
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 16, 276-291 (1992)

A Comparison of Clustering Heuristics for Scheduling Directed
Acyclic Graphs on Multiprocessors

APOSTOLOS GERASOULIS AND TAO YANG

Clustering of task graphs has been used as an intermediate step
toward scheduling parallel architectures. In this paper, we iden-
tify important characteristics of clustering algorithms and propose
a general framework for analyzing and evaluating such algo-
rithms. Using this framework, we present an analytic perfor-
mance comparison of four algorithms: Dominant Sequence Clus-
tering (DSC) (Yang and Gerasoulis, Proc. Super-computing ‘91,
1991, pp. 633-642) and the algorithms of Kim and Browne (Znt.
Conf. on Parallel Processing, 1988, Vol. 3, pp. l-8), Sarkar (Par-
titioning and Scheduling Parallel Programs for Execution on
Multiprocessors, MIT Press, 1989), and Wu and Gajski (J. Super-
comput. 2 (1988), 349-372). We identify the common features and
differences of these algorithms and explain why DSC is superior
to other algorithms. Finally, we present some experiments to ver-
ify our analysis. 8 WE Academic Press, Inc.

1. INTRODUCTION

In this paper, we consider the clustering problem for
directed acyclic graphs (DAGs). Clustering is a mapping
of the nodes of a DAG onto labeled clusters. A cluster
consists of a set of tasks; a task is an indivisible unit of
computation. All tasks in a cluster must execute in the
same processor. The clustering problem has been shown
to be NP-complete for a general task graph and for sev-
eral cost functions. For example, if the cost function is
the minimization of parallel time on a completely con-
nected virtual architecture with an unbounded number of
processors, then clustering is NP-hard in the strong sense
(Sarkar [141, Chretienne [11, Papadimitriou and Yannaka-
kis [13]).

Several heuristic algorithms have been proposed in the
literature for the general clustering problem. Kim and
Browne [lo] considered linear clustering, which is an im-
portant special case of clustering. Sarkar [141 presented a
clustering algorithm based on a scheduling algorithm on
unbounded number of processors. Wu and Gajski [I71
developed a programming aid for hypercube architec-
tures using scheduling techniques. Yang and Gerasoulis
[15, 161 proposed a fast and accurate heuristic algorithm,
the Dominant Sequence Clustering (DSC). However,
there has been little experimental and theoretical com-
parisons of clustering algorithms. One exception is the

recent paper by El-Rewini and Lewis [3], where experi-
ments with some scheduling algorithms are presented.
Here, we introduce a general analytic framework and use
it to express clustering heuristics so that comparisons can
be made in a systematic fashion. The paper is organized
as follows:

In Section 2, we describe the basic terminology and
assumptions used in clustering and scheduling algo-
rithms. In Section 3, we introduce a generic framework
that visualizes a clustering algorithm as performing a se-
quence of clustering refinements so that a clustering algo-
rithm can be presented in a systematic manner. In Sec-
tion 4, we describe the important characteristics and
performance features of clustering algorithms so that we
can clarify the differences and similarities and evaluate
their performance through this framework. In Section 5,
we present four algorithms using our framework, and use
an example to demonstrate their clustering steps. In Sec-
tion 6, we study their performance for special important
primitive classes of DAGs such as fork, join, and coarse
grain trees. These are DAGs whose optimal solutions can
be computed in polynomial time. In Section 7, we present
experimental results that verify our analytic results. Sec-
tion 8 is the conclusion.

2. PROBLEM DEFINITION AND ASSUMPTIONS

We start with definitions of the task computation
model and architecture:

A directed acyclic weighted task graph (DAG) is de-
finedbyatupleG=(V,E,%,~)whereV={n;,j= 1:
u} is the set of task nodes and u = /VI is the number of
nodes, E is the set of communication edges and e = IEl is
the number of edges, % is the set of edge communication
costs, and 5 is the set of node computation costs. The
value c;,j E % is the communication cost incurred along
the edge ei,.i = (n;, prj) E E, which is zero if both nodes
are mapped in the same processor. The value 7; E 9 is the
execution time of node n; E V.

A task is an indivisible unit of computation which may
be an assignment statement, a subroutine or even an en-
tire program. The tasks are convex, which means that
once a task starts its execution it can run to completion
without interruption (Sarkar [141).

276

0743.73 IS/92 $5.00
Copyright 0 1992 by Academic Press. Inc.
All rights of reproduction in any form reserved.

CLUSTER HEURISTICS FOR SCHEDULING DAGS 277

The task execution model is the static macro-dataflow
model (Sarkar [14], Wu and Gajski [17], El-Rewini and
Lewis [3]). The task execution is triggered by the arrival
of all data from its predecessors. Immediately after com-
pletion of task execution, the data are sent to the succes-
sor tasks. Data communication is done in parallel.

The architecture is a completely connected graph, with
an unbounded number of homogeneous processors, i.e.,
a clique virtual architecture.

Clustering is a mapping of the tasks of a DAG onto
clusters. A cluster is a set of tasks which will execute on
the same processor. Clustering is also known as proces-
sor assignment in the case of an unbounded number of
processors on a clique architecture (Sarkar [141). Cluster-
ing has been shown to be NP-complete for the minimiza-
tion of the parallel time cost function (Chretienne [I],
Papadimitriou and Yannakakis [131, Sarkar [141). As a
result many heuristic algorithms have been proposed and
analyzed in the literature. A clustering is called nonlinear
if two independent tasks are mapped in the same cluster;
otherwise it is called linear. In Fig. la we give a weighted
DAG, in lb a linear clustering with three clusters {n, , nz,
~7). {n3, n4, n6}, {no}, and in lc a nonlinear clustering with
clusters {ni , n:}, {n?, n4, n5, n6}, and {n,}. Note that for
the nonlinear cluster the independent tasks n4 and tz5 are
mapped into the same cluster.

Scheduling is a task to processor assignment and a
tusk to starting time mapping. In general, the problem of
finding the optimum scheduling that minimizes the paral-
lel time has been shown to be NP-complete (Sarkar [141).
In Fig. 2b we present the Gantt chart of a schedule for the
nonlinear clustering of Fig. lc. Processor PO has tasks nl
and n2 with starting times ST(n,) = 0 and ST(+) = 1. If
we modify the clustered DAG as in [14] by adding zero-
weighted edges between any pair of two nodes II, and II,
of a cluster, if n, is executed immediately after n,, and if
there is no data dependence edge between n, and n!, then
we obtain what we call a scheduled DAG; see 2c. We call
the longest path of the scheduled DAG the dominant se-
quence (DS 1 of the clustered DAG, to distinguish it from

FIG. 1. (a) A weighted DAG: (b) a linear clustering; (c) a nonlinear
clustering.

PO PI p2

Time

FIG. 2. (a) The clustered DAG and its CP shown in thick arrows;
(b) the Gantt chart of a schedule: (c) the scheduled DAG and the DS
shown in thick arrows.

the critical path (CP) of a clustered but not scheduled
DAG. For example, the clustered DAG of Fig. la also
shown in Fig. 2a has CP = (n, , n2, n7) with length 9,
while a DS of a schedule given in Fig. 2c is DS = (n, , n3,
n4, n5, nh, n,> and has length 10. In the case of linear
clustering, the DS and CP of the clustered DAG are iden-
tical; see Fig. lb.

Clustering has been used as a first step to scheduling
parallel architectures. More specifically, Sarkar [14],
who calls clustering “internalization prepass,” proposes
a two step method for scheduling: (1) Perform clustering
by scheduling on an unbounded number of processors of
a clique. (2) Merge and schedule the clusters when the
number of processors is smaller than the number of clus-
ters. Sarkar gives the following justification for cluster-
ing: “If tasks are scheduled in the same processor on the
best possible architecture with an unbounded number of
processors, then they should be scheduled in the same
processor in any other architecture.” Other areas in the
literature where clustering has been used are the VLSI
systolic schedules (Kung [I l]), where the clustering step
is known as the processor projection step, and numerical
computing for message passing architectures (Ortega
[la).

3. A GENERIC DESCRIPTION OF CLUSTERING

ALGORITHMS

Clustering heuristics have certain goals and try to
achieve them via a sequence of steps. Clustering algo-
rithms perform a sequence of refinement steps opi, i =
0 : k. An initial clustering is given in opo. Here we us-
sume that initially each task is a cluster. Each op;
performs a refinement of the previous clustering by merg-
ing some clusters and at the last step opk, a final cluster-
ing is derived. At each step a good refinement must be
performed so that the final clustering satisfies or is

278 GERASOULISANDYANG

“close” to satisfying the original goals. We only consider
nonbacktracking heuristic algorithms to avoid high com-
plexity; i.e., once the clusters have been merged in (Ipi
they cannot be unmerged afterwards. Then the number of
clustering steps remains polynomially bounded with re-
spect to the size of the DAG.

