Mapping heuristics for reducing communication cost in parallel machines

Tarun Agarwal, Amit Sharma, Laxmikant V. kal
Dept. of Computer Science
University of lllinois at Urbana-Champaign
{tagarwal, asharma6, kgl@-cs.uiuc.edu

Abstract ode distance of2 hops is also quite high. If packets travel
over such large number of hops, the average load on the
links increases, which increases contention. Therefore, it is

1 Introduction desirable to map communicating objects to n?arby proces-

sors. Also, task assignment generally doesn’t preserve all

An increasingly large number of scientific pursuits use the neighbor relations, thus, arising the need to route mes-

computational resources as their backbone. Applicationssage through physical paths of varying lengths. This further

range from study of molecular behavior, both using clas- motivates the as-near-as-possible placement of neighboring
sical and quantum physics models, evaluation of physi- tasks.

gal properties_ of materials like _stress response, to simula— The task mapping problem is known to b¥P-

t!ons of gaIaX|e§ and cosr_nologlcal phenomenon. The Ir‘S""'Complete [6, 17, 20]. Two kinds of algorithms have

_tlabl_e computational requirements pf such appllcatlon§ haSbeen developed in the past to solve it: Heuristic algo-

inspired the development of massively parallel maCh'neS’rithms [17, 4, 22] and Physical optimization algorithms

like the recent BlueGene (BG/L) machine from IBM. Par- 5[p3, 1, 7, 19]. Though physical optimization algorithms

Ellghsm at thi scale of Ten;g;l_tho_lljlsgnds gjﬁrocessors 'Soroduce high-quality solutions (better than heuristic algo-
€ing seen. or example, Wil have processors rithms), they tend to be very slow. Their execution times

[2] once fqlly deplpyed. The main resources in a large Par are unacceptable in a practical scenario for large data sets,

Mwhen compared to the task execution times. Heuristic algo-
rithms, on the other hand, are much faster and suitable for
real-world parallel applications.

network. It is imperative that techniques for efficient and
uniform utilization of these resources be developed.

The number of tasks running on large machines usually) o
exceed the number of processors. Each task has different 10 dévelop a new mapping heuristic strategy, we need to
computation and communication characteristics from the C&rTy out four steps. Firstly, we need to know the commu-
other. This makes task assignment, a non-trivial problem nication and computation requirements of the task (pa.raIIeI
to solve. Solution involves achieving load-balance among Program). Secondly, we have to characterize the available

all the processors in the system and reducing the communiSystem resources (parallel architecture). Thirdly, an evalu-
cation latency of the messages in the system. ation function (or metric) has to developed to evaluate the

Task assignment problem can be solved in two different solutions. Finally, the mapping technique or heuristic has to

ways. Either we achieve load-balance and communicationP€ designed.
latency reduction together in a single phase or we split our The first and second steps are taken care of by the
efforts in two phases: achieving load balance in the first CHARM++ [13] virtualization model and the dynamic load
phase (partitioning) and reducing communication latency in balancing framework implemented in it. TheH@RM++
the second phase (mapping). In this paper, we present gprogramming model involves breaking up the application
heuristic algorithm for solving the mapping problem (for into a large number of communicating objects which can
reducing message latency in the network). be freely mapped to the physical processors by the runtime
The significance of the problem we are solving is moti- system [12]. Furthermore, these objects are migratable,
vated in this paragraph. Due to the increasing size of thewhich allows the runtime system to perform dynamic load
parallel computers being used, the interconnection networkbalancing based on measurement of load and communica-
has become the system bottleneck. Itis so because the packion characteristics during actual execution. This flexibility
aging considerations for a large number of processors leachas been utilized in the dynamic load balancing framework
to the choice of a mesh or a torus topology. For example, of CHARM++. Dynamic load balancing has an associated
the primary network in BlueGene/L is a 3D-Torus. Even for overhead of task migration. InHARM++ this is handled
a relatively moderate machine size a message might travelusing the PUP framework [11] which is a way of describing
a large number of hops. A6, 16, 16)3D-Torus ordk pro- the layout of object’s data in memory. The metric and the
cessors has a diameter f hops and the average intern- mapping heuristic, which form third and fourth step, have

