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A Comparison of Clustering Heuristics for Scheduling Directed 
Acyclic Graphs on Multiprocessors 

APOSTOLOS GERASOULIS AND TAO YANG 

Clustering of task graphs has been used as an intermediate step 
toward scheduling parallel architectures. In this paper, we iden- 
tify important characteristics of clustering algorithms and propose 
a general framework for analyzing and evaluating such algo- 
rithms. Using this framework, we present an analytic perfor- 
mance comparison of four algorithms: Dominant Sequence Clus- 
tering (DSC) (Yang and Gerasoulis, Proc. Super-computing ‘91, 
1991, pp. 633-642) and the algorithms of Kim and Browne (Znt. 
Conf. on Parallel Processing, 1988, Vol. 3, pp. l-8), Sarkar (Par- 
titioning and Scheduling Parallel Programs for Execution on 
Multiprocessors, MIT Press, 1989), and Wu and Gajski (J. Super- 
comput. 2 (1988), 349-372). We identify the common features and 
differences of these algorithms and explain why DSC is superior 
to other algorithms. Finally, we present some experiments to ver- 
ify our analysis. 8 WE Academic Press, Inc. 

1. INTRODUCTION 

In this paper, we consider the clustering problem for 
directed acyclic graphs (DAGs). Clustering is a mapping 
of the nodes of a DAG onto labeled clusters. A cluster 
consists of a set of tasks; a task is an indivisible unit of 
computation. All tasks in a cluster must execute in the 
same processor. The clustering problem has been shown 
to be NP-complete for a general task graph and for sev- 
eral cost functions. For example, if the cost function is 
the minimization of parallel time on a completely con- 
nected virtual architecture with an unbounded number of 
processors, then clustering is NP-hard in the strong sense 
(Sarkar [ 141, Chretienne [ 11, Papadimitriou and Yannaka- 
kis [13]). 

Several heuristic algorithms have been proposed in the 
literature for the general clustering problem. Kim and 
Browne [lo] considered linear clustering, which is an im- 
portant special case of clustering. Sarkar [ 141 presented a 
clustering algorithm based on a scheduling algorithm on 
unbounded number of processors. Wu and Gajski [I71 
developed a programming aid for hypercube architec- 
tures using scheduling techniques. Yang and Gerasoulis 
[15, 161 proposed a fast and accurate heuristic algorithm, 
the Dominant Sequence Clustering (DSC). However, 
there has been little experimental and theoretical com- 
parisons of clustering algorithms. One exception is the 

recent paper by El-Rewini and Lewis [3], where experi- 
ments with some scheduling algorithms are presented. 
Here, we introduce a general analytic framework and use 
it to express clustering heuristics so that comparisons can 
be made in a systematic fashion. The paper is organized 
as follows: 

In Section 2, we describe the basic terminology and 
assumptions used in clustering and scheduling algo- 
rithms. In Section 3, we introduce a generic framework 
that visualizes a clustering algorithm as performing a se- 
quence of clustering refinements so that a clustering algo- 
rithm can be presented in a systematic manner. In Sec- 
tion 4, we describe the important characteristics and 
performance features of clustering algorithms so that we 
can clarify the differences and similarities and evaluate 
their performance through this framework. In Section 5, 
we present four algorithms using our framework, and use 
an example to demonstrate their clustering steps. In Sec- 
tion 6, we study their performance for special important 
primitive classes of DAGs such as fork, join, and coarse 
grain trees. These are DAGs whose optimal solutions can 
be computed in polynomial time. In Section 7, we present 
experimental results that verify our analytic results. Sec- 
tion 8 is the conclusion. 

2. PROBLEM DEFINITION AND ASSUMPTIONS 

We start with definitions of the task computation 
model and architecture: 

A directed acyclic weighted task graph (DAG) is de- 
finedbyatupleG=(V,E,%,~)whereV={n;,j= 1: 
u} is the set of task nodes and u = /VI is the number of 
nodes, E is the set of communication edges and e = IEl is 
the number of edges, % is the set of edge communication 
costs, and 5 is the set of node computation costs. The 
value c;,j E % is the communication cost incurred along 
the edge ei,.i = (n;, prj) E E, which is zero if both nodes 
are mapped in the same processor. The value 7; E 9 is the 
execution time of node n; E V. 

A task is an indivisible unit of computation which may 
be an assignment statement, a subroutine or even an en- 
tire program. The tasks are convex, which means that 
once a task starts its execution it can run to completion 
without interruption (Sarkar [ 141). 
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The task execution model is the static macro-dataflow 
model (Sarkar [14], Wu and Gajski [17], El-Rewini and 
Lewis [3]). The task execution is triggered by the arrival 
of all data from its predecessors. Immediately after com- 
pletion of task execution, the data are sent to the succes- 
sor tasks. Data communication is done in parallel. 

