time of awareness we then try to find an optimal schedule that takes
us from this state to the desired final state (or as close to it as possible) by choosing itineraries
from a feasible set obtained by replacing the affected itineraries by their continuation sets.
To disincentivize wholesale changes to the existing schedule we might wish to include the ¢,
distance from the original schedule in our objective function.

Therefore, once we are given a scenario w, we know the number of disruptive events that
show up in this scenario. Let’s denote this number by N,. Now consider the “time 0”

problem: We solve the following problems at each of the N, ‘times of awareness’:

min cg ¥y

Arye = by — Ly,

where 1 < k < N, and y;_; is the optimal solution of the ‘previous’ problem (that is

solution from the previous disruption event).

7.6.2 A ‘prescient’ approach

In this approach, given a scenario, we assume that ¢, = 0 for all weather events and also
that we have advance knowledge of all future breakdowns at time 0. Therefore we might,
in principle, be able to avoid all disruptive events by just planning around them. As such,
this approach is rather more unrealistic than the ones indicated above but it is nonetheless

useful for providing a theoretical benchmark or bound on well one might be able to do.
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7.6.3 A stochastic optimization approach

At the time of execution, we can easily imagine a scheduler that does not naively solve
a deterministic optimization problem but instead solves a stochastic optimization problem.
However, such a scheduler has no knowledge of the number of disruptive events that can
still occur in her planning horizon?.

In other words, at the k™™ awareness time of a disruptive event, the scheduler solves a

stochastic program of the form

n;‘in By [Qr(Yk, M)

Ly + Apyr = by,

for k € Z>o where 7x11 = (Mks1, Mhs2, - - - ) denotes the future uncertainty, and at (k + 1)
event only 7.1 becomes known. If we assume that there are no more than N disruptive
events in any planning window, then we have no more than N stages and the N'" stage

problem becomes deterministic:

min Qn(yn)

Lyyy_1 +Anyn = by

Clearly, this approach is in some sense the most rational amongst the ones that we have
listed, however, it is also quite unrealistic and computationally demanding. We don’t expect
that a scheduler, at execution time, is likely to have the computational resources necessary
to follow such a procedure. Therefore, we formulate the problem as a two-stage stochastic
program. Consider a monolith problem in which all the LP’s that are solved at each event
awareness time are put together into a single LP. The itinerary variables from the previous
event LP become the right hand sides of the next event LP (which in the naive approach

are constant values derived from the optimal solution of the previous LP).

2More on that in the next sub-section.
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Below is shown the structure of the aggregated monolith LP (the objective function is

largely immaterial):

N
min E CrTk
k=0

Lyzo + Ay = by

Lyzn_1+ Avzy = by

where, N is the number of events in the scenario and z is the stage 1 solution.

7.6.4 Moving horizons, replanning at fixed intervals, and combinations
thereof with previous approaches

Finally, doing replanning at each disruption event can be too expensive and may require
a lot of changes to the schedule because of the large number of events involved in a real-
case scenario. We indicate an approach which we claim is realistically implementable. We

summarize this approach as follows:

e Pick a sufficiently fine, discrete set of times, say {0,0t,20t, ..., Mdt}, at which we

review the available information and plan recourses, as necessary.

e Pick the length of a fixed window of time, say At, in the future, and a suitable per-
formance measure () on this time-window on which the scheduler tries to optimize the

performance given the information available.

e At each time kdt, check if new information is available that affects the currently planned
scheduled. If so, re-plan the schedule for the period (kdt, kot + At] that optimizes the

performance measure Q.
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7.7 Model Formulation

We have a whole host of modularized functions that compute model parameters using the
input data. This allows us to satisfy many requirements, for example those concerning the
requirement of an augmented crew or for satisfying rules related to hazardous cargo, without

needing to explicitly include complicated constraints.

e Each index j denotes a set of aircrafts. This set is either a singleton (if we wish to
indicate a specific jet) with a (unique) tail number or it contains multiple jets of the
same ‘type’ (if the identity of individual jets is not important). In general, we wish to
track the identity of individual jets when they have been assigned to flying itineraries
but not of those that are ready to handle disruptions but are not assigned specific

itineraries or missions.

e Each index k denotes a set of crews and again, this set is either a singleton (if we
wish to indicate a specific crew) or it contains multiple crews of the same ‘type’ and
qualifications (if the identity of individual jets is not important). In general, we wish
to track the identity of an individual crew when they have been assigned to scheduled
itineraries but not of those that are ready to handle disruptions but have not been

assigned specific itineraries or missions.

e To handle itinerary legs that require an ‘augmented crew’, for example an additional
pilot or loadmaster but not an additional ‘full’ crew, we include a set of ‘dead-heading’
variables ¢, which denotes the number of crews of type k& who are dead-headed to
location [ from location I’ at time t. It is assumed that the dead-heading time t¢,

between any two locations is known in advance.

e Our itinerary descriptions include aircraft configurations by hop and thus the param-
eter by, can be inferred. For example, if a particular leg h of itinerary ¢ is configured
for carrying hazardous material, the coefficient by, is 1 if and only if a demand f
consists of hazardous material. This allows us to satisfy the requirement that a cargo

consisting of hazardous material may not share a plane with non-hazardous cargo.
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e Similarly, if an itinerary requires air-refueling (which is encoded by vy, # 0 for some
hop h (which goes from [ to I') on itinerary ¢), then the crew for such an itinerary, at
least on the relevant hop, must be suitably qualified. In other words, 7;i;; must be set

to zero for the location [ unless crew-type k is qualified to handle air-refueling.

Variables The decision variables in the model can be divided into the following three

types:
e [tinerary variables,
e Load variables, and

e Resource slacks

new

The itinerary variables are associated with either newly added itineraries (x}

in stage-

es,new

1 and y;

; in stage-2) or recourses for previously scheduled itineraries (z;; in stage-1 and

yss in stage-2). The load variables are similarly associated with either previously loaded
demands (2, ptf; and uj;;i,, ujcj respectively) or with demands that have newly materialised
(2fi, poy and u?j, ujﬁ respectively). Finally, we have various resource slacks which represent
the amount of unused resources of various kinds (aircraft, crew, refueling tankers, ground

space, etc). 3

Constraints The constraints in in the model can be divided into the following three types:

e Aircraft capacity constraints: these ensure that the load on any aircraft does not exceed

its capacity (in area, weight, or the number of passengers).

e Ground resource constraints: these constraints include ground space, fuel, and crew
constraints. Fuel constraints include in-air refueling. Also included are ‘aircraft con-
straints’: the number of aircrafts assigned to itineraries cannot exceed the available

number of the aircrafts at various locations.

3We also allow for the movement of some of these resources from one location to another via crew
dead-heading.
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e Demand constraints: these ensure that the demands are loaded onto the correct

itineraries. We also allow for and include transshipment constraints.

e Recourse itinerary flow constraints: these constraints ensure that whenever an itinerary

is disrupted, we have a recourse for it.