Let us demonstrate how the nonlinear clustering in
Fig. lc could be derived as a sequence of merging opera-
tions op,. We use the criterion that “two clusters are
merged if the parallel time does not increase.” Initially
each task is mapped to a separate cluster shown in Fig. 1 a
and the parallel time is equal to 14, which is the length of
ml = (n, , e, n7). The first step merges nl and n2 and
renames the resulting cluster as 1. Then DS, = (n, , n3,
n4 3 & 3 n,) and the parallel time reduces to 13.5. In the
next step clusters n3 and n4 are merged and renamed
cluster 2. Then DSz = (n, , n3, n5, n6, n7) and the parallel
time reduces to 12.5. In the third step clusters ns and n6
are merged to become cluster 3. Then DS3 = (n, , n3, n5,
nb, 1~) and the parallel time reduces to 10. In the final
step clusters 2 and 3 are merged. Since n4 and n5 are two
independent tasks assigned in the same processor an or-
dering must be used to determine the parallel time. In this
case the parallel time remains equal to 10 if n4 is executed
before n3 or vice versa.

Several interesting observations can be made: (I)
When two clusters are merged, a scheduling heuristic
might be needed to determine the new parallel time and
measure the performance. (2) If there exists a nonzero
edge connecting two clusters, then merging the two clus-
ters will zero the edge cost. Equivalently, zeroing an
edge cost will merge two clusters. (3) If there is no edge
connecting two clusters then the parallel time cannot be
reduced by merging these clusters, but it might be in-
creased by such a merging because of sequentialization of
independent tasks. (4) If zeroing the edges connecting
two linear clusters results in a linear cluster, then such a
merging will not increase the parallel time. If such a zero-
ing results in a nonlinear cluster, then the reduction or
not of the parallel time will depend on the granularity of
the DAG [6].

3.1. Clustering Algorithms Based on Edge-Zeroing

The edge-zeroing based merging algorithms constitute
an important subclass of clustering algorithms which we
will study in detail. Such algorithms only operate on the
connected component of the DAG and never merge tasks
that are not connected. Edge-zeroing clustering will pro-
duce a sequence of graph transformations Gi = (V, E, %;,
%), i = 0 : k of the initial DAG. The operation op, only
modifies the set ‘%-I to %; by edge zeroing while the sets
V, E, and 9 remain unchanged. For edge-zeroing cluster-
ing algorithms, we define:

T “2 “k “m “I “2 “k “k+l “m

a Fork DAG b Clustered DAG

FIG. 3. Clustering a fork DAG

l CLU-HEU: The CLUstering HEUristic which se-
lects the edges to be zeroed.

l SCH-ALG: The SCHeduling ALGorithm.
l domain(opi): The set of edges in E to be examined by

OPi.

l focus(op;): The set of edges that are candidates for
zeroing at opi.

l zevo(op;): The set of edges that will be zeroed at the
completion of 0~;.

l SG;: The scheduled DAG according to SCH-ALG.
Initially, SGo = Go.

l DS;: The Dominant Sequence at the completion of
opi, which is the critical path of SGi.

l CP;: The set of all nodes in the Critical Path of Gj =
(V, E, %i, 3). i = 0 : k.

l top-leuel(n.,., i), hot-leuel(n,, i): The length of the
longest path between node IZ., and the top (bottom) node
in SG;, including all the communication and computation
costs in that path, but excluding 7, from top-leuel(n., , i).

l PTi: The Parallel Time at the completing of op;.

PTi = 2 Tj + 2 Cj, , , , = top-/eve/(n,x, i)
ll,ED.S, “I,. !I,,,EDJ,

+ hot-leuehn,, i), n, E DSi.

Let us now consider a fork DAG F., with communica-
tion Costs c.,,,, = fij, j = I : m shown in Fig. 3a to demon-
strate an edge-zeroing clustering sequence. We present
an optimum clustering algorithm for a fork DAG in Fig.
4. For simplicity we assume that the nodes and edges
have been sorted such that Tj + fij 2 ~i+l + pi-1 , j = I :
m - I.

i = 1.

PT; = m+Cj=* Tjj,C+l t &+I) t Tz
ENDWHILE
k=i-1:

FIG. 4. An optimum clustering algorithm for a fork DAG.

CLUSTER HEURISTICS FOR SCHEDULING DAGS 279

CLUUEU : Minimize the parallel time.

SCHALG: Any ordering of ~lr nz,. , R; results in an optimal schedule.

focus(op;) = {< n,, 7% >}.

constraint: PT, 5 PTi-1.

tero(op;) = focus(op;) if constsaint is true otherwise 0.

Termination criterion: When constraint is not true.

FIG. 5. Edge zeroing operations in the fork clustering algorithm.

Initially each task is mapped onto a separate processor
of the clique. At each step i of the algorithm, correspond-
ing to opi, the focus is on the edge (n, , n;) and if the
parallel time reduces by zeroing that edge then this edge
is zeroed, see Fig. 3b. Therefore, the task rzj,j = 1 : i will
be mapped in the same cluster if PT, 5 PT;-, . A sum-
mary of the algorithm is given in Fig. 5. The proof of
optimality is given in [1.5], Theorem 4.2.

4. A CHARACTERIZATION OF CLUSTERING
ALGORITHMS

Clustering Goals and Cost Functions. Clustering
heuristics must have certain goals and must choose the
corresponding cost functions for achieving those goals.
We distinguish between two types of goals, the perfou-
ITZUIZC~ type and the nonperformance type. Performance
goals could be the following: (Gl) Minimization of the
parallel time cost function on an unbounded number of
processors. (G2) Maximization of the efficiency cost
function. (G3) Minimization of the communication vol-
ume, CV = C r,,,eEC’i,jr cost function. Nonperformance
goals, on the other hand, impose constraints on the struc-
ture and shape of the clustering rather than its perfor-
mance. Examples are: (G4) Clustering is linear. (G5)
Clusters have no cycles; i.e., they are convex (Sarkar
[14]). (G6) Clustering satisfies the locality of data as-
sumption [4].

One can use a combination of goals as long as they do
not conflict with each other. Whenever conflicts occur,
then a goal priority must be imposed. For example, G41
GI implies that G4 will be used first when there is a
conflict and the result will be an optimum linear cluster-
ing. On the other hand, if we use GIIG4, the primary goal
Gl could lead to nonlinear clusters if the corresponding
parallel time is shorter. G2 and G3 alone are not reasotl-
ah/e goals, unless combined with another goal or con-
straint, since maximization of the efficiency and minimi-
zation of communication volume can both be achieved by
mapping all nodes to a single cluster.

Goal Transform&ion. Because of the NP-complete-
ness of the problems that have some of the above goals,
these problems cannot be solved in polynomial time.
Therefore, the goals must be transformed so that their
cost functions are directly computable in polynomial
time. For example, the goal for our optimum fork cluster-
ing algorithm in the last section is Gl. Because of the
special structure of the graph, the goal is equivalent to
solving

Thus the new transformed goal becomes the minimiza-
tion of the last function, which can be achieved by zero-
ing pi+, whenever T;+, + pi+, is the maximum above. Re-
peating such zeroing yields an optimal zeroing sequence
which satisfies PTO 2 PTI Z- ... z PTA and PTk < PTk+, .
It just happened for this example that the achievement of
the transformed goal also implies the achievement of the
original goal. This is not true in general.

Another example of goal transformation is Sarkar’s al-
gorithm [14] which has as a primary goal Gl. His trans-
formed goal is “the minimization of communication vol-
ume G3 without increasing the parallel time.”

Performance Features. What are the special features
that warrant good performance of clustering algorithms?
Because the clustering problem is NP-complete for the
performance goals Gl /G2, it is extremely difficult to find
the features that will warrant optimum clusterings. There
are certain features, however, which we believe are nec-
essary to ensure good performance of clustering algo-
rithms:

Monotonic decrease of parallel time. Let us con-
sider the nonbacktracking clustering algorithms. To en-
sure that such algorithms produce a clustering whose par-
allel time is not worse than the initial parallel time, a
safeguard must be imposed. One such safeguard is the
nonincrease of the parallel time at each step of the algo-
rithm:

(Tl) PT; % PT;-, .

This condition ensures that at least a local minimum of
the parallel time of a clustering sequence will be derived.
As a matter of fact if the task graph is coarse-grained any
local minimum of a clustering algorithm that satisfies Tl
will be within a factor of two of the optimum clustering.
This is because for coarse-grained graphs every linear
clustering is within a factor of two of the optimum: see [5,
61. Since the initial clustering is linear, Tl ensures that
the parallel time does not increase. Thus, Tl is a reason-
able constraint at least for coarse-grained DAGs.