been described in detail in some following sections. sidered. They first coalesce the task graph to get rid of the
Also note that in this paper, we are only concerned with cardinality variation. The coalesced graph is mapped on the
process-based model [6, 21] in which there are no DAG- actual topology.
based dependencies. The tasks (or modules) are arranged in
undirected graphs and edges represent two-way communi- Local search techniques such as Simulated annealing
cation rather than precedence or one-way communicationhave also been tried. Bollinger and Midkiff [7] propose a
Further, the tasks are persistent processes which have stablwvo-phased annealing approaghocess annealingssigns
communication patterns between themH@®&m++ Load task to processors amdnnection annealingchedules traf-
Balancing Model). fic along network links to reduce conflicts. Evolution-
inspired Genetic algorithms based search has also been at-
2 Related Work tempted. Arunkumar and Chockalingam [3] propose a ge-
The problem of scheduling tasks on processors has beemetic approach where search is performed using operators
well studied. There have been many distinct categories ofsuch asselection mutation andcrossover While these ap-
research, each with a different focus. A large part of the proaches produce good results, the time required for them
work has concentrated on balancing compute load acrosgo converge is usually quite large compared to the execution
the processors while ignoring any communication all to- time of the application. Ordia, Silla and Duato [19, 1] also
gether. The problem handled in this kind of work is the propose a variant of the genetic approach. Their scheme
assignment of a set of jobs (each with some arbitrary starts with a random initial assignment, theed and in
size) onp processorsi{ usually larger than thap), soasto each iteration an exchange is attempted and the gain, if any,
minimize the maximum load (makespan) on the processors,is recorded. If no improvement is seen for some iterations a
since higher compute load on one processor slows down thenew seed is tried and eventually the best overall mapping is
entire system. In the next category, researchers have workedeturned.
on communication-sensitive clustering while still ignoring
any topology considerations. The main objective here isthe Strategies for specific topologies and/or specific task
partitioning of jobs into balanced groups (equal in number graphs have also been studied. Ercal, Ramanujam and Sa-
to the number of processors) while reducing inter-partition dayappan [8] provide a solution in the context of hypercube
communication. The more general problem is one of map-topology. Their divide-and-conquer technique, calfde
ping task graph to a network topology graph while bal- location by Recursive Mincuir ARM, aims to minimize
ancing compute load on processors and minimizing com-total inter-processor communication subject to the the pro-
munication cost (which we model as hop-bytes in section cessor load being within a tolerance away from the av-
3). All the categories described involvéP-hard optimiza- erage. A mincut is calculated on the task graph while
tion problems. To solve these problems, researchers havenaintaining processor load equal on the two sides and a
made use of heuristic algorithms like greedy, branch-and-partial assignment of the two parts is made. Repetitive
bound, local search etc. and physical optimization algo- recursive bi-partitioning is performed and the partition at
rithms like simulated annealing, genetic techniques, neuralthe k' iteration determines thé*" bit of the processor
networks etc. This section will present a brief survey of re- assi24.685837gnment. Bianchini and Shen [10] consider
lated works in the third category (mapping task graph on mesh network topology. Fang, Li and Ni [9] study the prob-
a network topology graph). While keeping communicating lem of 2-D convolution on mesh, hypercube and shuffle-
tasks on the same processor helps reduce the communicaxchange topologies only.
tion cost, processor computation load considerations pre-
vent all communication from being intra-processor. The Baba, lwamoto and Yoshinaga [4] present a group of
problem of mapping communication tasks onto a proces- mapping heuristics for greedy mapping of tasks to proces-
sortopologyhas been studied in the past. The objective of sors. At each iteration a task is selected based on a heuristic,
the mapping is to essentially reduce communication cost byand then a processor is selected for that task based on an-
placing communicating tasks on nearby processors. other heuristic. One of the more promising heuristic com-
Bokhari [6] uses the number of edges of the task graph binations they propose is to select the task that has maxi-
whose end points map to neighbors in the processor graphmum total communication with already assigned tasks and
as the cost metric. The algorithm [6] starts with an initial place it on the processor where the communication cost is
mapping and performs pairwise exchanges to improve theminimized. The communication cost is modeled similar to
metric. Results are given for up to 49 tasks. Lee and Ag- hop-bytes, although considering only the communication
garwal [17] propose a step by step greedy algorithm fol- with previously assigned tasks. A very similar scheme has
lowed by an improvement phase. At the first step, the mostalso been implemented, independently, ima®&Mm++ as the
communicating task is placed on a processor with similar TopoCentLB load balancing strategy. Taura and Chien [22]
degree. Subsequent placements are guided by an objegropose a mapping scheme in the context of heterogeneous
tive function. Berman and Snyder [5] present an approachsystems with variable processor and link capacities. In their
where both cardinality variation (difference in number of scheme tasks are linearly ordered with more communicat-
tasks and processors) and topological variations (differenting tasks placed closer, and the tasks are mapped in this
in shapes of the task graph and topology graph) are con-order.

3

Both the load information and the network topology are
represented as graphs.

Definitions The overall Hop-bytes is the sum of Hop-bytes due to
individual nodes in the task graph.

HB(Gy,Gp,P) = Y HB(v,)

Topology Graph The network topology is repre- va€V;
sented as an undirected graph = (V,,, E,) onp 1

(= |V,|) vertices. Each vertex i, represents a pro- where HB(va) = 5 > HB(ea)
cessor, and an edge ifi, represents a direct link in eab € B,

the network. Our algorithms work for arbitrary net-
work topologies; however we will present results on
more popular topologies like Torus and Mesh.

e Hops per byteThis is the average number of network
links a byte has to travel under a task mapping.

HB
Task Graph The parallel application is represented as Hops per Byte = 276
a weighted undirected grapgh; = (V;, E;). The ver- car €5y a0
tices inV; represent compute objects (or groups of ob- Y e e, Cab X dp(P(vq).P(vy))
jects) and the edges i, represent direct communi- Hops per Byte = ——=— S
eqpEE 7

cation between the compute objects (or groups of ob-
jects). Each vertex; € V; has a weighti;. The 4 The mapping heuristic
weight on a vertex denotes the amountcoimputa-
tion that the objects in the vertex represent. Similarly,
each edge,, = (vq,vy) € E; has a weight,;,. The
weightc,;, represents the amount cdmmunicatiorin
bytes between the compute objects represented, by
anduvy.