The architecture is a completely connected graph, with 
an unbounded number of homogeneous processors, i.e., 
a clique virtual architecture. 

Clustering is a mapping of the tasks of a DAG onto 
clusters. A cluster is a set of tasks which will execute on 
the same processor. Clustering is also known as proces- 
sor assignment in the case of an unbounded number of 
processors on a clique architecture (Sarkar [ 141). Cluster- 
ing has been shown to be NP-complete for the minimiza- 
tion of the parallel time cost function (Chretienne [I], 
Papadimitriou and Yannakakis [ 131, Sarkar [ 141). As a 
result many heuristic algorithms have been proposed and 
analyzed in the literature. A clustering is called nonlinear 
if two independent tasks are mapped in the same cluster; 
otherwise it is called linear. In Fig. la we give a weighted 
DAG, in lb a linear clustering with three clusters {n, , nz, 
~7). {n3, n4, n6}, {no}, and in lc a nonlinear clustering with 
clusters {ni , n:}, {n?, n4, n5, n6}, and {n,}. Note that for 
the nonlinear cluster the independent tasks n4 and tz5 are 
mapped into the same cluster. 

Scheduling is a task to processor assignment and a 
tusk to starting time mapping. In general, the problem of 
finding the optimum scheduling that minimizes the paral- 
lel time has been shown to be NP-complete (Sarkar [ 141). 
In Fig. 2b we present the Gantt chart of a schedule for the 
nonlinear clustering of Fig. lc. Processor PO has tasks nl 
and n2 with starting times ST(n,) = 0 and ST(+) = 1. If 
we modify the clustered DAG as in [14] by adding zero- 
weighted edges between any pair of two nodes II, and II, 
of a cluster, if n, is executed immediately after n,, and if 
there is no data dependence edge between n, and n!, then 
we obtain what we call a scheduled DAG; see 2c. We call 
the longest path of the scheduled DAG the dominant se- 
quence (DS 1 of the clustered DAG, to distinguish it from 

FIG. 1. (a) A weighted DAG: (b) a linear clustering; (c) a nonlinear 
clustering. 

PO PI p2 

Time 

FIG. 2. (a) The clustered DAG and its CP shown in thick arrows; 
(b) the Gantt chart of a schedule: (c) the scheduled DAG and the DS 
shown in thick arrows. 

the critical path (CP) of a clustered but not scheduled 
DAG. For example, the clustered DAG of Fig. la also 
shown in Fig. 2a has CP = (n, , n2, n7) with length 9, 
while a DS of a schedule given in Fig. 2c is DS = (n, , n3, 
n4, n5, nh, n,> and has length 10. In the case of linear 
clustering, the DS and CP of the clustered DAG are iden- 
tical; see Fig. lb. 

Clustering has been used as a first step to scheduling 
parallel architectures. More specifically, Sarkar [14], 
who calls clustering “internalization prepass,” proposes 
a two step method for scheduling: (1) Perform clustering 
by scheduling on an unbounded number of processors of 
a clique. (2) Merge and schedule the clusters when the 
number of processors is smaller than the number of clus- 
ters. Sarkar gives the following justification for cluster- 
ing: “If tasks are scheduled in the same processor on the 
best possible architecture with an unbounded number of 
processors, then they should be scheduled in the same 
processor in any other architecture.” Other areas in the 
literature where clustering has been used are the VLSI 
systolic schedules (Kung [I l]), where the clustering step 
is known as the processor projection step, and numerical 
computing for message passing architectures (Ortega 
[la). 

3. A GENERIC DESCRIPTION OF CLUSTERING 

ALGORITHMS 

Clustering heuristics have certain goals and try to 
achieve them via a sequence of steps. Clustering algo- 
rithms perform a sequence of refinement steps opi, i = 
0 : k. An initial clustering is given in opo. Here we us- 
sume that initially each task is a cluster. Each op; 
performs a refinement of the previous clustering by merg- 
ing some clusters and at the last step opk, a final cluster- 
ing is derived. At each step a good refinement must be 
performed so that the final clustering satisfies or is 
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“close” to satisfying the original goals. We only consider 
nonbacktracking heuristic algorithms to avoid high com- 
plexity; i.e., once the clusters have been merged in (Ipi 
they cannot be unmerged afterwards. Then the number of 
clustering steps remains polynomially bounded with re- 
spect to the size of the DAG. 

