
Mapping heuristics for reducing communication cost in parallel machines

Tarun Agarwal, Amit Sharma, Laxmikant V. Kalé
Dept. of Computer Science

University of Illinois at Urbana-Champaign
{tagarwal, asharma6, kale}@cs.uiuc.edu

Abstract

1 Introduction
An increasingly large number of scientific pursuits use

computational resources as their backbone. Applications
range from study of molecular behavior, both using clas-
sical and quantum physics models, evaluation of physi-
cal properties of materials like stress response, to simula-
tions of galaxies and cosmological phenomenon. The insa-
tiable computational requirements of such applications has
inspired the development of massively parallel machines,
like the recent BlueGene (BG/L) machine from IBM. Par-
allelism at the scale of tens of thousands of processors is
being seen. For example, BG/L will have 64K processors
[2] once fully deployed. The main resources in a large par-
allel machine are its compute nodes and the interconnection
network. It is imperative that techniques for efficient and
uniform utilization of these resources be developed.

The number of tasks running on large machines usually
exceed the number of processors. Each task has different
computation and communication characteristics from the
other. This makes task assignment, a non-trivial problem
to solve. Solution involves achieving load-balance among
all the processors in the system and reducing the communi-
cation latency of the messages in the system.

Task assignment problem can be solved in two different
ways. Either we achieve load-balance and communication
latency reduction together in a single phase or we split our
efforts in two phases: achieving load balance in the first
phase (partitioning) and reducing communication latency in
the second phase (mapping). In this paper, we present a
heuristic algorithm for solving the mapping problem (for
reducing message latency in the network).

The significance of the problem we are solving is moti-
vated in this paragraph. Due to the increasing size of the
parallel computers being used, the interconnection network
has become the system bottleneck. It is so because the pack-
aging considerations for a large number of processors lead
to the choice of a mesh or a torus topology. For example,
the primary network in BlueGene/L is a 3D-Torus. Even for
a relatively moderate machine size a message might travel
a large number of hops. A(16, 16, 16)3D-Torus on4k pro-
cessors has a diameter of24 hops and the average intern-

ode distance of12 hops is also quite high. If packets travel
over such large number of hops, the average load on the
links increases, which increases contention. Therefore, it is
desirable to map communicating objects to nearby proces-
sors. Also, task assignment generally doesn’t preserve all
the neighbor relations, thus, arising the need to route mes-
sage through physical paths of varying lengths. This further
motivates the as-near-as-possible placement of neighboring
tasks.

The task mapping problem is known to beNP -
Complete [6, 17, 20]. Two kinds of algorithms have
been developed in the past to solve it: Heuristic algo-
rithms [17, 4, 22] and Physical optimization algorithms
[3, 1, 7, 19]. Though physical optimization algorithms
produce high-quality solutions (better than heuristic algo-
rithms), they tend to be very slow. Their execution times
are unacceptable in a practical scenario for large data sets,
when compared to the task execution times. Heuristic algo-
rithms, on the other hand, are much faster and suitable for
real-world parallel applications.

To develop a new mapping heuristic strategy, we need to
carry out four steps. Firstly, we need to know the commu-
nication and computation requirements of the task (parallel
program). Secondly, we have to characterize the available
system resources (parallel architecture). Thirdly, an evalu-
ation function (or metric) has to developed to evaluate the
solutions. Finally, the mapping technique or heuristic has to
be designed.

The first and second steps are taken care of by the
CHARM++ [13] virtualization model and the dynamic load
balancing framework implemented in it. The CHARM++
programming model involves breaking up the application
into a large number of communicating objects which can
be freely mapped to the physical processors by the runtime
system [12]. Furthermore, these objects are migratable,
which allows the runtime system to perform dynamic load
balancing based on measurement of load and communica-
tion characteristics during actual execution. This flexibility
has been utilized in the dynamic load balancing framework
of CHARM++. Dynamic load balancing has an associated
overhead of task migration. In CHARM++ this is handled
using the PUP framework [11] which is a way of describing
the layout of object’s data in memory. The metric and the
mapping heuristic, which form third and fourth step, have

1

been described in detail in some following sections.
Also note that in this paper, we are only concerned with

process-based model [6, 21] in which there are no DAG-
based dependencies. The tasks (or modules) are arranged in
undirected graphs and edges represent two-way communi-
cation rather than precedence or one-way communication.
Further, the tasks are persistent processes which have stable
communication patterns between them (CHARM++ Load
Balancing Model).