Our model is a (large-scale) stochastic mixed-integer program. We take a scenario-based
approach to handle uncertainty. This variability manifests in four ways - RSCCHNGEVES,
DMDEVES, BASEUNAVAILEVES, and GNDDELAYEVES. These events have been described
in Section 7.5. The nature of these sources of uncertainty and the types of real-life situations
that can be handled by our framework have also been discussed there. Our general approach
to modeling the DMR problem consists of externalizing the (potentially changeable) business
rules to an itinerary generator and focusing attention on selecting a suitable set of itineraries
which perform well on average and satisfy the capacity and resource constraints. Disrup-
tion events such as BASEUNAVAILEVES and GNDDELAYEVES only changes the candidate
itinerary set supplied to the Stage 1 or Stage 2 LP, that is, only feasible itinerary sets are
supplied to the LP. This approach handles the disruptions outside of the LP and thus avoids

making wholesale changes to the available resources in the LP model.

Demand variability (DMDEVE) We consider three sources of variability for demands:

o Whether a demand materializes at all.
e The amount of demand that materializes.

e An altogether new demand has to be carried.

Whenever a new demand has to be carried, it leads to generation of new itineraries that
can carry that demand. These itineraries are added as new itineraries, z"*“ory;*"“", to the
linear program, along with the newly added demand. The LP program then chooses to fly
one or more of these new itineraries and /or adjusts the new demand into one of the exisiting

itinerary in the execution schedule.
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Location-specific disruptions (BASEUNAVAILEVE) The types of disruptions that we
call ‘location-specific disruptions’ in this article are any disruptions that fit the following

framework:

e The disruptive event has a location associated with it.
e The disruptive event has the following times associated with it:

1. A time of awareness, denoted t,yare-
2. A start time, denoted tga.

3. An end time, denoted tqpnq.

The consequence of a location-specific disruption is that the associated base (location)
becomes unavailable to either landings or take-offs or both for all times between 4.+ and
lend-

It is worth noting that this definition is quite general and it can encompass any other

disruptions (such as weather-related outages) that fit this description.

Aircraft-specific disruptions (GNDDELAYEVE) The types of disruptions that we call
‘aircraft-specific disruptions’ in this article are any disruptions that fit the following frame-

work:

e The disruptive event has an itinerary ¢ (and hence an aircraft) associated with it.
e The disruptive event has the following information associated with it:

1. A ‘leg number’ k of the itinerary, at whose conclusion (i.e., at landing) the dis-

ruption occurs.
2. A minimum length of time, denoted tgouna for which the aircraft must remain on

ground before next take off.

The consequence of an aircraft-specific disruption is that the associated aircraft (itinerary)
must remain on ground for all times between tianding aNd tianding + tground, Where tianding is the

time at which itinerary ¢ lands for the k—th time.
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It is worth noting that this definition is quite general and it can encompass any other
disruptions (such as aircraft-breakdown or a command and control event) that fit this de-

scription.

Remark 1. If an itinerary i is associated with an aircraft-specific event e, we assume that
all its recourse (or replanned) itineraries (generated for other any other event €' that occurs
before e) are also associated with e. This ensures that model cannot avoid aircraft-specific

events simply by altering the associated itinerary at an earlier time.

Resource variability (RSCCHNGEVE) This consists of any change in the amount of
available MOG, number of aircraft, number of crews, amount of fuel, etc. that can lead
to any change in the current execution schedule. These events would involve change in the
right hand side constants of the LP, and new/ modified itineraries that can be feasibly flown
with the updated available resources. Handling these events wourld require a richer itinerary

generator. Currently, we do not handle these types of events in our simulations.

7.7.1 Stage 1

7.7.2 Input parameters

TS : set of transshipment locations

SB . set of locations that are ‘small’ bases (have sub-limit on widebody air-
craft)

LT . set of ‘jet-types’ (aircraft) that are classified as ‘large’ (widebody)

Jr . 1if ‘jet’ j is a widebody (i.e., if j € LJ)

Sit : 1 if ¢ is the start time for itinerary

Ey : 1if aircraft from itinerary ¢ becomes available for use by another itinerary
at time ¢

Jij : 1if 7 is the ‘jet’ for itinerary ¢

H; : 1 if [ is the home-base for itinerary i

T : 1 if itinerary 7 takes-off from location [ at time ¢
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civa(l,t)
mald(l,t)
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Pfi

legs(i)

m
ih

a
Kih

Ry,

Fiy

/
Fi,

Vin

: 1 if itinerary 7 lands at location [ at time ¢
: 1 if location [ is a home-base or staging location for itinerary ¢
. set of civilian itineraries that arrive at location [ at time ¢
. set of military itineraries that depart from location [ at time ¢
. total units (mass) of cargo in demand f
. area (sqft) required per unit mass of cargo in demand f when flown on
itinerary ¢
Typically independent of itinerary, except in the case of passengers,
where only some aircraft (and hence, itineraries) use the cargo area for
passengers
. units of passenger area required per unit mass of cargo in demand f
when flown on itinerary i
Typically independent of itinerary, only needed for some aircraft such as
Ch
. set of legs (departure-arrival location pairs) in itinerary 4
: capacity (in units of mass: tonnes) of itinerary i’s aircraft along leg or
‘hop’ h
. capacity (in units of area: sqft) of itinerary i’s aircraft along leg h
: penalty for every unshipped unit of demand f (units of mass)
: recuperation time (crew rest) for a crew of type k (i.e., a crew that can
serve on a ‘jet’ of type j)
. the set of ‘jets’ that a crew of crew-type k can serve
. 1 if a crew of type k can serve a ‘jet’ of type j (i.e., if j € Ji)
: recuperation (turn) time for a ‘jet’ of type j
. fuel requirement of itinerary i at location [ at time ¢ (it is 0 when [ is
home-base)
: fuel requirement of itinerary i on leg h where h € rhop(i)
. fuel requirement of itinerary i on leg h expressed in number of tanker-

loads
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: fuel added to location [ at time ¢
: MOG added to location [ at time ¢
: MOG for widebody aircraft j(€ £J) added to location [ at time ¢
: number of new ‘jets’ of type j added to location [ at time ¢ for assignment
to new itineraries
: number of new crew of type k added to location [ at time ¢
: returns the ground-space requirement of the aircraft flying itinerary ¢
. set of legs in itinerary ¢ when the aircraft requires refueling
: set of locations from which a tanker can fly to refuel itinerary i on leg h
: 1 if the tanker departs from location [ at time t to refuel itinerary ¢ on
leg h
: 1 if the tanker arrives back at location [ at time ¢ after refueling itinerary
t on leg h
: 1 if a tanker needs to fly from location [ at time t to refuel itinerary ¢
: 1 if a tanker lands at location [ at time t after refueling itinerary i
: cost of flying itinerary ¢ at disruption event e
: set of recourse itineraries of itinerary ¢ at the time of
of awareness of event e
. set of itineraries selected during scheduling at the time of awareness of
event e
. set of currently scheduled itineraries that are affected by all events

whose tgpare < t€

e
aware and timpact >t

aware

. set of itineraries that are not affected by the awareness of event e
J=1I°+1"°

: set of recourse itineraries at the time of awareness of event e
that can carry demand f currently being flown by itinerary ¢