280 GERASOULISANDYANG

Parallel time reduction warranty. Assumption TI is
not sufficient to enforce strict reduction in the parallel
time at each step and a heuristic that satisfies T1 may not
reduce the parallel time at all. We can of course use the
stronger condition PT, < PT,-, in an algorithm to get the
greatest reduction in the parallel time immediately, but
then the algorithm might need to perform multiple edge-
zeroing to avoid early termination. This complicates the
design of nonbacktracking algorithms. For the fork set
example of the previous section, if 7l + 0, = 7: + p2
then there are two DSs, and if the while condition is
changed to PT; < PTi-, then this algorithm will stop with-
out zeroing any edges.

We define the parallel time reduction Mwrranty subset
ptrw(op;) of DSi at the completion of opi as the set of
edges for which the parallel time will strictly decrease by
zeroing any of its edges. So a greedy heuristic should
zero edges in the ptrtt~(opi) set as soon as possible. Thus
we define the following property:

(T2) For every step i for which the set ptrM’(opi) is non-
empty, the clustering algorithm zeros at least one edge in
ptrw(opi) at some future step j, where i < j 5 k and li is
the last step of the algorithm. Moreover, the zeroed edge
also belongs to ptrw(opj-J. Also ptrw(opk) = 0.

Determining each edge in ptntz(op;) from scratch requires
the evaluation of the parallel time, which cannot be used
for algorithms with low time complexity. Even though we
cannot use ptrw to guide edge zeroing for low complexity
algorithms, it is of interest to know for what classes of
task graphs a given algorithm zeroes edges in ptrw(op;) at
each step. Ifj = i + 1 then the algorithm strictly reduces
the parallel time immediately in the next step. However,
an algorithm could delay this zeroing to a future step to
allow for more flexibility. It is not difficult to show that
every optimum linear clustering satisfies TI and T2. Let
us look at the sorted fork set optimum clustering algo-
rithm once more, where li is the last step of the algorithm.
We have

ptrdopi)
{(n,, n;+l)} i 5 k - 1 and ~i+i + p;+i > ri+z + pi+?

=0 1 otherwise

and this optimum sequence of zeroing satisfies TI and
T2, where j = i + 1.

Constraints. Constraints on the heuristics might be
imposed to achieve their goals. For example, the nonin-
crease of the parallel time, PT, % PT;-, , constraint is
used in the optimum fork clustering algorithm in the pre-
vious section. In addition to “goal achieving” con-
straints, other constraints might be imposed to reduce the

computational complexity of the heuristic. For example,
nonbacktracking is a constraint that considerably reduces
the computational complexity.

Multiplicity of Edge Zeroing. The number of edges
that are zeroed at each step is another characteristic of a
clustering algorithm. A clustering algorithm should strike
a balance between performance and complexity goals.

Parallel Time Approximation. Given q clusters, the
parallel time can be estimated by executing these clusters
on q virtual processors. Since finding an optimal schedule
is NP-complete, approximate scheduling algorithms must
be used instead. It is important to choose a good schedul-
ing algorithm so that clustering decisions can be made as
accurately as possible.

Complexity. In some practical applications, the num-
ber of task nodes could run into thousands. Therefore, an
algorithm with high time complexity would be computa-
tionally impractical for such task graphs.

5. A DESCRIPTION OF SEVERAL CLUSTERING
ALGORITHMS

In this section. we present four clustering algorithms
from the class of edge zeroing algorithms. We first dis-
cuss these algorithms, and then use our framework to
specify their edge zeroing sequences. In the following
two sections we analyze their performance both theoreti-
cally and experimentally.

5.1. Kim and Browne’s O(v(e + v)) Linear Clustering
Algorithm

ALGORITHM. Kim [9] and Kim and Browne [lo] pro-
posed the following linear clustering algorithm, hence-
forth called the KBiL algorithm. Initially all edges are
marked unexamined: (1) Determine the longest path CP;
composed of only unexamined edges, by using a
weighted cost function Cost-function. The nodes in this
path constitute a cluster and their edge costs are zeroed.
(2) Mark all edges incident to the nodes in CP; examined.
(3) Recursively apply steps 1 and 2 until all edges are
examined.

Goal Transformation. In his thesis, Kim [9] uses the
cost function

Cost-function = M’I * C 3-i + (1 - wi)

for determining the length of CPi, where)+>I and ~‘2 are
the normalization factors and the sums are over all nodes
in the path and cF.$ is the edge communication cost be-
tween a node in the path and all its adjacent nodes out-
side the path. Kim does not give a systematic way to

CLUSTERHEURISTICSFORSCHEDULINGDAGS 281

CLU-KEV (KB/L) : Reduce the length of the longest path determined by a cost function.

SCHAZG : No scheduling algorithm is needed since clustering is linear which implies that
SG, = G,.

domain(opo) = E.

domain(op,) = E, = E,_, - {e,,h}, n, or nIr E CP,m,.

focus(op.) = Edges in the longest path CP, among all paths in domain(op,).

constraint: Linearity of clustering.

rero(op,) = foc?M(op,).
Termination criterion: domain(op,) = 0.

FIG. 6. Edge zeroing operations in KBIL.

determine normalization factors. Here we assume that
MJ) = 4 and W? = 1, in which case the cost function re-
duces to the length of the critical path. Under this as-
sumption Kim’s algorithm can be considered as having
the goal of finding the linear clustering with the minimum
parallel time (G4/Gl). Each opi for KBiL algorithm is
defined in Fig. 6.

EXAMPLE. Consider the example of Fig. la. The
result of applying Kim’s linear clustering algorithm is
shown in Fig. 1 b with PT = 11.5. The clustering steps are
shown in Table I. The symbols (*, n,) and (n, , *) repre-
sent the sets of all incoming and outgoing edges of node
n, respectively.

At the beginning, the critical path of the original DAG
is (n, , ?I?, n7) and these nodes are clustered together. By
the deletion of those nodes from the graph, the remaining
graph has four nodes (n3, n4, n5, Q). Its critical path is
(03, ~4, nb) and these nodes are clustered together. Fi-
nally, the resulting clustering is M0 = {n, , II?, n,}, M, =
in3 3 124 I n6>, M2 = in&-.

COMPLEXITY. Kim, on page 40 of his thesis, gives the
complexity of his Linear-Cluster algorithm as O(u3). The
number of connected components is at most u and for
each step finding the longest path costs O(u + e). There-
fore the complexity of KB/L algorithm is O(u(u + e)).
For a dense graph e = u2 and the complexity becomes
the upper bound O(u3) given by Kim.

5.2. Sarkar’s O(e(v + e)) Algorithm

ALGORITHM. Sarkar’s algorithm [14], p. 129, can be
summarized as follows: (1) Sort the edges of the DAG in

TABLE I
Clustering Steps of KB/L for Fig. la

Step i domain(op,) .focus(op,) Txro(op,) PT,

0 14
I E (n,, nd. bZ, n7) (n,. n4. h n7) 13.5
2 (ni, *), (*. 4) h nd. (n4, nd h. rd. h. nJ 11.5
3 !3 11.5

TABLE II
Clustering Steps of Sarkar’s Algorithm for Fig. la

Step i dOWlUitl(OpJ focus(op,) zero(op,) PT,
--

0 14
I E (n,, 4 (ni, nd 13.5
2 E - (n,, n$ h, n4) Cm. 4) 12.5
3 E - hf. nd - h n4) h. 4) (4, n7) I I.5
4 k71, nil, (*, n& (*, n7) h n7) (n?, n;) I I.5
5 (111~ 4). (*. nJ, h n7) (4. n5) (h n6) II.5
6 (nl, 4). (n5. nd, (n,, n,) h. 4) h t7d IO
7 (nl. 4). (no, ~7) (nl, 4) B I 0
8 (nh. n7) h n7) 0 IO

descending order of edge costs. (2) Zero the highest edge
if the parallel time does not increase. (3) Repeat step 2
until all edges are scanned. The clustering step of this
algorithm is characterized in Fig. 7.

God Transformation. Let us look at the inequality

PT= C rj+
11,ED.S

where CV is the communication volume. Sarkar’s pri-
mary goal is the minimization of the parallel time G 1. The
transformed goal and corresponding heuristic is to mini-
mize CV without increasing PT.

EXAMPLE. For Fig. la, Sarkar’s algorithm sorts all
edges first. The sorted list is: {(n,, n2), (n3, n4), (Q, ns).
(n2, n7). (a49 n6). (n5, n6), (nl 3 n3)9 (n6, n7)).