2 Related Work
The problem of scheduling tasks on processors has been

well studied. There have been many distinct categories of
research, each with a different focus. A large part of the
work has concentrated on balancing compute load across
the processors while ignoring any communication all to-
gether. The problem handled in this kind of work is the
assignment of a set ofn jobs (each with some arbitrary
size) onp processors (n usually larger than thanp), so as to
minimize the maximum load (makespan) on the processors,
since higher compute load on one processor slows down the
entire system. In the next category, researchers have worked
on communication-sensitive clustering while still ignoring
any topology considerations. The main objective here is the
partitioning of jobs into balanced groups (equal in number
to the number of processors) while reducing inter-partition
communication. The more general problem is one of map-
ping task graph to a network topology graph while bal-
ancing compute load on processors and minimizing com-
munication cost (which we model as hop-bytes in section
3). All the categories described involveNP -hard optimiza-
tion problems. To solve these problems, researchers have
made use of heuristic algorithms like greedy, branch-and-
bound, local search etc. and physical optimization algo-
rithms like simulated annealing, genetic techniques, neural
networks etc. This section will present a brief survey of re-
lated works in the third category (mapping task graph on
a network topology graph). While keeping communicating
tasks on the same processor helps reduce the communica-
tion cost, processor computation load considerations pre-
vent all communication from being intra-processor. The
problem of mapping communication tasks onto a proces-
sor topologyhas been studied in the past. The objective of
the mapping is to essentially reduce communication cost by
placing communicating tasks on nearby processors.

Bokhari [6] uses the number of edges of the task graph
whose end points map to neighbors in the processor graph
as the cost metric. The algorithm [6] starts with an initial
mapping and performs pairwise exchanges to improve the
metric. Results are given for up to 49 tasks. Lee and Ag-
garwal [17] propose a step by step greedy algorithm fol-
lowed by an improvement phase. At the first step, the most
communicating task is placed on a processor with similar
degree. Subsequent placements are guided by an objec-
tive function. Berman and Snyder [5] present an approach
where both cardinality variation (difference in number of
tasks and processors) and topological variations (different
in shapes of the task graph and topology graph) are con-

sidered. They first coalesce the task graph to get rid of the
cardinality variation. The coalesced graph is mapped on the
actual topology.

Local search techniques such as Simulated annealing
have also been tried. Bollinger and Midkiff [7] propose a
two-phased annealing approach:process annealingassigns
task to processors andconnection annealingschedules traf-
fic along network links to reduce conflicts. Evolution-
inspired Genetic algorithms based search has also been at-
tempted. Arunkumar and Chockalingam [3] propose a ge-
netic approach where search is performed using operators
such asselection, mutation, andcrossover. While these ap-
proaches produce good results, the time required for them
to converge is usually quite large compared to the execution
time of the application. Ordũna, Silla and Duato [19, 1] also
propose a variant of the genetic approach. Their scheme
starts with a random initial assignment, theseed, and in
each iteration an exchange is attempted and the gain, if any,
is recorded. If no improvement is seen for some iterations a
new seed is tried and eventually the best overall mapping is
returned.

Strategies for specific topologies and/or specific task
graphs have also been studied. Ercal, Ramanujam and Sa-
dayappan [8] provide a solution in the context of hypercube
topology. Their divide-and-conquer technique, calledAl-
location by Recursive Mincutor ARM, aims to minimize
total inter-processor communication subject to the the pro-
cessor load being within a tolerance away from the av-
erage. A mincut is calculated on the task graph while
maintaining processor load equal on the two sides and a
partial assignment of the two parts is made. Repetitive
recursive bi-partitioning is performed and the partition at
the kth iteration determines thekth bit of the processor
assi24.685837gnment. Bianchini and Shen [10] consider
mesh network topology. Fang, Li and Ni [9] study the prob-
lem of 2-D convolution on mesh, hypercube and shuffle-
exchange topologies only.

Baba, Iwamoto and Yoshinaga [4] present a group of
mapping heuristics for greedy mapping of tasks to proces-
sors. At each iteration a task is selected based on a heuristic,
and then a processor is selected for that task based on an-
other heuristic. One of the more promising heuristic com-
binations they propose is to select the task that has maxi-
mum total communication with already assigned tasks and
place it on the processor where the communication cost is
minimized. The communication cost is modeled similar to
hop-bytes, although considering only the communication
with previously assigned tasks. A very similar scheme has
also been implemented, independently, in CHARM++ as the
TopoCentLB load balancing strategy. Taura and Chien [22]
propose a mapping scheme in the context of heterogeneous
systems with variable processor and link capacities. In their
scheme tasks are linearly ordered with more communicat-
ing tasks placed closer, and the tasks are mapped in this
order.

3 Definitions
Both the load information and the network topology are

represented as graphs.

• Topology Graph The network topology is repre-
sented as an undirected graphGp = (Vp, Ep) on p
(= |Vp|) vertices. Each vertex inVp represents a pro-
cessor, and an edge inEp represents a direct link in
the network. Our algorithms work for arbitrary net-
work topologies; however we will present results on
more popular topologies like Torus and Mesh.

• Task Graph The parallel application is represented as
a weighted undirected graphGt = (Vt, Et). The ver-
tices inVt represent compute objects (or groups of ob-
jects) and the edges inEt represent direct communi-
cation between the compute objects (or groups of ob-
jects). Each vertexvt ∈ Vt has a weightŵt. The
weight on a vertex denotes the amount ofcomputa-
tion that the objects in the vertex represent. Similarly,
each edgeeab = (va, vb) ∈ Et has a weightcab. The
weightcab represents the amount ofcommunicationin
bytes between the compute objects represented byva

andvb.