: equal to the optimal z; that is decided prior to event e

: equal to the optimal z; that is decided prior to event e
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7.7.3

Oijkit

Yijhie

Mijklt

Vigkit

Oine

Wit

Inferred Parameters

1 if itinerary ¢ has jet-type j, crew-type k, home-base at location [ and  S;JJi; Hi

starts at time ¢

1 if itinerary ¢ has jet-type j, crew-type k, home-base at location [ and  EuJyJi;; Hy

terminates at time ¢

1 if itinerary ¢ having crew-type k takes-off from a home-base or staging  JiJ;; T Yi

location [ at time ¢

1 if itinerary ¢ having crew-type k and jet-type j lands at home-base  JiJi; L Ya

or staging location [ at time t

1 if itineray 7 lands at a non home-base location [ at time ¢ Liy(1 — Hy)

1 if itineray i takes-off from a non home-base location [ at time ¢ T (1 — Hy)

7.7.4 Variables

€
Z;

€
Zfi

e
Zfii/

Hif
M

Uit
a}tlt

Crlt

Ju

. ith itinerary variable for replanning at disruption event e
. units of cargo (mass) from demand f carried by itinerary ¢ after aware-
ness of event e
: units of cargo (mass) from demand f carried by itinerary i after aware-
ness of event e
that was previously being flown by itinerary i’

: undelivered cargo of demand f that was being flown by itinerary ¢ before
awareness of event e

units of cargo (mass) from demand f that remain unshipped after
scheduling
: units of cargo of demand f at location [ (I € TS) that remain unshipped
at time ¢
: unused ‘jets’ of type j at location [ after time ¢
: unassigned crews of type k at location [ after time ¢

: leftover fuel at location ! at time ¢
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my;  : unoccupied combined MOG for at location [ after time ¢

mj, : unoccupied MOG for widebody aircraft at location /(€ SB) after time ¢

vim  : integer variable, the number of tankers to refuel itinerary i on leg h that

fly from location [

t : number of unused tanker aircraft at location [ and time ¢

7.7.5 Stage 1 Integer Program:

Objective Function

minimize ZCf:L’f + ZZF{mef + ZpSQS

i it

where () is the optimal value of the stage-2 objective in the scenario s

which occurs with probability p;.

Aireraft Constraints

e e
E ikt Ty — E ﬂ)z’jkl(tfRé.)l’i + Qi — ajie—1) = Nju
Crew Constraints

e e
E NijkitT; — E Vijki(t—Ry)Ti + Ckit — Crl(t—1) = Chu
] ,J

Fuel Constraints
> Futi+ fu—fiey+ Y, Fhrdep(li b, t)om = Gy
i i,herhop(i)
Refueling constraints
Z Vihl — VinT5 =0
lerloc(i,h)

Z rdep(l, i, h, t)vin — Z rarr(l,i, b, t)vg + ty — tig—1y = Nju

i,h€rhop(z) i,h€rhop(i)

Mazimum on Ground

ng<i>9iltxf — Z gs(D)wix; + My — my—1) = My
> " gs(i) I Tbux =Y gs(i) T} Tjwua§ +mi, — mj_y = My
i i
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Demand Constraints (for Event LPs)
e e . e—1 ./ e—1
> 2y =270 wieJof
1€ itin(i/,f,e)

Capacity Constraints (weight and area)

Zafihzjeq — Koy <0 Vi, h € legs(i)
f

> apinx sy — K <0 Vi helegs(i)
f

Capacity Constraints (passengers)

Zafihpfﬂ;i — K} xf <0 Vi, h € legs(i)
f

Transshipment Constraints

Z 25+ upie-1) — Z Afihop(f.i)Zfi — g =0 Vie TS, t, f(s.t. dest(f) # I, orig(f) # ()

i€civa(l,t) i1emild(l,t)

Recourse Itineraries Flow Constraint

oo =X Wiel
i€ reci(i,e)
zy = X5 wiere
7.7.6 Stage 2

In this section we describe our approach to solving the stage 2 execution problem. We use
the stage-1 solution as parameters for the sequential LPs that arise in each scenario s. In
each scenario s an Stage 2 LP is generated for each disruption event €/, at time ¢, which is
the time at which event e, becomes known. If any of the selected itineraries is affected by
the disruption, a set of disrupted itineraries are generated for each of the affected itineraries.
The part of the affected itinerary before time ¢S, has already been executed and hence the
disrupted itineraries differ only in their schedule after time ¢S°. The resource constraints
in Stage 2 LP are written for time ¢t > t¢. In case the aircraft is flying (i.e. is in air) at
tes, the corresponding demand variable (u?z) will correspond to the demand that it carries
after it’s next landing location. Similarly, the capacity and area constraint, for such aircraft,
are to be written for the legs following the current leg the aircraft are flying. Note that

the demands will get reassigned at each such disruption event, which is a costly affair as it
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requires unloading and loading of cargo. Therefore, either we do not allow cargo reassignment
by restricting the cargo only to the recourse itineraries of the affected itinerary or we can
penalize unloading and loading of cargo if assignment is allowed to other itineraries as well.

Note that there are flow constraints for each itinerary i.e. the number of planes flying
a particular itinerary are distributed only to its disrupted itineraries. Therefore, if after
the disruption, we want to fly more aircraft for a particular route, that route has to be
formed as a disrupted itinerary of the itineraries that can fly that route. When an event
LP is solved, the demand being served by a affected itinerary is distributed amongst all the
recourse itineraries that can fly that demand.

In a Stage 2 scenario, disruption events in a scenario are applied to the itineraries selected
in Stage 1. All the event LPs are aggregated to form a single monolith LP (as described in
Section 7.6.3). The events are selected in the order of the time they become known, that is
their t,qre time. The events with the same ¢, are collected together to form a set called
as Current Event Set (CES) and is applied to the currently executing schedule at the same
time (fgware). We define Current Itinerary Set (CUIS) as the set of itineraries flying prior to
the application of the CES. Current itineraries affected (directly or indirectly) by the CES
are identified and their recourse itineraries are generated. The resulting set of itineraries
composed of the recourse itineraries and the unaffected itineraries from the CUIS, are called
as the candidate itineraries or the Candidate Itinerary Set (CAIS). The linear program for
the CES then selects the best set of itineraries for flying from the CAIS and the selected set
of itineraries form the Selected Itinerary Set (SIS). The selected itinerary set then becomes
CUIS for the next event. For the first event set in time, the CUIS is the set of itineraries
selected in Stage 1.