The clustering steps are shown in Table II.
At the beginning, all tasks are assumed to be in sepa-

rate clusters and PT,, = 14. In the first two steps, (n, , n?)
and (n3, n4) are zeroed and the parallel time is reduced to
12.5. At the third step, (n3, ns) is zeroed and the
SCH-ALG must be used for the computation of the par-
allel time. (Sarkar uses a slightly different SCH-ALG,
based on the latest starting task time, to order tasks. The
performance of both scheduling heuristics is similar). The
bottom up levels of both n2 and n3 are 6.5 and the parallel
time is PT3 = Il.5 for either ordering of these nodes.

CLUHEU (Sarkar) : Zero the highest communication edge if the parallel time does not
increase.

SCHHEU : When two clusters are merged the tasks are ordered according to the highest
botJeuel(n,, i - 1) first heuristic.

domain(op,,) = E, focus(opQ) = 0.

domain(op;) = domain(op,-,) - focus(op;_,).
focus(op,) = Edge with maximum cost in domain(op,).

constraint: PT. < PT,-l.

rero(op,) = focus(op;) if constraint is satisfied; otherwise is 0.

Termination criterion: domain(op,) = 0.

FIG. 7. Edge zeroing operations in Sarkar’s algorithm.

282 GERASOULISANDYANG

Then at step 4, (nz, 1~) is zeroed, and the parallel time
remains the same PTd = I I .5. In the following steps, (~24,
nb), (kzs, QJ are zeroed and PTd reduces to 10. The edges
(n, , nj) and (rzh, n,) cannot be zeroed: otherwise all nodes
would be in the same cluster and the parallel time would
increase to 13. Finally, Sarkar’s algorithm obtains two
clusters with PT = 10. as shown in Fig. 1 lb: M. = {ni ,
n2, n7), Ml = {n3, 124, ns , n$-.

As it can be seen from the goal transformation inequal-
ity, minimizing CV may not reduce the parallel time at
all, unless the corresponding zeroed edges belong to DS.
For example. in the fourth step above, the dominant se-
quence is (n, , I?~, 12~. tr5, 12~. n,). However, Sarkar’s algo-
rithm is unable to identify this sequence. It zeros the edge
h 2 tz,) which is not in this DS and the parallel time
remains unchanged. Had the edge tn6, n7) been zeroed
instead, the parallel time would have been reduced to 9.

Complexity. Sarkar computes the levels at each clus-
tering step, and then uses the level information to sched-
ule the tasks and to determine the parallel time. The com-
putation of the levels costs O(u + e) at each step and
since there are c such steps the total cost of the algorithm
is at least O(e(u + E)).

5.3. An O((e + v)log v) Dominant Sequence Clustering
Algorithm

A GENERAL DOMINANT SEQUENCE ALGORITHM. In
Yang and Gerasoulis [15, 161 a new clustering algorithm
has been proposed. This algorithm combines the best fea-
tures of several other algorithms without compromising
on complexity. As we saw in the previous subsection,
zeroing the edges in the dominant sequence will reduce
the length of this DS, and if this DS is unique it will
reduce the parallel time. The main idea behind a domi-
nant sequence heuristic is to identify the DS at each step
and then zero edges in that DS. using the operations
shown in Fig. 8. In designing an algorithm that uses the
DS as a zeroing guide the following questions must be
addressed:

What is the cost of identij>ing DSi at each clustering
step? Given a node II, E SGi. then IZ., E DS, if and only
if the following condition is true: top-leve/(n,, i) +

CLUHEU (DSC) : Reduce the length of the Dominant Sequence.

SCHALG : A task 1s scheduled either after the last scheduled task of a cluster in SG,-1
or it is the first scheduled task in a new cluster.

domain(op,) = Unexamined edges.

focus(op;) = Incoming edges of a free node that belong to the longest path going through
any of the free nodes.

Constraint = CTl, or CT1 & CT2.

zero(op,) = Incoming edges of focus(op;) if constraint is true.

Termination criterion: All nodes have been examined.

FIG. 8. Edge zeroing operations in DSC.

hot-leuel(n,. , i) = PT,. If SGi is given, then identifying
DS; from scratch requires the computation of top-feuel
and bot-leuel which costs O(u + e). This time complex-
ity is not practical for large task graphs with thousands of
tasks. Thus, for lower time complexity clustering algo-
rithms we must come up with an incremental way of
identifying DSi to avoid the recomputation of all levels at
each step.

Once the DSi is ident$ed. which edges should be
choserlfi)r zeroing? A greedy heuristic would choose to
zero those edges in DS; that result in the largest possible
decrease in the parallel time. Such edges belong in the
ptrw(op;) set which we have defined in the characteriza-
tion of clustering algorithms section. Therefore a greedy
heuristic will have to compute the parallel time for each
edge zeroing in DS;, which again results in high complex-
ity. Furthermore, since a single edge zeroing could
change DS in the next step, it is not necessary to zero
more than one edge in DS per step.

Considering the above discussion and since we are in-
terested in “almost linear” time complexity algorithms
with good performance characteristics, we must zero
edges systematically. Before we describe our systematic
edge zeroing, we need a few definitions. At the beginning
of the algorithm, all edges are marked unexamined. After
an edge has been considered for zeroing at opi, it is
marked examined and its head node is scheduled. A node
is free if all of its predecessors have been scheduled.

From all DS edges, we choose for zeroing the unexam-
ined edge first from top to bottom in DS. In case of two
DS, we break the tie by choosing the first unexamined
edge whose head node has the most immediate succes-
sors and so on. At the completion of clustering step <pi
two sets of nodes are created, the scheduled set of nodes
SN, and the unscheduled set of nodes USN,. At each step
nodes from USN, are deleted and added to SN;. Initially,
SN” = (The set of input nodes}, USNO = V - SN,,.

Let us assume for a moment that when two clusters are
merged, the tasks are ordered according to the highest
hot-leuel(n,, i - 1) heuristic. Furthermore, assume that
a zeroing is accepted only if property TI is satisfied. In
the example below we show how this algorithm works.
Afterwards, we modify these assumptions to further re-
duce the computational complexity.

EXAMPLE. Consider the example in Fig. la. At the
beginning, DS,, = (n, , n?, n,) and PTo = 14. In the first
step, we choose (n, , nz) and by zeroing this edge the new
DSI = (nl, n3. n4, n6, n-i) with PT, = 13.5. Thus this
zeroing is accepted. In the second step we choose (n, , n3)
and by zeroing this edge the parallel time reduces to
PTz = 12.5 by inserting n3 before 12~ according to the
highest bottom up level scheduling algorithm, since
botAeuel(n3, I) = 11.5 > hot-leue/(n?, I) = 8. At the
third step we focus on (nj, 1z4) and by zeroing this edge

CLUSTER HEURISTlCS FOR SCHEDULING DAGS 283

the parallel time increases to 13.5 and as a result this
zeroing is rejected. At the fourth step, we focus on (n4,
Q) and by zeroing this edge the parallel time reduces to
11 S. Next the edge (Q, ttS) is considered and its zeroing
is rejected. Continuing this way we derive the clusters
MO = {n, , nz, nj}, MI = (4, 4, no}, Mz = {ns} with
PT = 10.5.

THE DOMINANT SEQUENCE ALGORITHM (DSC). In
the assumptions above we used Tl to decide if a zeroing
should be accepted or not. Another more restrictive con-
straint that could be used instead, is to accept an edge
zeroing if the starting time of its head node decreases.
The constraint below automatically satisfies T 1, since re-
ducing top-level for each node results in the reduction of
the parallel time:

(CTl) An edge zeroing is accepted if it reduces the
top-.level of its head node.

Even though we have imposed a systematic edge zeroing
by choosing the first unexamined edge from top to bottom
in LX the complexity of the algorithm is still high. There
are two problems. The first is that the edge zeroing tra-
versal could proceed in a depth jirst manner. Therefore,
the bot-levels of the unscheduled predecessors in USN,
could change by an edge zeroing. The second is that
when two clusters are merged, the scheduling algorithm
allows for node insertion between already scheduled
nodes in a cluster, which implies that the top-levels of
scheduled nodes in SN; will also be affected. As a result,
determining the next DS could cost O(v + e) per step,
since all levels must be recomputed. One way to avoid
recomputing the hot-levels is to traverse the task graph
in a breadth-first manner. This implies that we must com-
promise and zero edges that do not belong in DS, before
we zero an edge in DS. This leads us to consider the
following strategy:

1. Suspend zeroing an unexamined edge (n,>!. fz,.) in DS
until the head node n? becomes free.

2. Choose a free node n, which belongs to the longest
path going through my of the free nodes in SGi-, , Zero
its incoming edge(s) provided that constraints CT1 and
CT2 are satisfied.