Assume we have, compute objects ang processors.
The problem of balancing compute load involves partition-
ing then compute objects intp groups such that the to-
tal compute load of objects in each group is roughly the
same. The second problem, that of reducing network con-
tention, involves placing these groups onto theocessors
Task Mapping The task-mapping is represented by a such that more heavily communicating groups are placed on
map : nearby processors. This would make each message travel

P:Vi—YV, over a smaller number of links leading to a reduction in the
average data transferred across individual links.

The problems of partitioning and mapping can either be
Vi of the task-graph are placed on procesggrthen solved trc))gether or inpseparate%hases. Imheg latter approach,

P(vy) = vp,. A partial task mapping is one where ; o . :
some of the vertices of the task-graph have been as_the first phase, called thartitioning phaseinvolves par

signed to processors in the topology-graph while oth- tioning thg objects (Ob“V'QUS.tO network-tppology) Into
. 4 : groups. This serves the objective of balancing compute load
ers are yet to be assigned. A partial mapping can be

represented by a function : on processors. In the next phase, mappmg_phasethe_p
groups are mapped onto theprocessors with the objec-

PV, —V,u{Ll} tive of pIacing_gommunicati_ng groups on nea_trby proces-
sors. Any partitioning algorithm can be used in theati-
where P(v;) = 1 denotes that; has not yet been tioning phase However, a partitioning method that reduces
assigned to a physical processor. inter-group communication by placing more communicat-
_)) ing objects in the same group must be preferred. This two-

Hop-bytes (Metric) Hop-bytes is the metric (or eval- phased approach has the advantage of simplicity and clear
uation function) used to judge the quality of the so- separation of the two objectives. A unified approach where
lution produced by the mapping algorithm. HOp- the mapping is performed on an object-by-object basis has
bytes is the total size of inter-processor communica- more freedom but suffers from the constraint of balancing
tion in bytes weighted by distance between the re- yhe compute load on processors. The additional constraint
spective end-processors. The relevant measure forygkes this approach more complex. We have adopted the
distance between two processors is the length of thegpove mentioned two-phased approach in this paper.
shortest path between them in the topology-graph. \we now present the mapping heuristic. It is applied in
For processors,y,, vz, € V), the distance between he second phase of the two-phased approach. The par-
them is represented b, (v1,,v2p). Let us denote by itioning in the first phase is accomplished either using
HB(Gy, Gp, P) the hop-bytes when the task graBh \ET|S [14, 16, 15] or using some of the existing dynamic
is mapped on the topology gragh,, under the map- |9ad balancing strategies irHBRM ++.

ing P. .
ping 4.1 Intuition

HB(Gy, Gy, P) = Z HB(ew) Since we take th.e approach of placing objects one by
one, the main question that needs to be addressed is the se-

lection of the next processor and the next node in the task-

where HB(eqp) = cqp X dp(P(vq), P(wp)) graph to be placed on it. This is guided by Bstimation

If the compute objects represented by the vettex

eabEEL

function It estimates for each pair of unallocated tasks and
available processors tlwstof placing the task on the pro-
cessor in the next cycle. The estimation function has the
following form:

fest (t7p7 P) — cost value

wheret is an unassigned taskp,is an available processor
and P is the current task mapping. For each task we can

find the best processor, the one where it costs least to place

it. However, for a given task it may not matter much if it is

placed on its best processor or any other processor. We can

approximate how critical it is to place a task by assuming
that if it is not placed in the next cycle it will go to some
arbitrary processor in a future cycle. The estimation func-

Algorithm 1: The Mapping Algorithm

begin
Data: V; (the set of Tasks),
V, (the set of processors)
(IVe] = [Vp| =)
Result P : V; — V,, (A task mapping)

T, «— Vi

P —V,;

for k — 1ton do

/ISelect the next task and proces&qr; pr);
/INext tasky, is the one with maximum
gain;

mar_gain «— —oo;

for taskt € T}, do

gain(t) =
est (T,
ZPEP’:’J;}.) - mianPk fest(typ);
if gain(t) > max_gain then
ty < t;
mazx_gain — gain(t);
L end
/INext processomy, is the one where;
costs least;

min_cost «— oo;
for processop € P, do
if fest(tr,p) < min_cost then
Pk < Ds
min_cost «— fest(tg,p)
end

P(ty) = px;

tion gives us the cost of placing a task on its best processor
and the expected cost when placed on an arbitrary proces-
sor. The difference in the two values is used as a measure

Tiq1 < T — {tu};
Piy1 — P —{p};

of how critical it is to place the task in the next cycle. Once
we estimate how critical it is for each task to be placed in
the next cycle, we can select the one for which it is most
critical.