In two-stage stochastic optimization, the decision made in the Stage 1, selected itineraries
in our case, is fed as input to the Stage 2 for evaluation. In order for Bender’s method to
converge, it is necesaary that the Stage 2 coefficient matrix and objective function should
not change across iterations. In order to meet this requirement, it is necessary that all the
candidate itineraries in the Stage 1 linear program are considered as the CUIS in the first
event set of Stage 2, even though not all will be present in the actual CUIS in any given

Stage 2 optimization. Similarly, in the successive event linear programs, all the itineraries in
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the CAIS from the previous event form the CUIS of the CES. Although this means that the

size of the successive event linear programs will grow rapidly, but this is required in order to

keep the Stage 2 linear program identical across iterations. The Stage 1 decision during the

iterations is fed as right hand side to the constraints of the Stage 2 linear program (Recourse

Itineraries Flow Constraints in Section 7.7.9). These constraints ensure that recourses only

to the itineraries selected in Stage 1 are selected in this event LP. Similarly, in successive

event LPs | the itinerary variables from the previous event LP form the right hand side of

the Recourse Itineraries Flow Constraints.

7.7.7 Input parameters

In addition to the parameters that are listed in section 7.7.2, we have the following

s

civa(l,t)

mald(l,t)
ih

K,

Py

preplan

reload
Py
@
7

reci(i, es)
Jes
Ies
I

itin(i, f, es)

. refers to a scenario; a scenario s has N, events that are labeled e,

. set of civilian itineraries that arrive at location [ at time ¢

. set of military itineraries that depart from location [ at time ¢

: capacity (in units of mass: tonnes) of itinerary i’s aircraft along leg or ‘hop’ h
: capacity (in units of area: sqft) of itinerary i’s aircraft along leg h

: penalty for every unshipped unit of demand f (units of mass)

: penalty adding or removing an itinerary to the schedule

: penalty for unloading and reloading a unit load from demand f

. cost of flying itinerary ¢ at disruption event e,

. set of recourse itineraries of itinerary ¢ at the time of

of awareness of event e,

: the set of all possible itineraries that can be chosen
. set of itineraries selected during scheduling at the time of awareness of event e,

: set of currently scheduled itineraries that are affected by all events

whose tgpare < &

e
aware and timpact Z ta;

aware

. set of itineraries that are not affected by the awareness of event e

Jes—l — Jes + [/es

: set of recourse itineraries at the time of awareness of event e,
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that can carry demand f currently being flown by itinerary ¢
X : equal to the optimal y{* decided at event e, and are then (fixed)
parameters for the replanning problem at event e, + 1
z:s : equal to the optimal u;* decided at event e and are then (fixed)

parameters for the replanning problem at event eg + 1

7.7.8 Variables

€s

Y : ¢th itinerary variable for replanning at disruption event e, in scenario s
aj, : unused aircraft of type j at location [ after time ¢

cwr - unassigned crew of type k at location [ after time ¢

fu . leftover fuel at location [ at time ¢

my;  : unoccupied combined MOG for at location [ after time ¢

mj, : unoccupied MOG for widebody (large) aircraft at location [(€ SB) after time ¢

vig  : integer variable, the number of tankers to refuel itinerary ¢ on leg h that fly from location [
ty : number of unused tanker aircraft at location ! and time ¢

u%;  : units of cargo (mass) from demand f carried by itinerary i after awareness of event e

u;“, . units of cargo (mass) from demand f carried by itinerary ¢ after awareness of event e

that was previously being flown by itinerary 7
pi;  + undelivered cargo of demand f that was being flown by itinerary i before awareness of event e
pg o units of cargo (mass) from demand f that remain unshipped after scheduling
vgg  : units of cargo of demand f at location [ (I € TS) that remain unshipped at time ¢
n; : represents the amount of deviation (adding when not originally present or removing

from schedule when originally present) in itinerary 7 in replanning

B represents the amount of deviation in the load from demand f that is on itinerary 4

7.7.9 Linear Program

Objective Function
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minimize Y ¢yl + Y T Fuyl + PPy g +

Z P;eloadﬁfi

a0t fii
Aireraft Constraints
Z Pijkiy;” — Z%jkl(t—}%)yfs + ajy — aj_1 = Ny Vj, 1.t
Crew Constraints
Z Nijkiel;® — Z’Yz‘jkl(tka)yies + Crit — Cki(t—1) =Cue Yk, It
,J 4,
Fuel Constraints
> Fuyit + fu— fuey+ Y Fprdep(li, hot)v, =Gy Vit
7 i,herhop(i)
Refueling constraints
Z Vinl — Vin¥s® =0 Vi, h € rhop(i)
lerloc(i,h)
Z rdep(l,i, h, t)viy — Z rarr(l,i, b, vy + ty — tigery = Njie VI, t, j = tanker-type

i,he€rhop(i) i,herhop(i)

Mazimum on Ground

Z 9s(8)0ays® — Z gs(Dwineys® + mu — myg-1)

ng<i>Jj‘LJij9iltyfs - ZQS(Z’)JjLJijWiltyfs +my — My

i3 i,J

Demand Constraints (for Event LPs)
e e o e—1
D UG =y
i€ itin(i’, f,e)

Capacity Constraints (weight and area)

> agnuf; — Kiye <0
f

> apinxgiuf; — Ky <0
!

Capacity Constraints (passengers)

Zafihpfiujci- — Ky <0
f

Transshipment Constraints
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Z uf; + vpie-1) — Z finop(fi)Us; — Vi =0 Vie TS, t, f(s.t. dest(f) # [, orig(f)

i€civa(l,t) iemild(l,t)

Recourse Itineraries Flow Constraint

>y = X5 Vi € I
i€ reci(i ,es)
Yo = X! Vi'e I
Deviation Constraints
n; >yf —yel VieZ
i >yeTl -yt Viel
By > uf; — uja;_l Viel, f
Bri > uf; — ujfi_l Viel, f

7.8 Implementation Details

7.8.1 Recourse Generation

In this section, we describe some of the rules that were used for generating recourses for
the itineraries that are affected either directly or indirectly by the disruption. The directly

affected itineraries are identified as:

e For onground delay event, the affected itinerary is directly specified in the event de-

scription.

e For base disruption event, all the itineraries that are either landing and/or taking-off
from the affected base during the period that the base is disrupted are tagged as the

directly affected itineraries.