• Task Mapping The task-mapping is represented by a
map :

P : Vt −→ Vp

If the compute objects represented by the vertexvt ∈
Vt of the task-graph are placed on processorvp, then
P (vt) = vp. A partial task mapping is one where
some of the vertices of the task-graph have been as-
signed to processors in the topology-graph while oth-
ers are yet to be assigned. A partial mapping can be
represented by a function :

P : Vt −→ Vp ∪ {⊥}

whereP (vt) = ⊥ denotes thatvt has not yet been
assigned to a physical processor.

• Hop-bytes (Metric) Hop-bytes is the metric (or eval-
uation function) used to judge the quality of the so-
lution produced by the mapping algorithm. Hop-
bytes is the total size of inter-processor communica-
tion in bytes weighted by distance between the re-
spective end-processors. The relevant measure for
distance between two processors is the length of the
shortest path between them in the topology-graph.
For processorsv1p, v2p ∈ Vp, the distance between
them is represented bydp(v1p, v2p). Let us denote by
HB(Gt, Gp, P) the hop-bytes when the task graphGt

is mapped on the topology graphGp, under the map-
pingP .

HB(Gt, Gp, P) =
∑

eab∈Et

HB(eab)

where HB(eab) = cab × dp(P (va), P (vb))

The overall Hop-bytes is the sum of Hop-bytes due to
individual nodes in the task graph.

HB(Gt, Gp, P) =
∑

va∈Vt

HB(va)

where HB(va) =
1
2

∑
eab∈Et

HB(eab)

• Hops per byteThis is the average number of network
links a byte has to travel under a task mapping.

Hops per Byte =
HB∑

eab∈Et
cab

Hops per Byte =

∑
eab∈Et

cab × dp(P (va).P (vb))∑
eab∈Et

cab

4 The mapping heuristic
Assume we haven compute objects andp processors.

The problem of balancing compute load involves partition-
ing then compute objects intop groups such that the to-
tal compute load of objects in each group is roughly the
same. The second problem, that of reducing network con-
tention, involves placing these groups onto thep processors
such that more heavily communicating groups are placed on
nearby processors. This would make each message travel
over a smaller number of links leading to a reduction in the
average data transferred across individual links.

The problems of partitioning and mapping can either be
solved together or in separate phases. In the latter approach,
the first phase, called thepartitioning phase, involves par-
titioning the objects (oblivious to network-topology) intop
groups. This serves the objective of balancing compute load
on processors. In the next phase, themapping phase, thep
groups are mapped onto thep processors with the objec-
tive of placing communicating groups on nearby proces-
sors. Any partitioning algorithm can be used in theparti-
tioning phase. However, a partitioning method that reduces
inter-group communication by placing more communicat-
ing objects in the same group must be preferred. This two-
phased approach has the advantage of simplicity and clear
separation of the two objectives. A unified approach where
the mapping is performed on an object-by-object basis has
more freedom but suffers from the constraint of balancing
the compute load on processors. The additional constraint
makes this approach more complex. We have adopted the
above mentioned two-phased approach in this paper.

We now present the mapping heuristic. It is applied in
the second phase of the two-phased approach. The par-
titioning in the first phase is accomplished either using
METIS [14, 16, 15] or using some of the existing dynamic
load balancing strategies in CHARM++.

4.1 Intuition

Since we take the approach of placing objects one by
one, the main question that needs to be addressed is the se-
lection of the next processor and the next node in the task-
graph to be placed on it. This is guided by anEstimation

function. It estimates for each pair of unallocated tasks and
available processors thecostof placing the task on the pro-
cessor in the next cycle. The estimation function has the
following form:

fest(t, p, P) −→ cost value

wheret is an unassigned task ,p is an available processor
andP is the current task mapping. For each task we can
find the best processor, the one where it costs least to place
it. However, for a given task it may not matter much if it is
placed on its best processor or any other processor. We can
approximate how critical it is to place a task by assuming
that if it is not placed in the next cycle it will go to some
arbitrary processor in a future cycle. The estimation func-
tion gives us the cost of placing a task on its best processor
and the expected cost when placed on an arbitrary proces-
sor. The difference in the two values is used as a measure
of how critical it is to place the task in the next cycle. Once
we estimate how critical it is for each task to be placed in
the next cycle, we can select the one for which it is most
critical.

4.2 The algorithm

The top-level view of the algorithm is shown as algo-
rithm 1.