Let us demonstrate how the nonlinear clustering in 
Fig. lc could be derived as a sequence of merging opera- 
tions op,. We use the criterion that “two clusters are 
merged if the parallel time does not increase.” Initially 
each task is mapped to a separate cluster shown in Fig. 1 a 
and the parallel time is equal to 14, which is the length of 
ml = (n, , e, n7). The first step merges nl and n2 and 
renames the resulting cluster as 1. Then DS, = (n, , n3, 
n4 3 & 3 n,) and the parallel time reduces to 13.5. In the 
next step clusters n3 and n4 are merged and renamed 
cluster 2. Then DSz = (n, , n3, n5, n6, n7) and the parallel 
time reduces to 12.5. In the third step clusters ns and n6 
are merged to become cluster 3. Then DS3 = (n, , n3, n5, 
nb, 1~) and the parallel time reduces to 10. In the final 
step clusters 2 and 3 are merged. Since n4 and n5 are two 
independent tasks assigned in the same processor an or- 
dering must be used to determine the parallel time. In this 
case the parallel time remains equal to 10 if n4 is executed 
before n3 or vice versa. 

Several interesting observations can be made: (I) 
When two clusters are merged, a scheduling heuristic 
might be needed to determine the new parallel time and 
measure the performance. (2) If there exists a nonzero 
edge connecting two clusters, then merging the two clus- 
ters will zero the edge cost. Equivalently, zeroing an 
edge cost will merge two clusters. (3) If there is no edge 
connecting two clusters then the parallel time cannot be 
reduced by merging these clusters, but it might be in- 
creased by such a merging because of sequentialization of 
independent tasks. (4) If zeroing the edges connecting 
two linear clusters results in a linear cluster, then such a 
merging will not increase the parallel time. If such a zero- 
ing results in a nonlinear cluster, then the reduction or 
not of the parallel time will depend on the granularity of 
the DAG [6]. 

3.1. Clustering Algorithms Based on Edge-Zeroing 

The edge-zeroing based merging algorithms constitute 
an important subclass of clustering algorithms which we 
will study in detail. Such algorithms only operate on the 
connected component of the DAG and never merge tasks 
that are not connected. Edge-zeroing clustering will pro- 
duce a sequence of graph transformations Gi = ( V, E, %;, 
%), i = 0 : k of the initial DAG. The operation op, only 
modifies the set ‘%-I to %; by edge zeroing while the sets 
V, E, and 9 remain unchanged. For edge-zeroing cluster- 
ing algorithms, we define: 

T “2 “k “m “I “2 “k “k+l “m 

a Fork DAG b Clustered DAG 

FIG. 3. Clustering a fork DAG 

l CLU-HEU: The CLUstering HEUristic which se- 
lects the edges to be zeroed. 

l SCH-ALG: The SCHeduling ALGorithm. 
l domain(opi): The set of edges in E to be examined by 

OPi. 

l focus(op;): The set of edges that are candidates for 
zeroing at opi. 

l zevo(op;): The set of edges that will be zeroed at the 
completion of 0~;. 

l SG;: The scheduled DAG according to SCH-ALG. 
Initially, SGo = Go. 

l DS;: The Dominant Sequence at the completion of 
opi, which is the critical path of SGi. 

l CP;: The set of all nodes in the Critical Path of Gj = 
(V, E, %i, 3). i = 0 : k. 

l top-leuel(n.,., i), hot-leuel(n,, i): The length of the 
longest path between node IZ., and the top (bottom) node 
in SG;, including all the communication and computation 
costs in that path, but excluding 7, from top-leuel(n., , i). 

l PTi: The Parallel Time at the completing of op;. 

PTi = 2 Tj + 2 Cj, , , ,  = top-/eve/( n,x, i) 
ll,ED.S, “I,. !I,,,EDJ, 

+ hot-leuehn,, i), n, E DSi. 

Let us now consider a fork DAG F., with communica- 
tion Costs c.,,,, = fij, j = I : m shown in Fig. 3a to demon- 
strate an edge-zeroing clustering sequence. We present 
an optimum clustering algorithm for a fork DAG in Fig. 
4. For simplicity we assume that the nodes and edges 
have been sorted such that Tj + fij 2 ~i+l + pi-1 , j = I : 
m - I. 

i = 1. 

PT; = m+Cj=* Tjj,C+l t &+I) t Tz 
ENDWHILE 
k=i-1: 

FIG. 4. An optimum clustering algorithm for a fork DAG. 
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CLUUEU : Minimize the parallel time. 