Once the directly affected itineraries (or the 1°* order affected itineraries) have been identi-
fied, the indirectly affected itineraries (2"¢, 3" order, and so on) are identified. N**(N > 2)
order affected itineraries are identified as follows. Let £ be the set of locations visited by
the itineraries in the P order affected itinerary set, where P < N, during or after the dis-

ruption event. Then, if an itinerary has not already been identified as an affected itinerary
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and visits any of the locations in £ during or after the t,,q- time, that itinerary is tagged
as a N order affected itinerary.
We use the following rules to generate multiple recourses for the directly and indirectly

affected itineraries:

e The affected itinerary is delayed on the ground at least until the event is over. The re-
course itineraries take-off every 44, units once the event is over, up to ¢,,, maximum

delay.

e The affected itinerary is redirected to a nearby location. Once the disruption event at
the affected base is over, or the repair for the aircraft has been done at this alternate

location, the itinerary flies back to the original location.

e This recourse is similar to the previous recourse except that instead of returning to
the original location in the itinerary, the recourse itinerary moves on to the next stop

in the original itinerary.

e In case of a base disruption event when the itinerary has not yet reached the affected
base, take-off of the itinerary is delayed at one of the large bases (that is having large
MOG) that precedes the affected base in the original itinerary.

Figure 7.3 shows example of some sample recourse itineraries for an itinerary affected by
a weather event.
Description of techniques to generate good recourse itineraries that ensure LP feasibility

and have shortest paths is beyond the scope of this work and is left for future work.

7.9 Experimental Setup

In this section, we discuss the various details of our experimental setup to evaluate the
proposed stochastic integer programming approach for the DMR problem. We first discuss
the source of the input data (Section 7.9.1) used in our experiments. This is followed by some

alternative approaches for DMR optimization in Section 7.9.2. We compare the proposed
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(a) Original Itinerary

HLLT
DTMB
DTTJ B
DTTB I
LEMO | s
LERT| podd -
KWR ; \
KNIP
KRIV /
KNKX ;
KNGU
KBIF ped
kpov ¢
KTCN

location

120
140
210
250
260
290
300
310
350
360
370
390
420

(b) Recourse Itineraries

Figure 7.3: (a) An itinerary with stops on y-axis and time on x-axis. This itinerary is directly
affected by a weather event that becomes known at time 270 (shown by vertical green line
at time 270) and makes location LERT unavailable for landing and take-off from time 290
to time 370 (shown by horizontal thick red line). In (b), three recourse itineraries are shown
for the affected itinerary. In the first recourse itinerary (shown in blue color), the take-off
of original itinerary is delayed at the current location DTTJ such that it reaches LERT by
the time the weather event is over. In the second recourse itinerary (shown in green color),
the itinerary is diverted to an alternate location LEMO and from there the itinerary carries
on to its next destination KDOV. On the other hand, in the third recourse itinerary (shown
in red color), the itinerary first goes back to LERT, which was on its original schedule, once
the weather is clear and then continues to its next destination from there.
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stochastic optimization approach with these alternative approaches in Section 7.10 using the

simulation setup given in Section 7.9.3 and performance metrics given in Section 7.9.4.

7.9.1 Model Data

The data for mission requirements comes from the strategic airlift portion of the AT21D
TPFDD. We anticipate expanding to other sources in the future. Following the advice to
Chairman Joint Chiefs of Staff (CJCS Guide) 3122, Unit Line Number (ULNs) with less
than 15 tons or 100 passengers are combined into larger ULNs with nearby Aerial Port
Of Debarkation (APODs), Aerial Port Of Embarkation (APOEs), Available to Load Date
(ALDs), and Latest Arrival Date (LADs) (in order of priority). Load variations are not
available for the Automated Transportation for the 21st Century (AT21) TPEFDD, so we
derived representative variations based on historical data from September 2006.

Mission delay data is taken from the 2010 GDSS archive. The delay codes (by aircraft

type) were split into four categories:
e command and control (C2),
e airfield and weather,
e cargo, and
e aircraft and crew.

Aircraft and crew delays vary significantly by aircraft type. Cbs are almost 3 times
as likely to incur delays as C17s (probability .177, .179, and .061 for C5B, C5A, and C17,
respectively in the current model), and those delays average 2.5 to 3 times longer (30.3, 28.7,
11.8 hours for C5B, C5A, and C17, respectively in the current model). This data is used to
generate future scenarios that must be considered when planning/replanning missions. We
generate future scenarios by sampling from each of these four categories as appropriate. For
example, cargo delays are not normally associated with enroute bases, and weather delays
vary markedly by airfield. The architecture of the stochastic optimization allows for easy

refinement of this data as more and better data becomes available.
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7.9.2 Alternative DMR Optimization Approaches

There are other approaches that can be used to solve the dynamic mission replanning prob-
lem. We discuss two such approaches here, and compare them with the proposed stochastic

optimization approach in the results section (Section 7.10).

Myopic optimization

Because of the large scale and high complexity of the problem, the TACC duty officer often
adjusts the CUIS to come up with an execution schedule that is feasible to the current
disruption. Any disruptions in the future are handled as and when they become known.

Myopic Optimization (MyYOP) approach resembles the current approach taken by TACC
except in the way the recourse itineraries are choosen. Currently, TACC officers use some
visualization aids to determine and select recourse itineraries, while in MYOP we have a
global optimization routine, that is the Stage 1 integer program, to select optimal recourse
itineraries. In other words, in MYOP there are no Stage 2 evaluations/feedback and only
Stage 1 optimization is done to determine the new execution schedule. This approach is

same as the naive approach described in Section 7.6.1.

Deterministic optimization

This approach falls in between the MYOP and the Stochastic Optimization (STOP) ap-
proach. In this approach, the Stage 1 decisions are made while assuming a nominal fu-
ture scenario. A nominal scenario consists of expected future disruptions and does not
take into account the uncertainty in the future disruption events. Deterministic Optimiza-

tion (DETOP) is same as STOP with just one scenario.

7.9.3 Simulation Setup

We evaluate the STOP approach against MYOP and DETOP by evaluating these approaches
for a weather disruption event that disables any landings and take-offs from a base. Sixteen

future disruption scenarios were generated, where each scenario has two weather events
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that affects two locations for varying periods of time. Different probabilities are assigned
to each scenario, such that they add up to one. Our evaluation setup simulates a real-life
(although at a small scale) execution period during which TACC has to handle multiple
disruption events, a total of three in this case. We simulate all sixteen scenarios event by
event, with the execution solution from one event passed on as input to the next event. At
each disruption event, the new execution schedule is obtained by solving the optimization
problem of the corresponding optimization approach. The simulation setup is picturized in
Figure 7.4. For ease of demonstration, we have designed a simple setup in which all the
scenarios have the same number of events but this is not a requirement for our setup. We
now explain the optimization problems solved at each disruption event in each of the three

approaches:

e MvyOpP: At each disruption event only the Stage 1 integer program is optimized to

obtain the new execution schedule.

e DETOP: A nominal scenario is generated by taking the probability weighted average
of all possible durations of the remaining weather events in the scenarios. At event
0, Stage 2 nominal scenario is generated by taking the respective probability weighted
average of the durations of weather events, event 1 and event 2, across all scenar-
ios. Similarly at event 1, Stage 2 nominal scenario is generated by taking probability
weighted average of possible durations of weather event, event 2. Finally, at event 2,

there is no Stage 2 scenario, as this is the last event in all the scenarios.

e STOP: At event 0, a stochastic program with 16 scenarios in Stage 2 is optimized to
obtain the new execution schedule. At event 1, a stochastoc program with 4 scenarios
in Stage 2 is solved. Finally, at event 2 only Stage 1 optimization is done as there are

no more events remaining in any scenario.