4.2 The algorithm

The top-level view of the algorithm is shown as algo-
rithm 1.

end

Let us denote by}, the set of tasks that remain to be
placed at the beginning of thg" cycle. Also denote by
Py, the set of processors that are available at the beginning
of the k*" cycle. As shown in Algorithm 1, we calculate
the estimated gain which each task stands to achieve if it
is placed in the current cycle. The estimation function is
such thatf... (¢, p, P) approximates the contribution of task
t (if placed on processas) to overall quality of the map-
ping. The function is topology-sensitive. Once gain values
are known for each task, the one with maximum gain is se-
lected. It is mapped to the processor whérg estimates it
to cost the least.

4.3 Estimation functions

In this section we will motivate and present multiple
cost estimation functions. As explained earlier the estima-
tion function is used for calculating thepst of placing a
taskt on an available processprwhen some of the tasks
have already been placed. Since our objective is to reduce
hop-bytes, we would interpret the contribution of task
to overall Hop-bytes as theostof placingt on processor
p. Let us recall thaG; = (V;, E;) is the task graph and

G, = (V,, E,) is the network topology graph. We note P[t;] to be uniformly random omvailableprocessors

that the overall Hop-bytes is additive and is the sum of the Py.. In other words, for any unmapped tagke 7}, we

Hop-bytes due to individual tasks. approximate:

HB= " 3, eodp(PU).P() =5 3, HB(L), where q,(p, P(t,) ~ By, cuipldyp.p,)) = =2
eij=(ti,t;)EE: LiEV; | P
HB(t;) Z cijdy(P(t;).P(t;)) While using a better approximation in the estimation

£ |t) EE function (in the third order approximation) is expected to
J 1Y t . oy . . .
lead to a better solution, it is costlier to compute and it af-

During a partlcu]ar iteration of the mapping algorithm, o (s the overall running time of the load balancing algo-
we only have a partial mapping because some tasks have NGthm. Since the consideration of running time dominates

bleen placed yet. Iffk be t?e set of taskshthat rema|r|1 tolbe in the real-world applications, we will use the second order
placed and®;, be t eths_et of processors that are available at 5, vimation scheme in our implementation and results.
the beginning of thé™" iteration. Similarly, letZ}; be the set This will be discussed in section 4.4.

of tasks that have already been placed &de the set of

processors that are no longer available atiteiteration. ~ 4-4 Implementation of the algorithm: TopolLB

Note thatl;, N7}, = ¢ andP,N P, = ¢. Also, they partition The mapping algorithm has been implemented in
the complete sets, which can be stated d% U 7}, = V; CHARM++ as a strategy called TopoLB under the dynamic
andP, U P, =V, load-balancing framework. Initially, the task graph is par-

titioned intop groups using METIS. Any other topology-
oblivious partitioner can also be specified for partition-
ing. Some of the dynamic load balancing strategies of
‘CHARM++ like GreedyLB are suitable for partitioning. At
this point, both the new task graph and the topology graph
have the same size We maintain & x p table of dynamic
] _ 3] values off.. (¢, p, P). Rows are indexed by task nodes and
Jest(tiop, P) = Z ciidp(p, P(1;)) columns are(indexéd by processors. The entry in the cell
(t,p) is the current value of.s:(t,p, P). In addition, we
It is quite cheap to compute as compared to the othermaintain the minimum and average valuefpf; for each
approximations. This estimation function has been unassigned task over all unassigned processors. Let us call
used in TopoCentLB described in 4.5. these array$' Min[t] andF Avg|t], respectively. In thé'"
S iteration we need to select the unassigned taskwhich
2. Second order approximation _ maximizes the value of Avg[t] — FMin[t]. This takes
We WI.|| approximate the contribution of communica- 4 jinear pass, taking timé(p). Next we find the avail-
tion with tasks that have not yet been as&gned. As We gple processar,, wheref. ., (t, p, P) attains the minimum
do not yet know the placement.of an unassigned task,yiue in timeO(p). The taskt, is mapped to processpy,
sayt;, in Ty, we assume that it will be placed on a \yhich is marked unavailable. The main cost is incurred in
random processor. Thus, we approximate the distancepqating the table at the end of each iterationf.as val-
betweery and P(¢;) by theexpectedlistance of to ues might change as a result of the assignmen, & py,.
other processors. The distribution Bf¢;) is takento ere e discuss the time-complexity only for the second
be uniformly random or’. In other words, forany anq third order approximations. In the second order ap-
unmapped task; € Tj, we approximate: proximation, only the estimation values of tasks that have
 an edge witht, in the task graph are affected. Moreover,
Zp»ev dp(p7pj) h
—Pi=™ —* "7 updating thef.,; values for one such task takes a total of
[Vl O(p). This makes the total cost of updadépd(¢x)), where
Thus we can refine our estimation function to be: d(tx) denotes the degree of the nogein the task graph.
Thus, the total time in each iteration of the algorithm is

2p,ev, @P)+ O(ps(t1,)), which is same a®(ps(ty,)). The to-
Jest (b2 P) = 3 cigdplp Pt D ey |V,,| tal running time over alp iterations is:

tjefk t; €T
Running Time = Z O(pé(t)) =O(p Z 5(t)) = O(p|E:)
teVy tevy

1. First order approximation
Since we do not know the placement of some of the
tasks yet, we drop terms corresponding to those tasks
Thus, we consider the contribution only due to com-
munication with already assigned tasks:

17 GTk

dp(pap(tj)) ~ EijU[Vp] [dp(p7p7)] =

3. Third order approximation
While we do not yet know the placement of unassigned
tasks, we do know that they can only be assigned to While the running timeD(p|E;|) can be as bad a8(p?*),
processors that are still available. The approximation in practice the nodes in the task graph have small constant
that an unassigned task, say will be mapped to degree, and a running time closerd@gp?) is observed. In
a random processor i, does not capture this con- the third order approximation,however, the valfie; (¢, p)
straint. We should rather assume the distribution of depends on the average distance of procgssmotherfree

processors. When the statuspgfchanges from freeto al- 5.1 Evaluation mechanism
located, the average changes for all other processors. Thus
all f“’.t(t’p’ P) values change. By maintaining the aver ime to dump load information from an actual parallel ex-
age distance of a processor to free processors, we incura .. . !) .

:) ecution into a file for later analysis. This can be done by
constant cost per processor in calculating new average val-

S . specifying the load balancing step for which the load in-
ues; this is a total cost @(p). Once average dlstan_ces &€ formation needs to be dumped as runtime parameters (us-
known, each value in thé.; table can be updated in con-

. L . ing +LBDump StartStepo specify the first step, and +LB-
stant time. This incurs a total cost©fp?). Thus total time)
in an iteration isO(p) + O(p?). which is same a®(p?). DumpStepNumStepso specify the total number of steps).

Overall running time over aj iterations in this case is: A dump file is generated for each of the steps specified in
9 ' the range. The effect of different centralized load balancing

strategies can then be studied on the load balancing database
Running Time = Z O(p*) = O(p*) present in these dump files by running argrARM++ pro-
tev, gram sequentially in simulation mode (by specifying the
name using +LBDumpFil&ileNameand the load balanc-

From the above calculation we can see that using secondnd Step to be simulated using +LBSi&tepNurp In sim-
order approximation Q(p|E,|)) takes less time than third _ulat|0n mode, the load bala_mcmg framework uses the load
order approximation O(p?)). In practice, the nodes of the information from the dump files rather than from the current
task graph have a small constant degree, and the total numtun: Relevant metrics can be studied as needed.
ber of edges i€)(p). Thus, the second order approximation ~ This mechanism provides an efficient way of testing load
has a running time closer t©(p?) which is significantly ~ balancing strategies as their effects on a given load scenario
lower than the fixed cost ab(p?) for the third order app- ~ can be studied without repeated runs of the actual parallel
proximation. Scaling considerations lead us to the choice ofProgram. Moreover, different strategies can be compared

' CHARM++ load balancing framework allows the run-

second order approximation for our scheme. on exactly same load scenarios, which is not possible in ac-
tual execution because of non-deterministic interleaving of
4.5 TopoCentLB events. Thus, we will use this mechanism to study the per-

]) formance of the load balancing schemes described earlier.
TopoCentLB is a topology-aware load balancing strategy

for CHARM++ which also tries to solve the task mapping 9.2 Reduction in hop-bytes

problem. In this strategy, as in TopoLB, the original task a5 described in section 4, the metric that the mapping
graph is first partitioned using a topology-oblivious scheme peristic (TopoLB) aims to reduce is hop-bytes, or equiv-
(like greedy partitioning or Metis) to get a smaller graph gjently, hops-per-byte. We will present the performance in
with p nodes, wherg is the number of physical processors. terms of hop-bytes reduction.

We will assume for the description that the task graph and 1, study the quality of mapping independent of the parti-

the processor graph have the same sizes. The mapping akoning method, we can start with task graphs that have just
gorithm iteratively maps the nodes of this task graph onto

| RS " p tasks so that no clustering is needed. We uselari++
the physical processor graph. In the first iteration, the mosty, o ychmark program which has a jacobi-like communication

communicating task is selected and mapped to a processok,auern for this purpose. The benchmark program creates

In each subsequent iteration, the task that has maximum to o e (or tasks) which communicate in a 2D-Mesh pattern.

tal communication with already assigned tasks is selected.z5.h chare communicates with its four neighbors (three or

It is mapped to the free physical processor where it InCurs 4 for houndary and corner chares, respectively) in each
the least total cost of communication (in terms of hop-bytes) jieration. The number of chares to be created is a parameter
with the already assigned tasks. The algorithm uses the eS¢, the benchmark.

timation function with first order approximation for making
it's decision in each iteration. A similar scheme has been 5.2.1 2D-Mesh pattern on 2D-Torus

described by T. Baba et.al. [4]; this scheme corresponds to Figure 5.2.1 compares the performance of random place-

their (P, P,) scheme. ment, TopoLB and TopoCentLB in mapping a 2D-Mesh
. pattern onto a 2D-Torus topology. In each case, the number
S Experiments of tasks created is the same as the number of processors.