Algorithm 1: The Mapping Algorithm
begin

Data: Vt (the set of Tasks),
Vp (the set of processors)
(|Vt| = |Vp| = n)

Result: P : Vt −→ Vp (A task mapping)

T1 ←− Vt;
P1 ←− Vp;
for k ← 1 to n do

//Select the next task and processor(tk, pk);
//Next task,tk, is the one with maximum
gain;
max gain← −∞;
for taskt ∈ Tk do

gain(t) =∑
p∈Pk

fest(t,p)

n−k −minp∈Pk
fest(t, p);

if gain(t) > max gain then
tk ← t;
max gain← gain(t);

end
//Next processor,pk, is the one wheretk
costs least;
min cost←∞;
for processorp ∈ Pk do

if fest(tk, p) < min cost then
pk ← p;
min cost← fest(tk, p)

end

P (tk) = pk;

Tk+1 ← Tk − {tk};
Pk+1 ← Pk − {pk};

end

Let us denote byTk the set of tasks that remain to be
placed at the beginning of thekth cycle. Also denote by
Pk the set of processors that are available at the beginning
of the kth cycle. As shown in Algorithm 1, we calculate
the estimated gain which each task stands to achieve if it
is placed in the current cycle. The estimation function is
such thatfest(t, p, P) approximates the contribution of task
t (if placed on processorp) to overall quality of the map-
ping. The function is topology-sensitive. Once gain values
are known for each task, the one with maximum gain is se-
lected. It is mapped to the processor wherefest estimates it
to cost the least.

4.3 Estimation functions

In this section we will motivate and present multiple
cost estimation functions. As explained earlier the estima-
tion function is used for calculating thecost of placing a
taskt on an available processorp when some of the tasks
have already been placed. Since our objective is to reduce
hop-bytes, we would interpret the contribution of taskt
to overall Hop-bytes as thecostof placing t on processor
p. Let us recall thatGt = (Vt, Et) is the task graph and

Gp = (Vp, Ep) is the network topology graph. We note
that the overall Hop-bytes is additive and is the sum of the
Hop-bytes due to individual tasks.

HB =
∑

eij=(ti,tj)∈Et

cijdp(P (ti).P (tj)) =
1
2

∑
ti∈Vt

HB(ti), where

HB(ti) =
∑

tj |(ti,tj)∈Et

cijdp(P (ti).P (tj))

During a particular iteration of the mapping algorithm,
we only have a partial mapping because some tasks have not
been placed yet. LetTk be the set of tasks that remain to be
placed andPk be the set of processors that are available at
the beginning of thekth iteration. Similarly, letT̄k be the set
of tasks that have already been placed andP̄k be the set of
processors that are no longer available at thekth iteration.
Note thatTk∩T̄k = φ andPk∩P̄k = φ. Also, they partition
the complete sets, which can be stated as :Tk ∪ T̄k = Vt

andPk ∪ P̄k = Vp.

1. First order approximation
Since we do not know the placement of some of the
tasks yet, we drop terms corresponding to those tasks.
Thus, we consider the contribution only due to com-
munication with already assigned tasks:

fest(ti, p, P) =
∑

tj∈T̄k

cijdp(p, P (tj))

It is quite cheap to compute as compared to the other
approximations. This estimation function has been
used in TopoCentLB described in 4.5.

2. Second order approximation
We will approximate the contribution of communica-
tion with tasks that have not yet been assigned. As we
do not yet know the placement of an unassigned task,
say tj , in Tk, we assume that it will be placed on a
random processor. Thus, we approximate the distance
betweenp andP (tj) by theexpecteddistance ofp to
other processors. The distribution ofP (tj) is taken to
be uniformly random onPk. In other words, for any
unmapped tasktj ∈ Tk we approximate:

dp(p, P (tj)) ≈ Epj∈U [Vp][dp(p, pj)] =

∑
pj∈Vp

dp(p, pj)

|Vp|

Thus we can refine our estimation function to be:

fest(ti, p, P) =
∑

tj∈T̄k

cijdp(p, P (tj))+
∑

tj∈Tk

cij

∑
pj∈Vp

dp(p, pj)

|Vp|

3. Third order approximation
While we do not yet know the placement of unassigned
tasks, we do know that they can only be assigned to
processors that are still available. The approximation
that an unassigned task, saytj , will be mapped to
a random processor inVp does not capture this con-
straint. We should rather assume the distribution of

P [tj] to be uniformly random onavailableprocessors
Pk. In other words, for any unmapped tasktj ∈ Tk we
approximate:

dp(p, P (tj)) ≈ Epj∈U [Pk][dp(p, pj)] =

∑
pj∈Pk

dp(p, pj)

|Pk|

While using a better approximation in the estimation
function (in the third order approximation) is expected to
lead to a better solution, it is costlier to compute and it af-
fects the overall running time of the load balancing algo-
rithm. Since the consideration of running time dominates
in the real-world applications, we will use the second order
approximation scheme in our implementation and results.
This will be discussed in section 4.4.

4.4 Implementation of the algorithm: TopoLB

The mapping algorithm has been implemented in
CHARM++ as a strategy called TopoLB under the dynamic
load-balancing framework. Initially, the task graph is par-
titioned intop groups using METIS. Any other topology-
oblivious partitioner can also be specified for partition-
ing. Some of the dynamic load balancing strategies of
CHARM++ like GreedyLB are suitable for partitioning. At
this point, both the new task graph and the topology graph
have the same sizep. We maintain ap× p table of dynamic
values offest(t, p, P). Rows are indexed by task nodes and
columns are indexed by processors. The entry in the cell
(t, p) is the current value offest(t, p, P). In addition, we
maintain the minimum and average value offest for each
unassigned task over all unassigned processors. Let us call
these arraysFMin[t] andFAvg[t], respectively. In thekth