3. (CT2) Zeroing incoming edges of n, to minimize
top-fevel(n., , i - 1) should not affect the strict reduction
of top-level(n, , i - 1) at some future step j, i 5 j.

4. If all edges in a DS have been examined and this DS
continues to dominate in the next step, then recursively
apply the above three steps on the next longest path
(SubDS) to reduce the number of unnecessary proces-
sors.

Some explanations are in order. Constraint CT2 is
closely related to ptrw property T2. If at the step op, the

top-level(n,, i - 1) can be strictly reduced, we should be
able to get this reduction, or even more of a reduction, at
some future step opj. If we do not reduce this DS, then
we will not be able to reduce the parallel time since this
DS will continue to dominate. Therefore, we want to
make sure that edge zeroings that are not in the current
DS do not affect the reducibility of the current DS at
some future step. Of course, CT2 is not equivalent to T2,
since the strict reduction of top-level(n,, i - 1) does not
imply the strict reduction of PTi-1. In other words, the
inequality top-leuel(n,., i) < top-leuel(n,,, i- 1) implies
PT, 5 PTjmr rather than PT, < PTi-] because PT, =
maxk,l:,{top-level(nk, i) + bot-level(nk, i)} and n, may
or may not belong in LX;.

Scheduling Algorithm. The breadth first strategy
above warranties that the bot-levels in USNi do not have
to be recomputed. We would also like to do the same for
the top-levels of nodes in SN,. To do that we must
choose a scheduling heuristic that avoids insertion of
tasks between already scheduled tasks in SG;-i . Thus,
SCH-ALG: A task is scheduled either after the last
scheduled task of a cluster in SG;-i or as the first sched-
uled task in a new cluster.

Detecting the Reducibility of DS for CT2. Now the
question that arises is how the reducibility of DS can be
detected. This is done by examining the result of the
zeroing of the first unexamined edge in DS. If reducibility
is detected at the present step then it will be reducible at
some future step because of constraint CT2. If we find
that DS is not reducible then CT2 is ignored [15, 161.

The Minimization Procedure to Achieve the Shortest
top-leuel for CTl. The DSC algorithm minimizes the
top-level(n,, i) at each step. The minimum is derived by
using the optimum algorithm for the join set, which is
similar to the fork set optimum clustering algorithm de-
scribed in Section 3.1. The join set used for the minimiza-
tion includes those scheduled predecessors of ?I,
which have only one successor (i.e., II,). The priori-
ties used for sorting the edges are the lengths of the
top-level(n,,,, i) + T,,, + c ,,,.., , where n,, is a predeces-
sor of n, .

EXAMPLE. Applying DSC algorithm to the example
of Fig. la, we obtain two clusters with PT = 9 as shown
in Fig. 1 lc. The clustering steps are shown in Table III.

At the beginning PT,, = 14. The first unexamined edge
from top to bottom in DS is (n, ,[I?) and n2 is free. Zeroing
this edge will minimize its starting time and this zeroing is
accepted and nz is scheduled after nl . Next (n,, Q) is
chosen for zeroing. Zeroing this edge will increase its
starting time since it must be scheduled after 11~. There-
fore, this zeroing is not accepted and n3 is marked exam-
ined. Continuing with the algorithm we get the clusters

284 GERASOULlS AND YANG

TABLE III
Clustering Steps of DSC for Fig. la

Step i

0
1 0
2 MI, n2). (n,, nz)
3 (nt, n3)
4 (ni, nd. h n4
5 (4 n5)
6 h, 4). (4. n6)
7 h, n7). (n,, n7)

free node :ero(up,) PT,

14
0 14
(n,. 124 13.5
0 13.5
(ni. n4) 12.5
(n3. I14 Il.5
h. n6). (nc. n6) IO

h. n7) 9

MO = 02, , &>, M, = (113, n 4, ns , nh, n-i}. and the parallel
time is reduced to 9.

DSC AS A PRIORITY SCHEDULING ALGORITHM. Un-
der the above assumptions, the DSC algorithm can be
implemented as a priority scheduling mechanism on an
unbounded number of processors having the node priori-
ties as follows:

priority(nl;, i) = top-level(nk, i) + hot-level(nk, i).

The free node with the highest priority will be scheduled
to the processor that allows its earliest execution. If no
such processor exists then it is scheduled into a new
processor. At each scheduling step, we need to maintain
two node lists: a partial free list PFL which contains
nodes for which at least one predecessor has been sched-
uled but not all predecessors have been scheduled, and a
free list FL whose elements are free nodes. Both lists are
sorted in a descending order of their task priorities. We
break a tie in the priorities by using the most immediate
successor first (MISF) strategy [8]. Function head(L) re-
turns the first node in the sorted list L, which is the task

USN,, = V; i = 0
WHILE USN; # 0 DO

nz = head(FL The free task with the highest priority. * /
n, = head(PFL); /* The partial free task with the highest priority.*/
IF (priority(n,) 2 piority(n,)) THEN

Minimize topJevel(n,, i) under the constraint CT1
by zeroing some of its incoming edges. Schedule a task after the
last scheduled task in that processor (cluster).
If no zeroing is accepted then schedule n, in a new processor.

ELSE
Minimize topJevel(n,, i) under the constraint CT1 and CT2
by zeroing some of its incoming edges. Schedule a task after the
last scheduled task in that processor (cluster).
If no zeroing is accepted then schedule n, in a new processor.

ENDIF
Delete nz from USN, and add it into SN;. Update FL and PFL.
set i = it 1.

ENDWHILE

FIG. 9. DSC as a priority scheduling algorithm.

with the highest priority. If L = { }, head(L) = NULL
and priority(NULL) = 0. We summarize the scheduling
algorithm in Fig. 9.

We need to show that the above algorithm identifies
the DS at each step. To do that we must show that a DS
with at least one unexamined edge must pass through the
head nodes of either FL or PFL. We have that

PT; = max{priority(n,, i)}
y=l:l:

= max{max priority(n,, i), max priority(n,, i)}.
n,t SN, n,E USN,

In Yang and Gerasoulis [16] we have shown that

max priority(nq , i)
n,,t USN,

= max{priority(n,, i), priority(n,. , i)},

where n, = head and nY = head(PFL), which
proves our result.

Complexity. We make a key observation regarding
the complexity of the DSC algorithm. If the DS goes
through the head of FL then updating both FL and PFL
costs O(log v) per step if a balanced search tree data
structure is used. On the other hand, if DS goes through
the head n? of PFL then the result above implies that DS
must go through an immediate predecessor of n, that be-
longs in SN;. If the rest of the nodes in PFL depend on
the head node n.,. of FL, then we must dynamically main-
tain PFL since the top-level of its nodes will change at
each step. This could cost O(v + e) since it requires the
recomputation of top-leuels.

We slightly modify the algorithm to reduce the com-
plexity without affecting the final result. Instead of
top-level(nk, i) we use

startbound(nr, i) = max{top-level(n,,. i) + T,,, + c,),.~}.
n,, E SN, rl PRED(nk , i)

CLUSTER HEURISTICS FOR SCHEDULING DAGS 285

CLUHEU (MCP) : Tasks with the highest priority in the critical path should start
execution at the earliest possible time.

SCHALG : A task is scheduled either after the last scheduled task of a cluster in SG,-1
or it is the lint scheduled task in a new cluster.

domain(op;) = Unexamined edges.

focus(op.) = Incoming edge of a free node with the highest priority.

constraint = CTl.

rero(op;) = Incoming edge in focus(op,) if constraint is true.

Termination criterion: All nodes have been scheduled

FIG. 10. Edge zeroing operations in MCP

where PRED(nk, i) is the set of immediate scheduled
predecessors of nk in SG;. We can easily show that start-
bound is a lower bound of top-level, see Yang and Gera-
soulis [16], by proving

startbound(nk , i) 5 top-level(nk , i), n!, E PFL,
startbound(n,, i) = top-level(n,, i), n, = head(PFL),
startbound(nk, i) = top-level(nk, i), n!. E FL.

Maintaining FL and PFL priority lists cost O(log v) and
since there are v steps the cost is O(v log v). Adding the
graph traversal cost of O(u + e) for a total O(v log u +
e).

The incoming edge zeroing minimization procedure
can be computed in O(l PRED(n,)llogl PRED(n,)l) which
is the cost for sorting the priorities of its predecessors.
Summing over all tasks we get an upper bound estimate
of O(e log v). Thus the total time complexity of DSC is
O((u + e)log u). The space complexity is O(v + e). For
linear clustering the cost reduces to O(v log u + e).