In this section we will discuss and compare the perfor- 't ¢an be seen that random placement produces mappings
mance of the load balancing schemes described earlier. wdhat have very large values of hops-per-byte. We can an-
also compare their performances to a load balancer whichd!Ytically compute the expected hops-per-byte for random
places the tasks on the processors at random. Section 5.p/aceément, which is same as the expected distance between
will describe the performance of TopoLB in reducing the WO random processors. Each dimension has a spg/ppf
hops-per-byte metric in different scenarios. The effect of and with a wrap-around link the expected distance in each
the reduction in hops-per-byte on actual network communi- dimension |s§. Thus, the total expected distance between

cation observables, like average message latency and exéwo random processors B2 or g. As seen in figure
cution times , is described in secti@nf. 5.2.1, the value of hop-bytes for random placement matches

Ao Hops per Bits

20 ks h worrnunl cation pattem mappsd onbo a D -Tons netvork

T T T
Faridom Placemsrt

TopolB =
TomCantl B
" e . .
i i L L
1000 o0 000 4000 000
Humber of Processors

Figure 1. Mapping 2D-Mesh communication
pattern onto a 2d-Torus. Random placement
matches expected value.

closely with this expected value.

Avarag: Hops per Bits

20uies hcommun coblion pattem mapped onbo a S0-Torls nebwork

T T T T "
Fardom Placsment
= TopclB
TopoCentlB
0
%
i =
ﬂ‘]
]
i
4
2 a o " b ¥
wd
ok L i i L L J
] 1000 ol 2000 4000 000 SO0
Mumber of Processors

Figure 3. Mapping 2D-Mesh communication
pattern onto a 3d-Torus. Random placement
matches expected value.

5.2.2 2D-Mesh pattern on 3D-Torus

Since a 2D-Torus contains a 2D-Mesh, the ideal place- Next we map the 2D-mesh communication pattern on a
ment can preserve neighborhood relationships and achiev8D-Torus topology of the same size. A comparison of the
the hops-per-byte value df It is interesting to note that
TopoLB actually produces an optimal mapping in most ping strategies is shown in figure 5.2.2. For a 3D-Torus, the
cases. Figure 5.2.1 shows the comparison of TopoLB andexpected distance between two random processdr%ﬁs

TopoCentLB and is essentially a zoomed-in version of fig- As seen in figure 5.2.2, the actual value of hops-per-byte
ure 5.2.1. Itis also seen that TopoCentLB also results inobtained by random mapping matches this analytical for-

small values of hops-per-byte, though TopoLB performs mula closely. The other two mapping strategies, TopoLB
better than TopoCentLB in all tested cases.

20uies h communication pibem mapped onbo a 20-Torus network

[=A]

%

TopoCartiB

Figure 2. Mapping 2D-Mesh communication
pattern onto a 2d-Torus. Zoomed in to com-
pare TopoLB and TopoCentLB.

average hops-per-byte values resulting from different map-

and TopoCentLB, lead to considerable reduction in hops-
per-byte when compared to a random mapping.

Figure 4. Mapping 2D-Mesh communication
pattern onto a 3d-Torus. Zoomed in to com-
pare TopoLB and TopoCentLB.

In general, the task graph (2D-Mesh) is not a subgraph
of the topology graph (3D-Torus). Hence, it is not always
even feasible to preserve neighborhood relation when map-
ping a 2D-Mesh onto a 3D-Torus with the same number of
nodes. Consequently, the optimal value of hops-per-byte is,
in general, larger thah. However, for specific cases, it is
possible to preserve the neighborhood relation. For exam-
ple, a (8,8)2D-Mesh is a subgraph of a (4,4,4)3D-Torus, so
it is possible to preserve neighborhood relation. We can see
from figure 5.2.2 that in this case, TopoLB is able to reduce
hops-per-byte to its optimal value bfthe value when num-
ber of processors 4 in the figure). For a larger number of
processors, TopoLB leads to a small value of hops-per-byte.
TopoCentLB also results in small values of hops-per-byte
which are about 10% higher than those from TopoLB.

5.3 Network Simulation
Figure 5. Comparison of different mapping
strategies on 2D-tori for LeanMD data

Figure 7. 2D-mesh on 64-node 3D-Torus: Av-
erage message latency using different map-

5.2.3 LeanMD mapped onto different topologies pings

This section will describe the results of mapping com-
munication pattern from a real molecular dynamics simula-
tion program called LeanMD [18]. We have load informa-
tion dumps for LeanMD on different numbers of processors. Figure 8. 2D-mesh on 64-node 3D-Torus: De-
The total number of chares 3840 + p wherep is the num- tailed comparative view of average latency in
ber of processors. This gives virtualization ratiod & for the un-congested domain
p = 18, 6 for p = 512 and3 for p = 1024. Since the num-
ber of chares is greater than the number of objects, we need

to perform clustering of chares infogroups with balanced In section 5.2 we discussed the reduction in the average
communication load. We use METIS for this initial group- nqmber .Of hops that_each byte trayels over thg network. In
ing. Once this grouping is performed on the original task this section we will discuss how this reduction in the hops-

graph, a new task graph with the same size as the number 0per—byte metric translates into gains in execution time and

processors is obtained. We then map this task graph usingfmd othe_r characterlst_lcs on_the network. . .
different strategies. We will perform simulations using BigNetSim [24],