SCHALG: Any ordering of ~lr nz,. , R; results in an optimal schedule. 

focus(op;) = {< n,, 7% >}. 

constraint: PT, 5 PTi-1. 

tero(op;) = focus(op;) if constsaint is true otherwise 0. 

Termination criterion: When constraint is not true. 

FIG. 5. Edge zeroing operations in the fork clustering algorithm. 

Initially each task is mapped onto a separate processor 
of the clique. At each step i of the algorithm, correspond- 
ing to opi, the focus is on the edge (n, , n;) and if the 
parallel time reduces by zeroing that edge then this edge 
is zeroed, see Fig. 3b. Therefore, the task rzj,j = 1 : i will 
be mapped in the same cluster if PT, 5 PT;-, . A sum- 
mary of the algorithm is given in Fig. 5. The proof of 
optimality is given in [1.5], Theorem 4.2. 

4. A CHARACTERIZATION OF CLUSTERING 
ALGORITHMS 

Clustering Goals and Cost Functions. Clustering 
heuristics must have certain goals and must choose the 
corresponding cost functions for achieving those goals. 
We distinguish between two types of goals, the perfou- 
ITZUIZC~ type and the nonperformance type. Performance 
goals could be the following: (Gl) Minimization of the 
parallel time cost function on an unbounded number of 
processors. (G2) Maximization of the efficiency cost 
function. (G3) Minimization of the communication vol- 
ume, CV = C r,,,eEC’i,jr cost function. Nonperformance 
goals, on the other hand, impose constraints on the struc- 
ture and shape of the clustering rather than its perfor- 
mance. Examples are: (G4) Clustering is linear. (G5) 
Clusters have no cycles; i.e., they are convex (Sarkar 
[14]). (G6) Clustering satisfies the locality of data as- 
sumption [4]. 

One can use a combination of goals as long as they do 
not conflict with each other. Whenever conflicts occur, 
then a goal priority must be imposed. For example, G41 
GI implies that G4 will be used first when there is a 
conflict and the result will be an optimum linear cluster- 
ing. On the other hand, if we use GIIG4, the primary goal 
Gl could lead to nonlinear clusters if the corresponding 
parallel time is shorter. G2 and G3 alone are not reasotl- 
ah/e goals, unless combined with another goal or con- 
straint, since maximization of the efficiency and minimi- 
zation of communication volume can both be achieved by 
mapping all nodes to a single cluster. 

Goal Transform&ion. Because of the NP-complete- 
ness of the problems that have some of the above goals, 
these problems cannot be solved in polynomial time. 
Therefore, the goals must be transformed so that their 
cost functions are directly computable in polynomial 
time. For example, the goal for our optimum fork cluster- 
ing algorithm in the last section is Gl. Because of the 
special structure of the graph, the goal is equivalent to 
solving 

Thus the new transformed goal becomes the minimiza- 
tion of the last function, which can be achieved by zero- 
ing pi+, whenever T;+, + pi+, is the maximum above. Re- 
peating such zeroing yields an optimal zeroing sequence 
which satisfies PTO 2 PTI Z- ... z PTA and PTk < PTk+, . 
It just happened for this example that the achievement of 
the transformed goal also implies the achievement of the 
original goal. This is not true in general. 

Another example of goal transformation is Sarkar’s al- 
gorithm [14] which has as a primary goal Gl. His trans- 
formed goal is “the minimization of communication vol- 
ume G3 without increasing the parallel time.” 

Performance Features. What are the special features 
that warrant good performance of clustering algorithms? 
Because the clustering problem is NP-complete for the 
performance goals Gl /G2, it is extremely difficult to find 
the features that will warrant optimum clusterings. There 
are certain features, however, which we believe are nec- 
essary to ensure good performance of clustering algo- 
rithms: 

Monotonic decrease of parallel time. Let us con- 
sider the nonbacktracking clustering algorithms. To en- 
sure that such algorithms produce a clustering whose par- 
allel time is not worse than the initial parallel time, a 
safeguard must be imposed. One such safeguard is the 
nonincrease of the parallel time at each step of the algo- 
rithm: 

(Tl) PT; % PT;-, . 