5.4. Wu and Gajski’s MCP O(v2 log v) Clustering
Algorithm

This implies that minimizing the starting time of the last
task could result in the reduction of the overall parallel
time. Therefore the transformed goal is the minimization
of the starting time of the output task. The MCP heuristic
is trying to achieve this by starting the execution of every
‘,ask at the earliest possible time. Since ST(n,) =
top-level(n,, i), then reducing the starting time for each
task implies PTi 2 PTi- i and this algorithm satisfies Tl.
The algorithm does not satisfy T2 for a general DAG.

ALGORITHM. Wu and Gajski [17] have proposed two
scheduling algorithms for a bounded number of proces-
sors. These are the MCP (Modified Critical Path) and MD
(Mobility Directed). The MCP reduces to an edge-zero-
ing clustering algorithm when it is used as a scheduling
algorithm on a completely connected architecture with
unbounded number of processors. On the other hand, the
MD algorithm is not an edge-zeroing algorithm and we
will not compare it with the other algorithms in this pa-
per.

EXAMPLE. We apply this algorithm on the task graph
in Figure l(a). The final clustering is shown in Fig. 1 la.
The stepwise result is shown in Table IV.

Initially, the tasks are mapped in separate clusters and
the priorities are computed. The following priority list,
along with the priority tuples, which include the bottom
up level, the highest bottom up level of its child, and so
on, iseasilyderived: {n, (14, 115.8, l), n1(11.5, 6.5,
. . .) I), nz (8, l), n4 (6.5, 3, 1). ns (6.5, 3. I), Q, (3, l), 117
(1)).

The MCP algorithm is described below:
First 12~ is scheduled to processor PO. At the second

step, the free task n3 is selected and is scheduled to PO
since its starting time reduces from 2 to 1. At the third
step, rzz is scheduled in PO after 12~ according to
SCH-ALG, since again this processor allows its earliest
execution. Now the parallel time becomes PT7 = 12.5
which is the length of the DS = (n, , n3, n4. nh. n,). Next

Determine a priority list based on the “highest bot-level
first” ordering of SGO. If two tasks have the same level
then break the tie by using the highest level of its succes-
sor tasks, the successor of its successors and so on.

WHILE (There exists an unscheduled task) DO
Find an unscheduled free node with the highest

priority in the priority list.
Schedule this task to a processor (cluster) that

allows its earliest execution.
ENDWHILE

There are certain similarities between the DSC and the
MCP algorithm. They are both implemented as schedul-
ing algorithms that have the earliest starting time heuris-
tic as a scheduling guide. There is however a major differ-
ence in the choice of the priorities in the free list. The
DSC uses the sum of top-level and hot-level of SG; while
the MCP uses only the hot-leuel of SGo. As a result the
MCP cannot identify the dominant sequence and may not
zero its edges. The view of the MCP algorithm as an
edge-zeroing algorithm is given in Fig. 10.

Goal Transformation. The primary goal for this algo-
rithm is Gl, the minimization of the parallel time. The
cost function for GI is the parallel time which is equal to

PT = max(ST(nj) + Tj) 5 max ST(n;) + max 7i.
.i i i

286 GERASOULIS AND YANG

TABLE IV
Clustering Steps of MCP for Fig. la

Step i free node xro(op,J PT,

0
1 0 0
2 O?l, nz), (n,. n7J (n,, nd
3 (~ZI, 4. h nd, h. n<l (n,. 112)
4 h, nd. (9. 4 h, t2d
5 (n3, 4) h, nd
6 (4, 4). h. 4) h. 4). (4. 4
7 (n2. n7), (n,. n,J h n7). (4. n,)

14
nl 0 14
n, (fll, ?I 14
,,I 011, t1d 12.5
n4 63 12.5
II5 0 12.5
4 (n4, nd Il.5
n7 (n6, n7) 10.5

124 is considered but cannot be scheduled in PO ; otherwise
its start time would be delayed. Thus n4 is scheduled in a
new processor Pi. Similarly, n5 is scheduled in P?. Then
at the next step, n6 is scheduled in P, by zeroing edge (n4,
nJ. At the last step, (n6, n,) is zeroed and the parallel
time reduces to 10.5. The resulting clustering is MO =
{nk, 4, nd, MI = (124, n6, n71, M7 = (4.

Complexity. Wu and Gajski have given a worst time
complexity of O(u? log u) because of the cost in the tie
breaking. If there are no ties then the complexity is simi-
lar to DSC.

5.5. Clustering Figures

In Fig. 11 we summarize the results of three algorithms
on our example. The KB/L result is given in Fig. lb with
PT = 11.5.

6. OPTIMALITY RESULTS FOR PRIMITIVE STRUCTURES

In this section, we study the performance of the pre-
vious four algorithms in the clustering of some special
primitive structures such as join, fork, and coarse grain
tree structures. The reason for studying the performance
on primitive structures is that a DAG is composed of a set
of join and fork nodes, and join and fork trees are span-

FIG. 11. Clusterings of (a) Wu and Gajski’s algorithm with PT =
10.5: (b) Sarkar’s algorithm with PT = IO: (c) DSC with PT = 9.

ning trees of a DAG. Therefore studying the performance
of clustering algorithms on such structures will further
enhance our understanding of their behavior.

We first need to clarify our definition of coarse and fine
grain task graphs; for more details see [S, 61. For each
join and fork of a task we define

h= I:m k=l:nr
g(F,) = min {rk}/max {c.~J,}.

h= I:m h=l~,,r

The grain. gl, of a task n., and the granularity of a DAG
are defined by

g, = minkdt;,), g(J,)), g(G) = min kc>.
tl,Eb’

We call a DAG coarse grain if s(G) Z- 1, otherwise we
call it fine grain. For coarse grain DAGs each task com-
municates a small amount of data compared to the com-
putation of its neighbors. Coarse grain graphs possess
many interesting properties. For example, the ratio be-
tween the parallel time of any linear clustering and that of
the optimum is less than or equal to 1 + l/g(G), [6]. This
implies that for coarse grain graphs we can always be
within a factor of 2 from the optimum by using linear
clustering. As a matter of fact the optimum parallel time
can be derived by a linear clustering, [6]. Therefore, we
can exploit all parallelism in coarse grain graphs by using
linear clustering. This is not the case for fine grain graphs
where parallel tasks must be sequentialized to minimize
the parallel time. If we look at the optimum fork algo-
rithm in Fig. 4, if the fork is coarse grain then the algo-
rithm will stop after zeroing only the first edge; otherwise
it will continue sequentializing parallel tasks by zeroing
more edges.

6.1. Performance on Primitive Structures

An in-tree is a directed tree in which the root has out-
going degree zero and other nodes have outgoing degree

CLUSTER HEURISTICS FOR SCHEDULING DAGS 287

TABLE V
Performance of Clustering Algorithms on Primitive Structures

Join Fork In-tree Out-tree

T? Opt. T7 Opt. T? Opt. T2 opt.

Coarse grain
KBIL Yes Yes Yes Yes Yes No Yes No
Sarkar No No No No No No No No
DSC Yes Yes Yes Yes Yes Yes Yes No
MCP Yes Yes No No Yes Yes No No

Fine grain
KBiL No No No No No No No No
Sarkar No No No No No No No No
DSC Yes Yes Yes Yes Yes No Yes No
MCP No No No No No No No No

one. An out-tree is a directed tree in which the root has
incoming degree zero and other nodes have incoming de-
gree one. A join is an in-tree of depth 1. Afovli is an out-
tree of depth 1.

All algorithms satisfy property Tl, the monotonic re-
duction in the parallel time. For other performance fea-
tures, Table V summarizes the comparative results on
the primitive structures.

We now provide the proof for the above performance
results.

6.1.1. Performance on Fork and Join

PROPOSITION 6.1.1 (DSC Algorithm). For the fork
and join graphs thr DSC algorithm derives the optimum
clustering and also satisJies property T2.

Proof. For both join and fork, the DSC algorithm de-
rives the same edge zeroing sequence as the optimal algo-
rithm in Section 3.1 which satisfies Tl and T2, as shown
in Section 4. n

PROPOSITION 6. I .2 (MCP Algorithm). The MCP ulgo-
rithm does not derive the optimum for arbitrary fork and
join graphs and also does not sati& T2. Only for a
coarse grain join does the MCP determine the optimum
and satisfy T2.