iteration we need to select the unassigned tasktk, which
maximizes the value ofFAvg[t] − FMin[t]. This takes
a linear pass, taking timeO(p). Next we find the avail-
able processorpk, wherefest(tk, p, P) attains the minimum
value in timeO(p). The tasktk is mapped to processorpk

which is marked unavailable. The main cost is incurred in
updating the table at the end of each iteration, asfest val-
ues might change as a result of the assignment oftk to pk.
Here, we discuss the time-complexity only for the second
and third order approximations. In the second order ap-
proximation, only the estimation values of tasks that have
an edge withtk in the task graph are affected. Moreover,
updating thefest values for one such task takes a total of
O(p). This makes the total cost of updateO(pδ(tk)), where
δ(tk) denotes the degree of the nodetk in the task graph.
Thus, the total time in each iteration of the algorithm is
O(p) + O(pδ(tk)), which is same asO(pδ(tk)). The to-
tal running time over allp iterations is:

Running T ime =
∑
t∈Vt

O(pδ(t)) = O(p
∑
t∈Vt

δ(t)) = O(p|Et|)

While the running timeO(p|Et|) can be as bad asO(p3),
in practice the nodes in the task graph have small constant
degree, and a running time closer toO(p2) is observed. In
the third order approximation,however, the valuefest(t, p)
depends on the average distance of processorp to otherfree

processors. When the status ofpk changes from free to al-
located, the average changes for all other processors. Thus,
all fest(t, p, P) values change. By maintaining the aver-
age distance of a processor to free processors, we incur a
constant cost per processor in calculating new average val-
ues; this is a total cost ofO(p). Once average distances are
known, each value in thefest table can be updated in con-
stant time. This incurs a total cost ofO(p2). Thus total time
in an iteration isO(p) + O(p2), which is same asO(p2).
Overall running time over allp iterations in this case is:

Running T ime =
∑
t∈Vt

O(p2) = O(p3)

From the above calculation we can see that using second
order approximation (O(p|Et|)) takes less time than third
order approximation (O(p3)). In practice, the nodes of the
task graph have a small constant degree, and the total num-
ber of edges isO(p). Thus, the second order approximation
has a running time closer toO(p2) which is significantly
lower than the fixed cost ofO(p3) for the third order app-
proximation. Scaling considerations lead us to the choice of
second order approximation for our scheme.

4.5 TopoCentLB

TopoCentLB is a topology-aware load balancing strategy
for CHARM++ which also tries to solve the task mapping
problem. In this strategy, as in TopoLB, the original task
graph is first partitioned using a topology-oblivious scheme
(like greedy partitioning or Metis) to get a smaller graph
with p nodes, wherep is the number of physical processors.
We will assume for the description that the task graph and
the processor graph have the same sizes. The mapping al-
gorithm iteratively maps the nodes of this task graph onto
the physical processor graph. In the first iteration, the most
communicating task is selected and mapped to a processor.
In each subsequent iteration, the task that has maximum to-
tal communication with already assigned tasks is selected.
It is mapped to the free physical processor where it incurs
the least total cost of communication (in terms of hop-bytes)
with the already assigned tasks. The algorithm uses the es-
timation function with first order approximation for making
it’s decision in each iteration. A similar scheme has been
described by T. Baba et.al. [4]; this scheme corresponds to
their (P3, P4) scheme.

5 Experiments

In this section we will discuss and compare the perfor-
mance of the load balancing schemes described earlier. We
also compare their performances to a load balancer which
places the tasks on the processors at random. Section 5.2
will describe the performance of TopoLB in reducing the
hops-per-byte metric in different scenarios. The effect of
the reduction in hops-per-byte on actual network communi-
cation observables, like average message latency and exe-
cution times , is described in section??.

5.1 Evaluation mechanism

CHARM++ load balancing framework allows the run-
time to dump load information from an actual parallel ex-
ecution into a file for later analysis. This can be done by
specifying the load balancing step for which the load in-
formation needs to be dumped as runtime parameters (us-
ing +LBDumpStartStepto specify the first step, and +LB-
DumpStepsNumStepsto specify the total number of steps).
A dump file is generated for each of the steps specified in
the range. The effect of different centralized load balancing
strategies can then be studied on the load balancing database
present in these dump files by running any CHARM++ pro-
gram sequentially in simulation mode (by specifying the
name using +LBDumpFileFileNameand the load balanc-
ing step to be simulated using +LBSimStepNum). In sim-
ulation mode, the load balancing framework uses the load
information from the dump files rather than from the current
run. Relevant metrics can be studied as needed.

This mechanism provides an efficient way of testing load
balancing strategies as their effects on a given load scenario
can be studied without repeated runs of the actual parallel
program. Moreover, different strategies can be compared
on exactly same load scenarios, which is not possible in ac-
tual execution because of non-deterministic interleaving of
events. Thus, we will use this mechanism to study the per-
formance of the load balancing schemes described earlier.

5.2 Reduction in hop-bytes

As described in section 4, the metric that the mapping
heuristic (TopoLB) aims to reduce is hop-bytes, or equiv-
alently, hops-per-byte. We will present the performance in
terms of hop-bytes reduction.