This condition ensures that at least a local minimum of 
the parallel time of a clustering sequence will be derived. 
As a matter of fact if the task graph is coarse-grained any 
local minimum of a clustering algorithm that satisfies Tl 
will be within a factor of two of the optimum clustering. 
This is because for coarse-grained graphs every linear 
clustering is within a factor of two of the optimum: see [5, 
61. Since the initial clustering is linear, Tl ensures that 
the parallel time does not increase. Thus, Tl is a reason- 
able constraint at least for coarse-grained DAGs. 
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Parallel time reduction warranty. Assumption TI is 
not sufficient to enforce strict reduction in the parallel 
time at each step and a heuristic that satisfies T1 may not 
reduce the parallel time at all. We can of course use the 
stronger condition PT, < PT,-, in an algorithm to get the 
greatest reduction in the parallel time immediately, but 
then the algorithm might need to perform multiple edge- 
zeroing to avoid early termination. This complicates the 
design of nonbacktracking algorithms. For the fork set 
example of the previous section, if 7l + 0, = 7: + p2 
then there are two DSs, and if the while condition is 
changed to PT; < PTi-, then this algorithm will stop with- 
out zeroing any edges. 

We define the parallel time reduction Mwrranty subset 
ptrw(op;) of DSi at the completion of opi as the set of 
edges for which the parallel time will strictly decrease by 
zeroing any of its edges. So a greedy heuristic should 
zero edges in the ptrtt~(opi) set as soon as possible. Thus 
we define the following property: 

(T2) For every step i for which the set ptrM’(opi) is non- 
empty, the clustering algorithm zeros at least one edge in 
ptrw(opi) at some future step j, where i < j 5 k and li is 
the last step of the algorithm. Moreover, the zeroed edge 
also belongs to ptrw(opj-J. Also ptrw(opk) = 0. 

Determining each edge in ptntz( op;) from scratch requires 
the evaluation of the parallel time, which cannot be used 
for algorithms with low time complexity. Even though we 
cannot use ptrw to guide edge zeroing for low complexity 
algorithms, it is of interest to know for what classes of 
task graphs a given algorithm zeroes edges in ptrw(op;) at 
each step. Ifj = i + 1 then the algorithm strictly reduces 
the parallel time immediately in the next step. However, 
an algorithm could delay this zeroing to a future step to 
allow for more flexibility. It is not difficult to show that 
every optimum linear clustering satisfies TI and T2. Let 
us look at the sorted fork set optimum clustering algo- 
rithm once more, where li is the last step of the algorithm. 
We have 

ptrdopi) 
{(n,, n;+l)} i 5 k - 1 and ~i+i + p;+i > ri+z + pi+? 

=0 1 otherwise 

and this optimum sequence of zeroing satisfies TI and 
T2, where j = i + 1. 

Constraints. Constraints on the heuristics might be 
imposed to achieve their goals. For example, the nonin- 
crease of the parallel time, PT, % PT;-, , constraint is 
used in the optimum fork clustering algorithm in the pre- 
vious section. In addition to “goal achieving” con- 
straints, other constraints might be imposed to reduce the 

computational complexity of the heuristic. For example, 
nonbacktracking is a constraint that considerably reduces 
the computational complexity. 

Multiplicity of Edge Zeroing. The number of edges 
that are zeroed at each step is another characteristic of a 
clustering algorithm. A clustering algorithm should strike 
a balance between performance and complexity goals. 

Parallel Time Approximation. Given q clusters, the 
parallel time can be estimated by executing these clusters 
on q virtual processors. Since finding an optimal schedule 
is NP-complete, approximate scheduling algorithms must 
be used instead. It is important to choose a good schedul- 
ing algorithm so that clustering decisions can be made as 
accurately as possible. 

Complexity. In some practical applications, the num- 
ber of task nodes could run into thousands. Therefore, an 
algorithm with high time complexity would be computa- 
tionally impractical for such task graphs. 

5. A DESCRIPTION OF SEVERAL CLUSTERING 
ALGORITHMS 

In this section. we present four clustering algorithms 
from the class of edge zeroing algorithms. We first dis- 
cuss these algorithms, and then use our framework to 
specify their edge zeroing sequences. In the following 
two sections we analyze their performance both theoreti- 
cally and experimentally. 

5.1. Kim and Browne’s O(v(e + v)) Linear Clustering 
Algorithm 

ALGORITHM. Kim [9] and Kim and Browne [lo] pro- 
posed the following linear clustering algorithm, hence- 
forth called the KBiL algorithm. Initially all edges are 
marked unexamined: (1) Determine the longest path CP; 
composed of only unexamined edges, by using a 
weighted cost function Cost-function. The nodes in this 
path constitute a cluster and their edge costs are zeroed. 
(2) Mark all edges incident to the nodes in CP; examined. 
(3) Recursively apply steps 1 and 2 until all edges are 
examined. 

Goal Transformation. In his thesis, Kim [9] uses the 
cost function 

Cost-function = M’I * C 3-i + (1 - wi) 

for determining the length of CPi, where )+>I and ~‘2 are 
the normalization factors and the sums are over all nodes 
in the path and cF.$ is the edge communication cost be- 
tween a node in the path and all its adjacent nodes out- 
side the path. Kim does not give a systematic way to 
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CLU-KEV (KB/L) : Reduce the length of the longest path determined by a cost function. 