7.9.4 Key Performance Indicators (KPIs)

The following performance indicators are calculated to measure and compared the perfor-

mance of each of the optimization approaches. These metrics are obtained by calculating
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Figure 7.4: Simulation setup. There are sixteen scenarios in total. Event 0 in each scenario
is common across all scenarios. EVENT1, is event 0 of scenario 0, EVENT1; is event 0 of
scenario 1, and so on. All sixteen scenarios are simulated. The diagram also shows the
optimization problem solved at each disruption event in each of the optimization methods.
Absence of Stage 2 scenario means that only the Stage 1 IP optimization is done to obtain
the new execution schedule. Presence of more than one Stage 2 scenario means stochastic
optimization is done to obtain the new execution schedule, while only one Stage 2 scenario
means that a deterministic problem is solved with a nominal Stage 2 scenario.
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their probability weighted average across all the scenarios.

e Average Cost (AvGCosT): This corresponds to the total cost due to replanning. It is
calcualted as the sum of the objective function values of the Stage 1 programs at each

disruption event.

e Average Itinerary Delay (AvGITINDEL): This metric gives the sum total of the number
of hours by which the itineraries got delayed. The number of hours by which an
itinerary is delayed is the difference in the time at which it reaches its final desitination
in the final schedule and the time at which it would have reached in the original

schedule.

e Demand Penalty (AvGDEMPENALTY): This is the late and undelivered demand penalty

due to replanning.

e Average Notification Time (AVGNOTIFICATIONTIME): This computes how much in
advance of the actual change in the itinerary was the itinerary notified of the change.

in advance of the actual change in the itinerary was the itinerary notified of the

e Average Number of Changes (AVGNUMCHANGES): This counts the total number of
changes done to the itineraries during the course of replanning across all the disruption

events.

7.10 Results

In this section, we compare the performance of various optimization methods.

Table 7.12 compares the performance of various KPIs across the three optimization ap-
proaches. To compare the three approaches across wide variety of real life situations, a total
of six simulations of the setup described in Figure 7.4 were performed. The six simulations
are categorized into three types - High Variation (HIGHVAR), Medium Variation (MEDVAR),

Low Variation (LOWVAR). Each of these categories has two simulations each. Scenarios in
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HicHVAR simulation have high variation in weather event durations across its scenarios,

while the scenarios in LOWVAR simulation have very low variation across weather event

durations acorss its scenarios. STOP outperforms MYOP and DETOP in all the cases while

giving as much as up to 80% reduction in costs over MYOP. These results establish the

superior qualtiy of solutions obtained from STOP. STOP outperforms MyOP in all the

cases.

Table 7.12: Comparison of various KPIs across different optimization approaches

Simulation <P Optimization Approach STOP - vs
Scenario MyOp DETOP STOP MyOp
AVGITINDEL 190 156 143 by 74
AvcCosT 7344999 12500640 1431317 80.51
High Variation
AvcITINDELCOST 3423945 689215 779025 77.25
AvcDEMPENALTY 3921054 11811425 652292 83.36
AvGITINDEL 200 176 117 41.5
AvacCosT 1706082 12587809 1308470 23.31
Medium Variation
AvcITINDELCOST 1060075 793240 636600 39.95
AvGDEMPENALTY 646007 11794569 671870 -4.0
AvGITINDEL 87 &9 62 28.74
AvaCosT 759857 11813295 686096 9.71
Low Variation
AvGITINDELCOST 463237 340120 347267 25.03
AVvGDEMPENALTY 296620 11473175 338828 -14.23
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CHAPTER

Conclusion and Future Work

Our research shows that high performance computing can enable optimization of stochastic
programs that are otherwise intractable on single/multi-core machines. We identified de-
composable structures in two-stage stochastic optimization problems. This led to significant
improvements in the convergence rate of benders method for stochastic optimizations. We
also identified the interdependencies amongst these decomposed structures that led to highly
parallel and scalable designs for stochastic linear/integer program optimizations. Finally, in
the second part of the thesis we provide a computational engine for some dynamic and
real-time problems faced by US Air Mobility Command. The resulting framework leads to
significant cost savings as compared to the currently used approach by the Air Mobility

Command. In particular, the contributions of this dissertation are:

e Cut-retirement schemes and scenario clustering for reducing the Stage 1 and Stage 2

computation required in Bender’s method for two-stage stochastic optimization.

e A parallel stochastic integer program solver, PSIPS, that exploits branch-and-bound
parallelism and nested parallelism to achieve high parallel efficiencies. State-sharing

amongst the vertices reduces the solution time.
e Strong scaling of stochastic programs to hundreds of cores.

e A Split-and-Merge (SAM) method for accelerating convergence of stochastic programs

with large number of scenarios.
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e A Lagrangean Decomposition and Merge (LDAM) method for accelerating convergence

of stochastic programs with large complexities.

e Stochastic formulation of the military aircraft allocation problem with consideration of
disaster management that gives up to 35% savings in costs as compared to deterministic

optimization.

e A stochastic integer programming approach for Dynamic Mission Replanning by the
Air Mobility Command. The resulting framework responds to disruptive events at ex-

ecution time and gives significantly better schedules as compared to other approaches.

Our attempts result in strong scaling to hundreds of cores. We believe similar results are
not common in literature, and that our experiences will feed usefully into further research on
this topic. We believe that this work will provide the springboard for more robust problem

solving with HPC in many logistics and planning problems.
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APPENDIX A

Stochastic Formulation of Military Aircraft

Allocation Problem

In this appendix, we give detailed description of the stochastic formulation of a military
aircraft allocation problem. The following subsections contain the descriptions of the indices
and index sets, the input data to the model, and the variables in the model. This is fol-
lowed by Stage 1 and Stage 2 linear programs of the two-stage stochastic formulation of the

problem.

A.1 Indices and Index Sets

Description of the inidces and index sets are given below.
e t € 7: Time periods. We discretize time into days.
e s €8 Stage 2 scenarios.

e m € M: Mission types. Channel, Contingency, and Special assignment airlift missions

Y

are indexed with ‘ch,” ‘co,” and ‘sa,” respectively. Each mission type is subject to

uncertainty, realized either by cargo demand (channel, contingency) or aircraft needed

(Special assignment airlift missions).