To study the quality of mapping independent of the parti-
tioning method, we can start with task graphs that have just
p tasks so that no clustering is needed. We use a CHARM++
benchmark program which has a jacobi-like communication
pattern for this purpose. The benchmark program creates
chares (or tasks) which communicate in a 2D-Mesh pattern.
Each chare communicates with its four neighbors (three or
two for boundary and corner chares, respectively) in each
iteration. The number of chares to be created is a parameter
to the benchmark.

5.2.1 2D-Mesh pattern on 2D-Torus

Figure 5.2.1 compares the performance of random place-
ment, TopoLB and TopoCentLB in mapping a 2D-Mesh
pattern onto a 2D-Torus topology. In each case, the number
of tasks created is the same as the number of processors.
It can be seen that random placement produces mappings
that have very large values of hops-per-byte. We can an-
alytically compute the expected hops-per-byte for random
placement, which is same as the expected distance between
two random processors. Each dimension has a span of

√
p,

and with a wrap-around link the expected distance in each
dimension is

√
p

4 . Thus, the total expected distance between

two random processors is2
√

p

4 , or
√

p

2 . As seen in figure
5.2.1, the value of hop-bytes for random placement matches

Figure 1. Mapping 2D-Mesh communication
pattern onto a 2d-Torus. Random placement
matches expected value.

closely with this expected value.

Since a 2D-Torus contains a 2D-Mesh, the ideal place-
ment can preserve neighborhood relationships and achieve
the hops-per-byte value of1. It is interesting to note that
TopoLB actually produces an optimal mapping in most
cases. Figure 5.2.1 shows the comparison of TopoLB and
TopoCentLB and is essentially a zoomed-in version of fig-
ure 5.2.1. It is also seen that TopoCentLB also results in
small values of hops-per-byte, though TopoLB performs
better than TopoCentLB in all tested cases.

Figure 2. Mapping 2D-Mesh communication
pattern onto a 2d-Torus. Zoomed in to com-
pare TopoLB and TopoCentLB.

Figure 3. Mapping 2D-Mesh communication
pattern onto a 3d-Torus. Random placement
matches expected value.

5.2.2 2D-Mesh pattern on 3D-Torus

Next we map the 2D-mesh communication pattern on a
3D-Torus topology of the same size. A comparison of the
average hops-per-byte values resulting from different map-
ping strategies is shown in figure 5.2.2. For a 3D-Torus, the
expected distance between two random processors is3

3√p

4 .
As seen in figure 5.2.2, the actual value of hops-per-byte
obtained by random mapping matches this analytical for-
mula closely. The other two mapping strategies, TopoLB
and TopoCentLB, lead to considerable reduction in hops-
per-byte when compared to a random mapping.

Figure 4. Mapping 2D-Mesh communication
pattern onto a 3d-Torus. Zoomed in to com-
pare TopoLB and TopoCentLB.

In general, the task graph (2D-Mesh) is not a subgraph
of the topology graph (3D-Torus). Hence, it is not always
even feasible to preserve neighborhood relation when map-
ping a 2D-Mesh onto a 3D-Torus with the same number of
nodes. Consequently, the optimal value of hops-per-byte is,
in general, larger than1. However, for specific cases, it is
possible to preserve the neighborhood relation. For exam-
ple, a (8,8)2D-Mesh is a subgraph of a (4,4,4)3D-Torus, so
it is possible to preserve neighborhood relation. We can see
from figure 5.2.2 that in this case, TopoLB is able to reduce
hops-per-byte to its optimal value of1 (the value when num-
ber of processors is64 in the figure). For a larger number of
processors, TopoLB leads to a small value of hops-per-byte.
TopoCentLB also results in small values of hops-per-byte
which are about 10% higher than those from TopoLB.

Figure 5. Comparison of different mapping
strategies on 2D-tori for LeanMD data

5.2.3 LeanMD mapped onto different topologies

This section will describe the results of mapping com-
munication pattern from a real molecular dynamics simula-
tion program called LeanMD [18]. We have load informa-
tion dumps for LeanMD on different numbers of processors.
The total number of chares is3240 + p wherep is the num-
ber of processors. This gives virtualization ratios of180 for
p = 18, 6 for p = 512 and3 for p = 1024. Since the num-
ber of chares is greater than the number of objects, we need
to perform clustering of chares intop groups with balanced
communication load. We use METIS for this initial group-
ing. Once this grouping is performed on the original task
graph, a new task graph with the same size as the number of
processors is obtained. We then map this task graph using
different strategies.