Fiqure 5.2.3 shows th ver h r-bvte wh nwhich is an interconnection network simulator. One of the

L ?&"'De 0 S 3 St eZE‘)aTe ggef ops-per-byte F ®Nteatures of BigNetSim is that it can simulate application
ean IS mapped onto 2D-10r Of various SIZES. FOr ., o5 on different kinds of interconnection networks. We
p = 18, the virtualization ratio i980, which is quite high. e using a 3D-Torus network to simulate a 2D-jacobi

Consequently, with such a large number of chares in eachIike program. In this benchmark program, each chare per-

group, almost all pairs of groups communicate with each forms some computation and then sends messages to its
other. The average degree of the coalesced task-graph oh-

. .) our neighbors in each iteration. The amount of computa-
tained frqm MET_IS is12.7, which means that_e_ach_ group - ion is kept low so that communication is a significant factor
communicates witti0% of the groups. Hence it is difficult

in overall efficiency. This benchmark program is executed
for any strategy to reduce hop-bytes as almost all the groups, i TopoLB, TopoCentLB, and GreedyLB (aHBRM++
communicate. Fob12 processors, the virtualization ration ' '

is 6 and th d £ th | d task load-balancer with essentially random placement) and event
IS an € average degree of the coalesced tas grap'ﬂraces are obtained. These event traces contain timestamps

is 19.5 which means that each group communicates with X ; L
. for message sending and entry point (message receivin
about4% of the other groups. This creates some avenues for. g 9 y P (9 9)

intelligent placement of arouns to keen the communication initiation. Event-dependency information is also available
gentp T group P in the traces so that these timestamps can be corrected de-
local. As seen from figure 5.2.3, TopolLB leads t843%

duction i h b d | pending on the network being simulated while honoring
ftoucé'lgn 'r_]bzvseerg?:ﬁncéﬁs(;r%erl'erzteen?ggrh;gSTerlc?;g_memwent ordering. Thus, we can vary the parameters for the
bala}?lcingyframework) caIIedpRefineTo oLB can further re- underlying interconnection networks and examine the ex-
duce thegvalue by abodR%. TopoG ?LB | ; pected effect on the execution of the traced program.

; y o _po. en also periorms The execution of application traces is simulated on a
well, leading to a30% reducnon‘, similar tre.nq is seen for (4,4,4)3D-Torus interconnection network. Since TopolLB
1024 processors. Notg that RefineTopoLB is mtended_ t(_)_be and TopoCentLB lead to a reduction in the average hops that
used for further reducing hop-bytes after applying the initial

. ; a packet travels, the actual network load (and contention
load balancer like TopoLB. The refiner swaps tasks between P ()

Orocessors to see if hop-bytes are reduced ar not. It SWapgenerated for the same application is reduced. Hence, it is
) ' X hat an lication m ing th hem
only when hop-bytes get reduced, pected that an application mapped using these schemes

would be able to tolerate reduction in link bandwidth better
than a naive random mapping. Figure 5.3 shows the aver-
age message latency for different values of link bandwidth.
Figure 6. Comparison of different mapping It can be seen that in the case of a random placement, the
strategies on 3D-tori for LeanMD data average latency increases dramatically as congestion sets in
due to a reduction in bandwidth. TopoCentLB can tolerate
a further reduction in network bandwidth while TopoLB is
Figure 5.2.3 shows the results for mapping onto 3D-Tori. the most resilient; this is because a smaller value of hops-
The relative performance of the different schemes in this per-byte leads to a smaller number of packets on each link.
case is similar to the last case. TopoLB followed by Refine- Consequently, the links can service the traffic with a smaller
TopoLB leads to a reduction in hops-per-bytes in 46&; bandwidth. In the case of random placement, larger loads
range. on individual links lead to messages being stranded in the

buffers at the switches for a longer time. Figure 5.3 shows IEEE Computer Society, 2001.

the zoomed-in view of figure 5.3 for the purpose of com- [2] An Overview of the BlueGene/L Supercomputer. $u-
parison of the schemes in the low congestion region. Even ~ Percomputing 2002 Technical PapeBaltimore, Maryland,

in this case, it can be seen that among the three schemes 2002. The BlueGene/L Team, IBM and Lawrence Livermore

National Laboratory.
Topol B leads to least average message latency. [3] S. Arunkumar and T. Chockalingam. Randomized heuris-

tics for the mapping probleninternational Journal of High
Speed Computing (IJHSC)(4):289-300, Dec. 1992.
Figure 9. Completion time for the execution [4] T.Baba, Y. lwamoto, and T. Yoshinaga. A network-topology
of 2000 iterations independent task allocation strategy for parallel computers.
In Supercomputing '90: Proceedings of the 1990 ACM/IEEE
conference on Supercomputjngages 878-887, Washing-

The total time for the entire execution to finish is also ton, DC, USA, 1990. IEEE Computer Society. .
improved by using intelligent mapping. Figure 9 shows the [5] F. Berman and L. Snyder. On mapping parallel algorithms
total time required for the completion @000 iterations of into parallel architectures. J. Parallel Distrib. Compu.