SCHAZG : No scheduling algorithm is needed since clustering is linear which implies that 
SG, = G,. 

domain(opo) = E. 

domain(op,) = E, = E,_, - {e,,h}, n, or nIr E CP,m,. 

focus(op.) = Edges in the longest path CP, among all paths in domain(op,). 

constraint: Linearity of clustering. 

rero(op,) = foc?M(op,). 
Termination criterion: domain(op,) = 0. 

FIG. 6. Edge zeroing operations in KBIL. 

determine normalization factors. Here we assume that 
MJ) = 4 and W? = 1, in which case the cost function re- 
duces to the length of the critical path. Under this as- 
sumption Kim’s algorithm can be considered as having 
the goal of finding the linear clustering with the minimum 
parallel time (G4/Gl). Each opi for KBiL algorithm is 
defined in Fig. 6. 

EXAMPLE. Consider the example of Fig. la. The 
result of applying Kim’s linear clustering algorithm is 
shown in Fig. 1 b with PT = 11.5. The clustering steps are 
shown in Table I. The symbols (*, n,) and (n, , *) repre- 
sent the sets of all incoming and outgoing edges of node 
n, respectively. 

At the beginning, the critical path of the original DAG 
is (n, , ?I?, n7) and these nodes are clustered together. By 
the deletion of those nodes from the graph, the remaining 
graph has four nodes (n3, n4, n5, Q). Its critical path is 
(03, ~4, nb) and these nodes are clustered together. Fi- 
nally, the resulting clustering is M0 = {n, , II?, n,}, M, = 
in3 3 124 I n6>, M2 = in&-. 

COMPLEXITY. Kim, on page 40 of his thesis, gives the 
complexity of his Linear-Cluster algorithm as O(u3). The 
number of connected components is at most u and for 
each step finding the longest path costs O( u + e). There- 
fore the complexity of KB/L algorithm is O(u(u + e)). 
For a dense graph e = u2 and the complexity becomes 
the upper bound O(u3) given by Kim. 

5.2. Sarkar’s O(e( v + e)) Algorithm 

ALGORITHM. Sarkar’s algorithm [14], p. 129, can be 
summarized as follows: (1) Sort the edges of the DAG in 

TABLE I 
Clustering Steps of KB/L for Fig. la 

Step i domain(op,) .focus(op,) Txro(op,) PT, 

0 14 
I E (n,, nd. bZ, n7) (n,. n4. h n7) 13.5 
2 (ni, *), (*. 4) h nd. (n4, nd h. rd. h. nJ 11.5 
3 !3 11.5 

TABLE II 
Clustering Steps of Sarkar’s Algorithm for Fig. la 

Step i dOWlUitl(OpJ focus(op,) zero(op,) PT, 
-- 

0 14 
I E (n,, 4 (ni, nd 13.5 
2 E - (n,, n$ h, n4) Cm. 4) 12.5 
3 E - hf. nd - h n4) h. 4) (4, n7) I I.5 
4 k71, nil, (*, n& (*, n7) h n7) (n?, n;) I I.5 
5 (111~ 4). (*. nJ, h n7) (4. n5) (h n6) II.5 
6 (nl, 4). (n5. nd, (n,, n,) h. 4) h t7d IO 
7 (nl. 4). (no, ~7) (nl, 4) B I 0 
8 (nh. n7) h n7) 0 IO 

descending order of edge costs. (2) Zero the highest edge 
if the parallel time does not increase. (3) Repeat step 2 
until all edges are scanned. The clustering step of this 
algorithm is characterized in Fig. 7. 

God Transformation. Let us look at the inequality 

PT= C rj+ 
11,ED.S 

where CV is the communication volume. Sarkar’s pri- 
mary goal is the minimization of the parallel time G 1. The 
transformed goal and corresponding heuristic is to mini- 
mize CV without increasing PT. 

EXAMPLE. For Fig. la, Sarkar’s algorithm sorts all 
edges first. The sorted list is: {(n,, n2), (n3, n4), (Q, ns). 
(n2, n7). (a49 n6). (n5, n6), (nl 3 n3)9 (n6, n7)). 