Figure 5.2.3 shows the average hops-per-byte when
LeanMD is mapped onto 2D-Tori of various sizes. For
p = 18, the virtualization ratio is180, which is quite high.
Consequently, with such a large number of chares in each
group, almost all pairs of groups communicate with each
other. The average degree of the coalesced task-graph ob-
tained from METIS is12.7, which means that each group
communicates with70% of the groups. Hence it is difficult
for any strategy to reduce hop-bytes as almost all the groups
communicate. For512 processors, the virtualization ration
is 6 and the average degree of the coalesced task graph
is 19.5 which means that each group communicates with
about4% of the other groups. This creates some avenues for
intelligent placement of groups to keep the communication
local. As seen from figure 5.2.3, TopoLB leads to a34%
reduction in average hops-per-byte over random placement.
A topology-based refiner (implemented in CHARM++ load-
balancing framework) called RefineTopoLB can further re-
duce the value by about12%. TopoCentLB also performs
well, leading to a30% reduction; similar trend is seen for
1024 processors. Note that RefineTopoLB is intended to be
used for further reducing hop-bytes after applying the initial
load balancer like TopoLB. The refiner swaps tasks between
processors to see if hop-bytes are reduced or not. It swaps
only when hop-bytes get reduced.

Figure 6. Comparison of different mapping
strategies on 3D-tori for LeanMD data

Figure 5.2.3 shows the results for mapping onto 3D-Tori.
The relative performance of the different schemes in this
case is similar to the last case. TopoLB followed by Refine-
TopoLB leads to a reduction in hops-per-bytes in the40%
range.

5.3 Network Simulation

Figure 7. 2D-mesh on 64-node 3D-Torus: Av-
erage message latency using different map-
pings

Figure 8. 2D-mesh on 64-node 3D-Torus: De-
tailed comparative view of average latency in
the un-congested domain

In section 5.2 we discussed the reduction in the average
number of hops that each byte travels over the network. In
this section we will discuss how this reduction in the hops-
per-byte metric translates into gains in execution time and
and other characteristics on the network.

We will perform simulations using BigNetSim [24],
which is an interconnection network simulator. One of the
features of BigNetSim is that it can simulate application
traces on different kinds of interconnection networks. We
will be using a 3D-Torus network to simulate a 2D-jacobi
like program. In this benchmark program, each chare per-
forms some computation and then sends messages to its
four neighbors in each iteration. The amount of computa-
tion is kept low so that communication is a significant factor
in overall efficiency. This benchmark program is executed
with TopoLB, TopoCentLB, and GreedyLB (a CHARM++
load-balancer with essentially random placement) and event
traces are obtained. These event traces contain timestamps
for message sending and entry point (message receiving)
initiation. Event-dependency information is also available
in the traces so that these timestamps can be corrected de-
pending on the network being simulated while honoring
event ordering. Thus, we can vary the parameters for the
underlying interconnection networks and examine the ex-
pected effect on the execution of the traced program.

The execution of application traces is simulated on a
(4,4,4)3D-Torus interconnection network. Since TopoLB
and TopoCentLB lead to a reduction in the average hops that
a packet travels, the actual network load (and contention)
generated for the same application is reduced. Hence, it is
expected that an application mapped using these schemes
would be able to tolerate reduction in link bandwidth better
than a naive random mapping. Figure 5.3 shows the aver-
age message latency for different values of link bandwidth.
It can be seen that in the case of a random placement, the
average latency increases dramatically as congestion sets in
due to a reduction in bandwidth. TopoCentLB can tolerate
a further reduction in network bandwidth while TopoLB is
the most resilient; this is because a smaller value of hops-
per-byte leads to a smaller number of packets on each link.
Consequently, the links can service the traffic with a smaller
bandwidth. In the case of random placement, larger loads
on individual links lead to messages being stranded in the

buffers at the switches for a longer time. Figure 5.3 shows
the zoomed-in view of figure 5.3 for the purpose of com-
parison of the schemes in the low congestion region. Even
in this case, it can be seen that among the three schemes
TopoLB leads to least average message latency.

Figure 9. Completion time for the execution
of 2000 iterations

The total time for the entire execution to finish is also
improved by using intelligent mapping. Figure 9 shows the
total time required for the completion of2000 iterations of
the benchmark. For smaller bandwidth, optimizations ob-
tained by TopoLB and TopoCentLB show a very large gain.
In this region, random placement leads to congestion which
causes communication to be delayed and iterations progress
much slower. Total execution time under random placement
can be more than double the time required under TopoLB.
TopoCentLB also leads to a large reduction over random
placement. However, TopoLB outperforms TopoCentLB by
about 10-25%.

5.4 Results on Bluegene

6 Conclusions and future work
This paper presents a heuristic aimed at solving the task

mapping problem that arises in the context of parallel pro-
gramming.

The heuristic algorithm provides a solution to the prob-
lem of mapping tasks onto physical processors connected
in a given topology, so that most of the communication is
between nearby processors. We show that TopoLB pro-
vides a good mapping, in terms of average number of hops
travelled by each byte, and compares favorably with some
other schemes. In particular, we found that TopoLB was
able to map a 2D-Mesh onto a 2D-Torus optimally in many
cases, although it does not consider the shapes of the graphs
specifically. We show, via simulations, that an efficient
mapping that reduces the total communication load on the
network, or hop-bytes, leads to lower network latencies on
an average, and provides better tolerance of network band-
width constraints and network contention. Another similar,
but simpler and faster, scheme called TopoCentLB has also
been developed for the purpose of comparison of it’s results
with TopoLB. Schemes similar to TopoCentLB have been
developed in the past.