. S) 4(5):439-458, 1987.
the benchmark. For smaller bandwidth, optimizations ob [6] S. H. Bokhari. On the mapping probletEEE Trans. Com-

taingd by TopoLB and TopoCentLB show a very Iarge gai.n. puters 30(3):207—214, 1981.

In this region, random placement leads to congestion which [7] s w. Bollinger and S. F. Midkiff. Processor and link assign-
causes communication to be delayed and iterations progress ~ ment in multicomputers using simulated annealingdRP
much slower. Total execution time under random placement (1), pages 1-7, 1988.

can be more than double the time required under TopoLB. [8] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation

TopoCentLB also leads to a large reduction over random onto a hypercube by recursive mincut bipartitioningPho-
placement. However, TopoLB outperforms TopoCentLB by ceedings of the thqu cqnference on Hypercube concurrent
about 10-25%. computers and applicationpages 210-221, New York, NY,
USA, 1988. ACM Press.
5.4 Results on Bluegene [9] Z. Fang, X. Li, and L. M. Ni. On the communication com-
. plexity of generalized 2-d convolution on array processors.
6 Conclusions and future work IEEE Trans. Comput38(2):184-194, 1989.

This paper presents a heuristic aimed at solving the task[lo] R P. B. _Jr. and J. P._ Shen. Interprocessor traffic schedul-
ing algorithm for multiple-processor network&EE Trans.

mapping problem that arises in the context of parallel pro- Computers36(4):396-409, 1987.

gramming. o))) [11] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging support
The heuristic algorithm provides a solution to the prob- for Charm++. INPADTAD Workshop for IPDPS 200gage
lem of mapping tasks onto physical processors connected 294. IEEE Press, 2004.

in a given topology, so that most of the communication is [12] L. V. Kalé. The virtualization model of parallel program-
between nearby processors. We show that TopolLB pro- ming : Runtime optimizations and the state of artLRCSI
vides a good mapping, in terms of average number of hops 2002 Albuquerque, October 2002.

travelled by each byte, and compares favorably with some [13] L. V. Kalé and S. Krishnan. Charm++ : Parallel Program-

. ming with Message-Driven Objectdn Parallel Program-
other schemes. In particular, we found that TopoLB was ming using C++ MIT Press, 1995. To be published.

able to map a 2D-Mesh onto a 2D-Torus optimally inmany [14] G. Karypis and V. Kumar. A fast and high quality multi-
cases, although it does not consider the shapes of the graphs |eve| scheme for partitioning irregular grapt8IAM J. Sci.

specifically. We show, via simulations, that an efficient Comput, 20(1):359-392, 1998.

mapping that reduces the total communication load on the [15] G. Karypis and V. Kumar. Multilevel algorithms for multi-
network, or hop-bytes, leads to lower network latencies on constraint graph partitioning. 18upercomputing '98: Pro-
an average, and provides better tolerance of network band- ~ ceedings of the 1998 ACM/IEEE conference on Super-

computing (CDROM)pages 1-13, Washington, DC, USA,
1998. IEEE Computer Society.

[16] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphslournal of Parallel and Dis-

width constraints and network contention. Another similar,
but simpler and faster, scheme called TopoCentLB has also
been developed for the purpose of comparison of it's results

with TopoLB. Schemes similar to TopoCentLB have been tributed Computing48:96 — 129, 1998.

developed in the past. [17] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for par-
In the future, gains from topology-aware task mapping allel processing.IEEE Trans. Computers36(4):433-442,

should be studied on real large parallel machines, like Blue- 1987.

Gene (BG/L). Due to massively large sizes of these ma- [18] V. Mehta. Leanmd: A char.m++. framgwork for high per-
chines, a distributed approach toward keeping communica- formance molecular dynamics simulation on large parallel
tion localized in a neighborhood may be needed for scala- machines. Master’s thesis, University of lllinois at Urbana-

. . . Champaign, 2004.
bility. A hybrid approach, such as that in [23], could also be [19] J. M. grd?ﬁa, F. Silla, and J. Duato. A new task mapping

investigated. technique for communication-aware scheduling strategies.
In ICPP Workshop§l], pages 349-354.
References [20] P. Sadayappan. Nearest-neighbor mapping of finite element
[1] 30th International Workshops on Parallel Processing (ICPP graphs onto processor meshetEEE Trans. Computers
2001 Workshops), 3-7 September 2001, Valencia, Spain 36(12):1408-1424, 1987.

[21]

[22]

(23]

(24]

H. Stone. Multiprocessor scheduling with the aid of network
flow algorithms. IEEE Trans. Software Engineering:85—

93, Jan. 1977.

K. Taura and A. Chien. A heuristic algorithm for map-
ping communicating tasks on heterogeneous resources. In
HCW ’00: Proceedings of the 9th Heterogeneous Comput-
ing Workshop (HCW '0Q)page 102, Washington, DC, USA,
2000. IEEE Computer Society.

G. Zheng.Achieving High Performance on Extremely Large
Parallel Machines PhD thesis, Department of Computer
Science, University of Illinois, Urbana-Champaign, 2005.
G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. VéKal
Simulation-based performance prediction for large parallel
machines. Ininternational Journal of Parallel Program-
ming, number to appear, 2005.