The clustering steps are shown in Table II. 
At the beginning, all tasks are assumed to be in sepa- 

rate clusters and PT,, = 14. In the first two steps, (n, , n?) 
and (n3, n4) are zeroed and the parallel time is reduced to 
12.5. At the third step, (n3, ns) is zeroed and the 
SCH-ALG must be used for the computation of the par- 
allel time. (Sarkar uses a slightly different SCH-ALG, 
based on the latest starting task time, to order tasks. The 
performance of both scheduling heuristics is similar). The 
bottom up levels of both n2 and n3 are 6.5 and the parallel 
time is PT3 = Il.5 for either ordering of these nodes. 

CLUHEU (Sarkar) : Zero the highest communication edge if the parallel time does not 
increase. 

SCHHEU : When two clusters are merged the tasks are ordered according to the highest 
botJeuel(n,, i - 1) first heuristic. 

domain(op,,) = E, focus(opQ) = 0. 

domain(op;) = domain(op,-,) - focus(op;_,). 
focus(op,) = Edge with maximum cost in domain(op,). 

constraint: PT. < PT,-l. 

rero(op,) = focus(op;) if constraint is satisfied; otherwise is 0. 

Termination criterion: domain(op,) = 0. 

FIG. 7. Edge zeroing operations in Sarkar’s algorithm. 
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Then at step 4, (nz, 1~) is zeroed, and the parallel time 
remains the same PTd = I I .5. In the following steps, (~24, 
nb), ( kzs, QJ are zeroed and PTd reduces to 10. The edges 
(n, , nj) and (rzh, n,) cannot be zeroed: otherwise all nodes 
would be in the same cluster and the parallel time would 
increase to 13. Finally, Sarkar’s algorithm obtains two 
clusters with PT = 10. as shown in Fig. 1 lb: M. = {ni , 
n2, n7), Ml = {n3, 124, ns , n$-. 

As it can be seen from the goal transformation inequal- 
ity, minimizing CV may not reduce the parallel time at 
all, unless the corresponding zeroed edges belong to DS. 
For example. in the fourth step above, the dominant se- 
quence is (n, , I?~, 12~. tr5, 12~. n,). However, Sarkar’s algo- 
rithm is unable to identify this sequence. It zeros the edge 
h 2 tz,) which is not in this DS and the parallel time 
remains unchanged. Had the edge tn6, n7) been zeroed 
instead, the parallel time would have been reduced to 9. 

Complexity. Sarkar computes the levels at each clus- 
tering step, and then uses the level information to sched- 
ule the tasks and to determine the parallel time. The com- 
putation of the levels costs O(u + e) at each step and 
since there are c such steps the total cost of the algorithm 
is at least O(e(u + E)). 

5.3. An O((e + v)log v) Dominant Sequence Clustering 
Algorithm 

A GENERAL DOMINANT SEQUENCE ALGORITHM. In 
Yang and Gerasoulis [15, 161 a new clustering algorithm 
has been proposed. This algorithm combines the best fea- 
tures of several other algorithms without compromising 
on complexity. As we saw in the previous subsection, 
zeroing the edges in the dominant sequence will reduce 
the length of this DS, and if this DS is unique it will 
reduce the parallel time. The main idea behind a domi- 
nant sequence heuristic is to identify the DS at each step 
and then zero edges in that DS. using the operations 
shown in Fig. 8. In designing an algorithm that uses the 
DS as a zeroing guide the following questions must be 
addressed: 

What is the cost of identij>ing DSi at each clustering 
step? Given a node II, E SGi. then IZ., E DS, if and only 
if the following condition is true: top-leve/(n,, i) + 

CLUHEU (DSC) : Reduce the length of the Dominant Sequence. 

SCHALG : A task 1s scheduled either after the last scheduled task of a cluster in SG,-1 
or it is the first scheduled task in a new cluster. 

domain(op,) = Unexamined edges. 

focus(op;) = Incoming edges of a free node that belong to the longest path going through 
any of the free nodes. 

Constraint = CTl, or CT1 & CT2. 

zero(op,) = Incoming edges of focus(op;) if constraint is true. 

Termination criterion: All nodes have been examined. 

FIG. 8. Edge zeroing operations in DSC. 

hot-leuel(n,. , i) = PT,. If SGi is given, then identifying 
DS; from scratch requires the computation of top-feuel 
and bot-leuel which costs O(u + e). This time complex- 
ity is not practical for large task graphs with thousands of 
tasks. Thus, for lower time complexity clustering algo- 
rithms we must come up with an incremental way of 
identifying DSi to avoid the recomputation of all levels at 
each step. 