In the future, gains from topology-aware task mapping
should be studied on real large parallel machines, like Blue-
Gene (BG/L). Due to massively large sizes of these ma-
chines, a distributed approach toward keeping communica-
tion localized in a neighborhood may be needed for scala-
bility. A hybrid approach, such as that in [23], could also be
investigated.

References
[1] 30th International Workshops on Parallel Processing (ICPP

2001 Workshops), 3-7 September 2001, Valencia, Spain.

IEEE Computer Society, 2001.
[2] An Overview of the BlueGene/L Supercomputer. InSu-

percomputing 2002 Technical Papers, Baltimore, Maryland,
2002. The BlueGene/L Team, IBM and Lawrence Livermore
National Laboratory.

[3] S. Arunkumar and T. Chockalingam. Randomized heuris-
tics for the mapping problem.International Journal of High
Speed Computing (IJHSC), 4(4):289–300, Dec. 1992.

[4] T. Baba, Y. Iwamoto, and T. Yoshinaga. A network-topology
independent task allocation strategy for parallel computers.
In Supercomputing ’90: Proceedings of the 1990 ACM/IEEE
conference on Supercomputing, pages 878–887, Washing-
ton, DC, USA, 1990. IEEE Computer Society.

[5] F. Berman and L. Snyder. On mapping parallel algorithms
into parallel architectures. J. Parallel Distrib. Comput.,
4(5):439–458, 1987.

[6] S. H. Bokhari. On the mapping problem.IEEE Trans. Com-
puters, 30(3):207–214, 1981.

[7] S. W. Bollinger and S. F. Midkiff. Processor and link assign-
ment in multicomputers using simulated annealing. InICPP
(1), pages 1–7, 1988.

[8] F. Ercal, J. Ramanujam, and P. Sadayappan. Task allocation
onto a hypercube by recursive mincut bipartitioning. InPro-
ceedings of the third conference on Hypercube concurrent
computers and applications, pages 210–221, New York, NY,
USA, 1988. ACM Press.

[9] Z. Fang, X. Li, and L. M. Ni. On the communication com-
plexity of generalized 2-d convolution on array processors.
IEEE Trans. Comput., 38(2):184–194, 1989.

[10] R. P. B. Jr. and J. P. Shen. Interprocessor traffic schedul-
ing algorithm for multiple-processor networks.IEEE Trans.
Computers, 36(4):396–409, 1987.

[11] R. Jyothi, O. S. Lawlor, and L. V. Kale. Debugging support
for Charm++. InPADTAD Workshop for IPDPS 2004, page
294. IEEE Press, 2004.

[12] L. V. Kalé. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. InLACSI
2002, Albuquerque, October 2002.

[13] L. V. Kalé and S. Krishnan. Charm++ : Parallel Program-
ming with Message-Driven Objects.in Parallel Program-
ming using C++, MIT Press, 1995. To be published.

[14] G. Karypis and V. Kumar. A fast and high quality multi-
level scheme for partitioning irregular graphs.SIAM J. Sci.
Comput., 20(1):359–392, 1998.

[15] G. Karypis and V. Kumar. Multilevel algorithms for multi-
constraint graph partitioning. InSupercomputing ’98: Pro-
ceedings of the 1998 ACM/IEEE conference on Super-
computing (CDROM), pages 1–13, Washington, DC, USA,
1998. IEEE Computer Society.

[16] G. Karypis and V. Kumar. Multilevel k-way partitioning
scheme for irregular graphs.Journal of Parallel and Dis-
tributed Computing, 48:96 – 129, 1998.

[17] S.-Y. Lee and J. K. Aggarwal. A mapping strategy for par-
allel processing.IEEE Trans. Computers, 36(4):433–442,
1987.

[18] V. Mehta. Leanmd: A charm++ framework for high per-
formance molecular dynamics simulation on large parallel
machines. Master’s thesis, University of Illinois at Urbana-
Champaign, 2004.

[19] J. M. Ordũna, F. Silla, and J. Duato. A new task mapping
technique for communication-aware scheduling strategies.
In ICPP Workshops[1], pages 349–354.

[20] P. Sadayappan. Nearest-neighbor mapping of finite element
graphs onto processor meshes.IEEE Trans. Computers,
36(12):1408–1424, 1987.

[21] H. Stone. Multiprocessor scheduling with the aid of network
flow algorithms. IEEE Trans. Software Engineering, 3:85–
93, Jan. 1977.

[22] K. Taura and A. Chien. A heuristic algorithm for map-
ping communicating tasks on heterogeneous resources. In
HCW ’00: Proceedings of the 9th Heterogeneous Comput-
ing Workshop (HCW ’00), page 102, Washington, DC, USA,
2000. IEEE Computer Society.

[23] G. Zheng.Achieving High Performance on Extremely Large
Parallel Machines. PhD thesis, Department of Computer
Science, University of Illinois, Urbana-Champaign, 2005.

[24] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé.
Simulation-based performance prediction for large parallel
machines. InInternational Journal of Parallel Program-
ming, number to appear, 2005.