Cargo
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1 € 1: Cargo demand identifiers. This index is overloaded to accommodate the precise
definitions of the different mission types. For channel missions, ¢ represents two-way
od! (od!) pairs with daily cargo delivery demands. For contingency missions, ¢ repre-
sents a specific cargo delivery demand between od! pairs at a specific time. For special

assignment airlift missions, ¢ serves as an index of aircraft charter demands.

k € K: Cargo types. We generalize cargo into four types. Bulk cargo consists of
small items consolidated into aircraft pallets that fit on all cargo aircraft. Oversize
cargo consists of items such as rolling stock that fit on some civilian and most military
aircraft. Outsize cargo consists of items such as tanks or helicopters, which fit only
on wide-body military aircraft. Passengers may be carried on all aircraft equipped
with seating. This set is overloaded with and additional index ‘sam’ that denotes a
Special assignment airlift mission demand, which is independent of cargo type. Unless

explicitly indicated, ‘sam’ is excluded from summation and domain expressions.
K; C K: Subset of cargo types that can be carried by aircraft type j.

TS C I : The subset of Z that requires transshipment, which can occur when civilian

aircraft cannot be flown into regions of conflict.

Aircraft

e j € J: Aircraft (jet) types, civilian and military. Aircraft types differ in their infras-

tructure requirements, capacity, operating cost, etc.
Imits Jeiv C J: Subsets of military and civilian aircraft, respectively.

Ji1, Jy C J: Subsets of aircraft that are allocated in Stage 1 and Stage 2, respectively.

Note that only civilian aircraft (short-notice rentals) are elements of Js.
JT C J: Subset of aircraft that can serve as tankers or airlifters.

JS; C J: Subset of aircraft requested by special assignment airlift mission .

Locations
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e [ € L: Locations. These may be aircraft home bases, cargo origin or destination bases,

enroute bases, or aerial locations used for inflight refueling.
e LA C L: Subset of locations that are air refueling locations.
Routes

e r € R: Routes. Each cargo route begins at an aircraft home base and transits a cargo
origin and destination or transshipment location (both inbound and outbound). It
may also transit one or more enroute locations for refueling. For example, a route may
be of the type: home-base — origin — enroute — destination — origin — home-base,
or home-base — origin — air-refueling — destination — home-base. In some cases the
home base and origin are co-located. Air refueling routes begin at an aircraft home

base and visit an air refueling location to deliver fuel to another aircraft.

e S1; C R: Subset of routes which constitute the first portion of a transshipped delivery

for demand i. These routes are flown by civilian aircraft.

e 52, C R: Subset of routes which constitute the second portion of a transshipped

delivery for demand 7. These routes are flown by military aircraft.
e (D1, C R: Subset of airlift routes transiting air refueling location [.
e (J2; C R: Subset of tanker routes servicing air refueling location /.
e S; C R : Subset of routes serving demand 1.

e O, C L: Home base location [ (origin) of route r (1 element per subset).

A.2 Input Data
This section contains the description of the input data to the model.

e A;; : Number of hours an aircraft j is available for flying in period ¢.
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C,;: Capacity of aircraft j when flying route r. C,; will depend on the distance of

each leg, fuel requirements and other factors.

Cﬁ ;+ Capacity of aircraft j for carrying cargo type k when flying route r. This accom-
modates different space requirements of bulk cargo, oversize cargo, outsize cargo, and

passengers.

ém* Surplus capacity on aircraft j from a special assignment airlift mission to carry

channel cargo.

Diikt(s): Demand of cargo type k for requirement i of mission m in period ¢ as
realized in scenario s. The demand is modeled as a random variable. The units for
the demand are tons for channel and contingency missions, and aircraft for special

assignment airlift missions.
E, j: Operational expenses incurred for flying aircraft j on route r.

H; .4+ Maximum unmet channel cargo demand for requirement ¢, cargo type k at time

t. Unmet demand greater than H is penalized at a higher rate.

Opt(y,s): Optimal Stage 2 objective function value for scenario s, given allocation

vector y; y* denotes an incumbent solution.

Pkl,m ( P,im): Penalty per unit weight for late (very late) delivery of a cargo of type k

for mission m.

Rj: Per period cost of civilian aircraft j if leased well in advance. This is used in Stage

1.

Rj: Per period rental cost of civilian aircraft j if rented on short notice. This is used

in Stage 2.
RDD;: The required delivery date for contingency requirement 7.

Tnrjte(s) : Hours required in period ¢ to complete route r with aircraft j when

launched in period t' for mission m as realized in scenario s.
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A3

/

T,,,; Flying hours of aircraft j to complete route r while flying mission type m.

TR, ;;: Tankers required (baselined by KC10 equivalents, which is a large tanker) by

aircraft j flying route r at air refueling location [
;. Permissible flying time utilization of aircraft of type j.

A, Time periods needed to reach the destination or transshipment base for re-
quirement ¢ on route r using aircraft type j (channel and contingency). For special
assignment airlift missions, it denotes the time periods required to reach the initial

special assignment airlift mission location.

A, : time periods needed to complete route r using aircraft type j. As used in the
air refueling constraint, it denotes the number of lag periods between an airlift mission

launch on route r by aircraft j, and the air refueling event.
Y;.: Number of aircraft of type j available for allocation at location .

ms: Probability of scenario s.

Variables

This section contains the description of variables in Stage 1, and Stage 2 linear programs.

All variables are continuous, non-negative, and used in Stage 2 unless otherwise noted.

1

uz,k,m,t )

uf kmy - Unmet demand of cargo type k for requirement ¢ of mission m in period
t. The penalty for unmet demand grows linearly when cargo has not been delivered for
Ti.m days. Beyond that the penalty is increased. To model this for channel missions,
we divide the unmet demand into two parts. u;} ., , is the unmet demand that is less

than 7; ., days old and uihch’t is the unmet demand that is more than 7; ., days old.

We define the threshold H as follows:

t
Hipe = Z Dch,i,k,F(S)

F:thi,ch

156



Late cargo for contingency missions is defined using the parameter RDD;. Cargo
delivered on or before the RDD; is unpenalized. Cargo delivered one to 7; ., days late
is penalized at rate Pk{co. Thereafter, cargo is penalized at rate P,fvm. Late special
assignment airlift missions are disallowed: they are either flown on the requested day

or a penalty is imposed.

® 7,,,;+ Number of type j aircraft launched on route r in time ¢ supporting mission

m.

® y;1m (general integer, Stage 1 variable): Number of Stage 1 aircraft j allocated to
(base) location [ for mission m. This is the principal output of the program. Stage 1
allocations include all military aircraft and civilian aircraft on advanced (more than one
month prior) lease. We use y to denote the allocation vector, and y* for an allocation

vector obtained from Stage 1 optimization.