Proof. Consider a join set with the root n.,; invert the
fork shown in Fig. 3a, with pi + T, 2 pi+, + T;+, . The
MCP only zeroes one incoming edge (n, , n,) and the
parallel time is PT,,,, = T.~ + max(T,, pZ + TV). If
the graph is coarse grain, 7, 2 p1 + 7? and MCP finds the
optimal solution. However, if the graph is fine grain and
zeroing (nz, 12,) strictly reduces PT,,]+, , then (nz, n,) is in
ptrw(op,,,+,). Since MCP does not zero this edge at any
step it does not satisfy the T2 property and also it does
not derive the optimum.

For a fork set, we present a counterexample shown in
Fig. 12. The optimal clustering for this fork, derived by

DSC, has parallel time equal to 8 and is given by M, =
InI, n2, n3. IQ}, Mz = {n4}. MCP derives the following
clusters with PT = 10: M, = {n, , n!, n3}, Mz = {n4},
M4 = ins).

The MCP examines the free nodes in the order n3, IQ,
n4, n5. Moreover, ptni>(op”) = ((0, , ns)}, but this edge is
never zeroed. Thus MCP does not satisfy the T2 prop-
erty. n

PROPOSITION 6.1.3 (Sarkar’s Algorithm). Sarkar’s al-
gorithm does not satisfy T2 and is not optimal for a join
or fork.

Proof. We only present a counterexample for a fork
in Fig. 12. The join case is similar. Sarkar’s clustering
with PT = 9 is given below and this is not optimum:
M, = {n, , nz, n4, IIS}, M2 = {II-(}. Regarding the T2 prop-
erty, we look at the zeroing sequence. At step I, (/I,, n)
is zeroed. At step 2, (n,, n2) is zeroed. Then PT? = 9
and ptrw(op,) = {(n, , nd}. But this edge is never
zeroed. n

PROPOSITION 6.1.4 (KBIL Algorithm.) KBiL does
not satisfv T2 and it is not optimal for an arbitrary join or
fork. In the special case of a coarse grain join or fork,
KBIL satisfies T2 and is optimal.

Proof. For a join with the root n, and pi + ~~ 2
pi+, + 7;+, , the CP is (~2~. n,) and after it is zeroed PT, =
T., + maX(Tl, pz + T?). This is optimum for coarse grain
graphs. However, if the graph is not coarse grain, then
nonlinear clustering is necessary and KBiL is not opti-
mum. Also since ptrwl(op,) = ()I,, n,) and this edge is
never zeroed it does not satisfy T2. For Fig. 12 Kim’s
algorithm gives PT = 9 and M, = {nz}, MZ = {n-i}, M4 =
{nd}, Mc = {n, , n5}. The results are similar for a join. l

6.1.2. Performance on inlOut Trees

Finding an optimal solution for a tree is still NP-com-
plete as shown by Chretienne [2]. However, when this
tree is coarse grain, the optimal solution is computable in
polynomial time. This can be shown by using the fact that
an optimum schedule can be derived by linear clustering
for coarse grain DAGs and then the special tree structure
can be used to determine the optimum linear clustering in
polynomial time. As a matter of fact, the DSC algorithm
will find the optimum linear clustering for trees.

%.A.. 2 4 2 I

FIG. 12. A counterexample of a fork

288 GERASOULIS AND YANG

PROPOSITION 6.1.5 (DSC Algorithm). DSC satisfies
T2 and gives the optimal solution for coarse grain in-
trees but not for fine grain in-trees. For both fine and
coarse grain out-trees, DSC satisfies T2 but it is not opti-
mal.

Proof. The optimum solution can be derived by DSC
for coarse grain in-trees. It is proven by induction on the
depth of the tree in Yang and Gerasoulis [15, 161 by
showing that DSC produces a schedule where every node
has the minimum starting time.

nlo 2 n2 . 2

2

v

0.5

“‘L 7’

\/
ng.4

FIG. 13. A counterexample of an in-tree.

Without inverting an out-tree, DSC cannot get the opti-
mum but it still satisfies the T2 property. We prove it in
two steps.

In the first step we show that ifptrw(op;) # 0, then the
edges in ptrw(opi) must be unexamined. If not, suppose
(n,, n,) E ptrw(op;) and it has been examined and n1 has
been scheduled. Zeroing (n,, , n,) will strictly reduce the
parallel time implying that the starting time n, can be
reduced. Since n, has only one incoming edge (rzY, n,), if
the assumption were true, (n, n,) would have been ze-
roed when nt was scheduled, a contradiction.

Next we must prove that (n,, n,) will be zeroed at some
future step. Assume that the topmost unexamined edge in
the current DS, and which also belongs to ptrw(opi), is
0% 1 n,). From step i + 1 to the step when n, becomes
free, the parallel time cannot be reduced and ()I,~, n,) is
always in the ptrw set. At the step at which n, becomes
free, it must have the highest priority and then (n,, , n,)
must be zeroed to reduce the starting time of n,. H

PROPOSITION 6.1.6 (MCP Algorithm). MCP satisjes

DS; = CPi since KB/L is a linear clustering algorithm.
Now assume that (n, n,) E ptrw(op;). This means that
the parallel time is reducible by zeroing this edge. We
first show that no incoming edge of n, has been examined
or zeroed at any step less or equal to i. Assume the con-
trary, which means that one incoming edge has been ze-
roed and the others, including (n,, , n,), have been exam-
ined. Then zeroing (n,, n,) is impossible to reduce the
parallel time because the tree is coarse grain. That is a
contradiction. Secondly, since KB/L zeroes all edges in
the CP of each subgraph at each step and the subgraph is
a subtree, we can easily see that all edges in the subtree
rooted with n, are not examined. As a result, when the
global CP of the whole tree (called GCP) goes through
any unexamined subtree, the part of GCP in this subtree
is also the CP of this subtree. And when KB/L is working
on the subtree where (n, , n,) resides, the edges in its CP
including (n, n,) will be zeroed.

T2 and gives the optimal solution for coarse grain in-
trees but not for general in-trees. For out-trees, MCP
does not satisfy T2 and it is not optimal.

Proof. Since the problem itself is NP-complete, for
general in-trees and out-trees the MCP cannot determine
the optimum. Also since for the special case of fork/join
MCP does not satisfy T2, it does not satisfy T2 in general.

The proof that for a coarse grain in-tree, MCP is opti-
mal and satisfies T2 is similar to DSC. When the tree has
height 1 and is a coarse grain join then MCP determines
the optimum. Inductively, we can prove that it deter-
mines the optimum for coarse grain in-trees. n

PROPOSITION 6.1.7 (KBIL Algorithm). KBIL is not
optimalfor any tree and in general does not sati& T2. It
only satisfies T2 for coarse-grain inlout-trees.

Next, we show that one such edge (rzY, n,) is still in
ptrw when that edge is zeroed. If KB/L does not zero any
edge in ptrw(opi) after step i until stepj, then no edge in
GCP is zeroed during those steps and ptrw does not
change. If this is not true, assume that (n, , n?) is an edge
in GCP but not in ptrw which is zeroed in step k such that
i < k < j. Now since (n, n,) is also in the GCP, the edge
(nl , n2) must lie either on the root side of (n, , n,) or on the
leaf side. If (nl , n2) lies on the leaf side of (n, n,), all the
edges in the CP of the subtree including (n,, , n,) will be
zeroed in step k which is a contradiction. If on the other
hand, (n,, nz) lies on the root side of (n,, 1~) then it
should also be in ptrw(opi) which is again a contradic-
tion. n

PROPOSITION 6.1.8 (Sarkar’s Algorithm). Sarkar’s al-
gorithm does not satisfy T2 and is not optimal for a tree.

Proof. The simplest counterexample is a fork (or
join), where Sarkar’s does not satisfy T2 and is not opti-
mal in general. n

Proof. To show that KB/L is not optimal we present
a counterexample in Fig. 13. The optimal result derived
by DSC is MI = {n,, n3}, MZ = {nz}, M3 = {n4, ns} with
PT = 13.5. The result derived by Kim’s algorithm is
MI = {n, , n3. ns}, MZ = {nz}. Mj = {nd} with PT = 14.

We prove that KB/L satisfies T2 for a coarse grain in-
tree. The proof for an out-tree is similar. We note that four algorithms.

6.2. A General Summary

In Table VI we summarize the characterization of the

CLUSTER HEURISTICS FOR SCHEDULING DAGS

TABLE VI
A Comparison of Four Clustering Algorithms

289

Sarkar MCP KBiL DSC

Goals
Transformed goals

Multiplicity of zeroing
Constraint imposed
Tl
T2

Complexity

Gl
Reduce

cv
One
Tl
Yes
No

e(u + e)

GllG2

Minimize starting time
One
Nonincrease in ST
Yes
No

d log v

G4IG 1

Compress CP in subgraphs
All in CP
Linearity of clustering
Yes
No

v(v + f)

GIIG2

Compress DS
Some incoming edges of a free node
CTI, or CTI and CT2
Yes
No for fine grain
Yes for coarse grain
(e + LJ) log u

Note that DSC satisfies T2 for any coarse grain DAG.
The proof is similar to the one given for the out-tree case.
The coarse grain constraint ensures that only one incom-
ing edge would be zeroed if it would be zeroed.