® U;1m¢: Number of stage 2 rented aircraft (short-notice, high-cost) j allocated at (base)
location [ for mission m at time ¢. This is also a principal output of the program, and

is approximated with a linear variable.

® Zn.iikrt: Lons of of type k cargo for requirement 4, mission m transported on aircraft

J using route r in period t.
e 0, (Stage 1 variable): Stage 2 cut support for scenario s.

e v°: Optimal dual variables for scenario ‘s’ obtained by solving Stage 2 of the model.

The (.) subscript denotes the constraint block number and variable domain.

A4 Stage 1 Linear Program

Objective Function

Z Rjyj,l,m + Z 7T'ses

J€JcivNJ1,lm

Feasible Allocation
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APPENDIX B

A small example of Dynamic Mission

Replanning (DMR)

B.1 Demands and chosen itineraries

Below is a sample set of demands.

Table B.1: A sameple set of demands to be carried by an execution schedule

orig | dest | alt | eat | lat | type | area | mass | efficiency | undel-penalty | late-penalty

1 7 0 | 0 | 192 bulk | 1500 | 51.5 1 32238 8060
1 7 0 | 0 | 192 over | 1800 | 45.8 1 32238 8060
1 7 0| 0 [192 ] pax 0 13.2 2437 609

1 7 0 | 96 | 480 | bulk | 40 0.8 0.9 32238 8060
1 7 0 | 96 | 480 | over | 2100 | 51.8 0.8 32238 8060
3 8 0| 0 |384 ] pax 0 68.8 2564 641

3 8 0 | 0 | 384 | bulk | 3200 | 95.5 0.9 25030 6258
3 8 0| 0 | 384 ]| over | 500 12 1 25030 6258
3 8 0| 0 | 384 ] out | 1750 | 54.5 1 25030 6258

where, orig is the port of embarkation, dest is port of disembarkation, ald is the available
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to load time, eat is the earliest arrival time at the port of disembarkation, lat is the latest
arrival time, type stands for the type of cargo (bulk, oversized, passenger, outsized), area is
the floor area requirements of the cargo, mass is the mass of the cargo in tons, efficiency is
the ratio of the area occupied by the cargo in the aircraft to the specified area requirements of
the cargo, undel-penalty stands for the undelivery penalty (in USD) per ton of the demand,
and late-penalty stands for the late delivery penalty (in USD) per day per ton of the demand.
For these demands, one of the itineraries chosen to be flown is given below (also depicted
in Figure B.1). We call this itinerary as Z. We shall use this itinerary to describe how it is

affected by a scenario and what recourse decisions it may prompt.

"atype" : O,

"stops"

[ 2, 0, 0, 105207.67, 70.0, O 1],

[ 1, 18, 86, 226086.70, 70.0, 4.57 ],

[ 6, 126, 139, 103526.25, 70.0, 9.83 1],
[ 7, 147, 164, 0, 70.0, 2 ],

[ 5, 174, 187, 197929.05, 70.0, 2.5 1],
[ 2, 221, 221, 0, 70.0, 8.61 ]

Description of each stop in an itinerary consists of - stop/base number, landing time at
that stop, take-off time from that stop, fuel requirements at that stop, max payload on
the next leg, flying time to this stop from the previous stop, in that order. We adopt a
shorthand notation for an itinerary which only refers to the sequence of stops: 2 — 1 —
5 — 7 — 5 — 2. In this notation, the symbol — simply means a ‘normal continuation’
from one location to the next. This ‘normal continuation’ includes such things as fuel in-
take, length of flight-time, length of time on ground, etc. When needed, we augment this
shorthand notation with other self-explanatory features such as a ‘start time’ or various

‘ground delays’.

161



B.2 A sample scenario

We now describe a scenario i.e., a specific set of disruptive events.

e Weather events:

1. taware = 07 tstart = 1007 tena = 1707 [=5.

2. taware = 300, tstart = 350, tena = 500, [ = 5.
e Breakdown events:

1. itinerary = 7, leg = 3, trepairs = 200.
e Demand events:

1. A 20% increase in demand 4.

2. A 15% decrease in demand 6.

B.2.1 Recourses for a specific itinerary

In the discussion below, we outline the various recourse itineraries for Z that we consider as

the scenario unfolds.

1. At time 0, we become aware of Weather-1 i.e., the fact that base 5 is unavailable from

time 100 to time 170. Therefore we consider the following recourse actions:

(a) Delay the start of the itinerary from time 0 to time 170—126 = 44. In other words,

change the itinerary from 2 — 1 — 5 — 7 — 5 — 2 to Delay-44 — 2 —»

l—5—7—5—2.

(b) Divert the itinerary to base 6, which is expected to be unaffected by the weather

(per information available at time 0), then continue on to the next scheduled stop.

In other words, alter the sequence of stops from2 — 1 —5—7 —5 — 2

to2—1—6—7—5—2
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(c) Divert the itinerary to base 6, then return to base 5, after the weather has cleared
at time 170. In effect alter the sequence of stops from 2 — 1 —5 — 7 —
5—2to2—1-—6 —5—7— 5 — 2. Note that in this case an

additional ground delay is introduced at base 6.

2. Subsequently, the scenario has Breakdown-1 on the third leg of the original itinerary
(or whatever recourse is chosen) and another weather-related disruption, Weather-2.
Depending on the recourse actions chosen before, the order in which these disruptions
occur can change. In our example, the numbers are such that Breakdown-1 occurs
before we become aware of Weather-2 which is imminent in the scenario. We therefore
list our sets of recourse choices under Breakdown-1 for each of the recourse decisions

above:

(a) We have the situation Delay-44 — 2 — 1 — 5 — 7 — Breakdown-1.. ..

The recourses from this are:

i. Delay-44 — 2 — 1 — 5 — 7 — dmr:Breakdown-1/Delay-(200 +
xr) — 5 —> 2, for some = > 0. Note that in these recourses, the only choice

is in the value of z.

(b) We have the situation 2 — 1 — 6 — 7 — Breakdown-1.... The recourses
from this are analogous to the above, except that take-off and landing times are

shifted accordingly (due to the earlier redirection).

(c) We have the situation 2 — 1 — 6 — 5 — Breakdown-1.... The recourses

from this are:

i. 2— 1 — 6 — 5 — Breakdown-1/Delay-(200 + z) — 7 — 5 — 2.

3. Finally, the second weather event (outage of base-5 from time 350 to time 500), which
we become aware of at time 300, affects each of our recourse choices. In effect, as a
scenario unfolds, we generate choices for recourse decisions. However, the available

choices, naturally, depend on our previous decisions.

All the recourses above are also depicted in Figure B.2.
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