7. EXPERIMENTAL RESULTS AND COMPARISONS

DSC vs. SARKAR'S. In Yang and Gerasoulis [15] we
compared the DSC algorithm and Sarkar’s algorithm on
100 randomly generated DAGs and weights. These
graphs are produced by randomly generating the number
of tasks and edges and assigning random numbers as
weights. The size of the graphs varies from a minimum of
70 nodes with 311 edges to a maximum of 329 nodes with
3430 edges. The ratio of computation and communication
varies from 0.8 to 8.7. On the average we found that
PTDsc = .83 PTSarkar for these graphs. As far as the algo-
rithm execution speed is concerned, DSC is one order
faster than Sarkar’s.

DSC vs. OTHER CLUSTERING HEURISTICS. We have
chosen for experimentation the well-known Cholesky
Decomposition (CD) DAG. There are several reasons for
choosing this DAG for comparison. One is that we can
compute the clustering of KB/L analytically rather than
computationally which will be impossible because of the
high complexity. Another reason is that we would like to
compare DSC with the natural clustering which is a
widely used clustering for this DAG [4, 121. However, we
did not include Sarkar’s heuristic because the graph is
too large to be handled.

In Fig. 14, we give the DAG for the special case of n =
4, where n is the dimension of the matrix. Each task T$
represents a vector modification while T:’ is the pivot
operation. The weights are

r: = (n - k + 2)w, ri = (2(n - j) + l)w,
k=l:n-1, j=k+l:n

c$ = (n - k + 2)& cf+’ = (n - j +I)&
k=l:n-1, j=k+l:n,

where 7i are the computation weights, c$ is the communi-
cation cost between tasks Tf and T$, cf+’ is the commun-
ication cost between tasks Ti and T$+, .

In Fig. 15, we fix n = 200 and vary the granularity of
the DAG by increasing the communication constant fac-
tors as follows; p = w, 2w, SW, 4Ow, lOOw, 200~. The
number of tasks is about 2000 and edges 4000. We ob-
serve that the DSC is superior to all methods for this
example particularly when the DAG becomes fine grain.
For coarse grain DAGs the DSC algorithm is better at
most by a factor of 2. This result is expected, since we
have shown in [6] that any linear clustering is within fac-
tor of 2 of the optimum. Both Natural and KBlL are

FIG. 14. The Cholesky Decomposition task graph and natural linear
clustering for n = 4.

290 GERASOULIS AND YANG

PT Speedup Ratio for CD.n=200

<-coax grain lk Fine grain->

FIG. 15. DSC vs. other clustering algorithms for the CD DAG: (+)
Natural/D%: (*) Kim and BrowneiDSC: (0) Wu and GajskiiDSC.

linear clusterings, and the clusterings produced by DSC
and MCP are also linear.

Figure 1.5 also verifies our theoretical analysis of the
previous section and the importance of zeroing edges in
the dominant sequence. MCP and DSC are similar with
the one major exception that DSC zeroes the edges in DS
while MCP does not. Note that the MCP parallel time is 3
times longer than the DSC parallel time, while both natu-
ral and KB/L parallel times are within a factor of 4 with
DSC when g = l/200. With regards to the computational
complexity, DSC is much faster than all other heuristics.
Similar results have been derived for other task graphs.

8. CONCLUSIONS 10.

We have provided a general framework for comparing
clustering algorithms. Guided by this framework we were
able to present, evaluate, and compare several existing
algorithms in a systematic manner. We have demon-
strated the importance of having performance features Tl
and T2 in each clustering step. We have shown that every
algorithm satisfies Tl for any DAG but only DSC satisfies
additional performance properties and has a lower com-
plexity. This is why DSC is superior to other algorithms
in practice, which has been demonstrated in the experi-
mental results.

Several interesting questions remain open for future
investigation. Is it possible to develop a clustering algo-
rithm that has better performance than DSC with the
same computational complexity? How does the perfor-
mance of DSC compares to higher complexity clustering

algorithms that satisfy TI and T2 and are optimal for the
primitive structures?

ACKNOWLEDGMENTS

We thank Sesh Venugopal for several useful discussions on this work
and Ajay Bakre and the referees for reading the manuscript and suggest-
ing improvements in the presentation. This work was in part supported
by Grant DMS-8706122 from NSF.

I.

2.

3.

4.

5.

6.

7.

8.

9.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

Chretienne, Ph. Task scheduling over distributed memory ma-
chines. Proc. of the Infernational Workshop on Parallel and Dis-
tribuled Algorithms. North-Holland, Amsterdam, 1989.
Chretienne, Ph. Complexity of tree scheduling with interprocessor
communication delays. Report, M.A.S.I. 90.5, Universite Pierre et
Marie Curie, 1990.
El-Rewini, H.. and Lewis, T. G. Scheduling parallel program tasks
onto arbitrary target machines. J. Parallel Distrib. Cornput. 9
(1990). 138-153.
Gerasoulis. A., and Nelken, I. Static scheduling for linear algebra
DAGs. Proc. of Fourflz Conference on Hypercubes. Monterey, CA.
1989, Vol. 1. pp. 671-674.
Gerasoulis. A., Venugopal. S., and Yang, T. Clustering task graphs
for message passing architectures. Proc. of4th ACM fnternarioncd
Conference on Supercompufing. 1990, pp. 447-456.
Gerasoulis. A., and Yang, T. On the granularity and clustering of
directed acyclic task graphs. Report TR-153, Department of Com-
puter Science, Rutgers University, 1990.
Girkar, M.. and Polychronopoulos, C. Partitioning programs for
parallel execution. Proc. qf ACM Internurional Cottference on S/r-
percotnputin.g. St. Malo. France, July 4-8. 1988.
Kasahara. H., and Narita. S. Practical multi-processor scheduling
algorithms for efficient parallel processing. IEEE Truns. Cotnpur.
C-33 (1984), 1023-1029.
Kim, S. J. A general approach to multiprocessor scheduling. Re-
port TR-88-04. Department of Computer Science, University of
Texas at Austin, 1988.
Kim, S. J., and Browne, J. C. A general approach to mapping of
parallel computation upon multiprocessor architectures. Internu-
tiona/ Conference on Parallel Processing. 1988. Vol 3. pp. l-8.
Kung, S. Y. VLSI Array Processors. Prentice-Hall, Englewood
Cliffs, NJ, 1988.
Ortega, J. M. Introduction to Parallel and Vector Solution of Lin-
ear Sysrems. Plenum, New York, 1988.
Papadimitriou. C.. and Yannakakis, M. Towards an architecture-
independent analysis of parallel algorithms. SIAM .I. Comprrr. 19
(1990). 322-328.
Sarkar, V. Partitioning and Scheduling Parallel Progrumsfitr Exe-
cution on Multiprocessors. The MIT Press, Cambridge, MA, 1989.
Yang, T., and Gerasoulis, A. A fast static scheduling algorithm for
DAGs on an unbounded number of processors. Proc. ofSupercotw
puring ‘91. IEEE, 1991, pp. 633-642.
Yang, T.. and Gerasoulis, A. Dominant sequence clustering heuris-
tic algorithm for scheduling DAGs on multiprocessor. Report, De-
partment of Computer Science. Rutgers University. 1991.
Wu, M. Y.. and Gajski. D. A programming aid for hypercube archi-
tectures. J. Supercomput. 2 (1988). 349-372.

CLUSTER HEURISTICS FOR SCHEDULING DAGS 291

TAO YANG received the B.S. in computer science in 1984 and the
APOSTOLOS GERASOULIS received the B.S. from University of M.E. in artificial intelligence from Zhejiang University, China, and the

Ioannina, Greece, and the M.S. and Ph.D. degrees from the State Uni- M.S. in computer science in 1990 from Rutgers University. He is ex-
versity of New York at Stony Brook, both in applied mathematics. He petting to receive the Ph.D in computer science from Rutgers by 1992.
is an associate professor of computer science at Rutgers University. His His research interests are in the areas of compilation for parallel ma-
research interests are in the areas of numerical computing, parallel chines, programming tools, and parallel numerical computing. His dis-
algorithms and programming, compilers, and parallel languages and sertation work is on program scheduling and code generation for mes-
environments. sage passing architectures.

Received December 1. 1991; accepted June 9, 1992