Once the DSi is ident$ed. which edges should be 
choserlfi)r zeroing? A greedy heuristic would choose to 
zero those edges in DS; that result in the largest possible 
decrease in the parallel time. Such edges belong in the 
ptrw(op;) set which we have defined in the characteriza- 
tion of clustering algorithms section. Therefore a greedy 
heuristic will have to compute the parallel time for each 
edge zeroing in DS;, which again results in high complex- 
ity. Furthermore, since a single edge zeroing could 
change DS in the next step, it is not necessary to zero 
more than one edge in DS per step. 

Considering the above discussion and since we are in- 
terested in “almost linear” time complexity algorithms 
with good performance characteristics, we must zero 
edges systematically. Before we describe our systematic 
edge zeroing, we need a few definitions. At the beginning 
of the algorithm, all edges are marked unexamined. After 
an edge has been considered for zeroing at opi, it is 
marked examined and its head node is scheduled. A node 
is free if all of its predecessors have been scheduled. 

From all DS edges, we choose for zeroing the unexam- 
ined edge first from top to bottom in DS. In case of two 
DS, we break the tie by choosing the first unexamined 
edge whose head node has the most immediate succes- 
sors and so on. At the completion of clustering step <pi 
two sets of nodes are created, the scheduled set of nodes 
SN, and the unscheduled set of nodes USN,. At each step 
nodes from USN, are deleted and added to SN;. Initially, 
SN” = (The set of input nodes}, USNO = V - SN,,. 

Let us assume for a moment that when two clusters are 
merged, the tasks are ordered according to the highest 
hot-leuel(n,, i - 1) heuristic. Furthermore, assume that 
a zeroing is accepted only if property TI is satisfied. In 
the example below we show how this algorithm works. 
Afterwards, we modify these assumptions to further re- 
duce the computational complexity. 

EXAMPLE. Consider the example in Fig. la. At the 
beginning, DS,, = (n, , n?, n,) and PTo = 14. In the first 
step, we choose (n, , nz) and by zeroing this edge the new 
DSI = (nl, n3. n4, n6, n-i) with PT, = 13.5. Thus this 
zeroing is accepted. In the second step we choose (n, , n3) 
and by zeroing this edge the parallel time reduces to 
PTz = 12.5 by inserting n3 before 12~ according to the 
highest bottom up level scheduling algorithm, since 
botAeuel(n3, I) = 11.5 > hot-leue/(n?, I) = 8. At the 
third step we focus on (nj, 1z4) and by zeroing this edge 
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the parallel time increases to 13.5 and as a result this 
zeroing is rejected. At the fourth step, we focus on (n4, 
Q) and by zeroing this edge the parallel time reduces to 
11 S. Next the edge (Q, ttS) is considered and its zeroing 
is rejected. Continuing this way we derive the clusters 
MO = {n, , nz, nj}, MI = (4, 4, no}, Mz = {ns} with 
PT = 10.5. 

THE DOMINANT SEQUENCE ALGORITHM (DSC). In 
the assumptions above we used Tl to decide if a zeroing 
should be accepted or not. Another more restrictive con- 
straint that could be used instead, is to accept an edge 
zeroing if the starting time of its head node decreases. 
The constraint below automatically satisfies T 1, since re- 
ducing top-level for each node results in the reduction of 
the parallel time: 

(CTl) An edge zeroing is accepted if it reduces the 
top-.level of its head node. 

Even though we have imposed a systematic edge zeroing 
by choosing the first unexamined edge from top to bottom 
in LX the complexity of the algorithm is still high. There 
are two problems. The first is that the edge zeroing tra- 
versal could proceed in a depth jirst manner. Therefore, 
the bot-levels of the unscheduled predecessors in USN, 
could change by an edge zeroing. The second is that 
when two clusters are merged, the scheduling algorithm 
allows for node insertion between already scheduled 
nodes in a cluster, which implies that the top-levels of 
scheduled nodes in SN; will also be affected. As a result, 
determining the next DS could cost O(v + e) per step, 
since all levels must be recomputed. One way to avoid 
recomputing the hot-levels is to traverse the task graph 
in a breadth-first manner. This implies that we must com- 
promise and zero edges that do not belong in DS, before 
we zero an edge in DS. This leads us to consider the 
following strategy: 

1. Suspend zeroing an unexamined edge (n,>!. fz,.) in DS 
until the head node n? becomes free. 

2. Choose a free node n, which belongs to the longest 
path going through my of the free nodes in SGi-, , Zero 
its incoming edge(s) provided that constraints CT1 and 
CT2 are satisfied. 

3. (CT2) Zeroing incoming edges of n, to minimize 
top-fevel(n., , i - 1) should not affect the strict reduction 
of top-level(n, , i - 1) at some future step j, i 5 j. 

4. If all edges in a DS have been examined and this DS 
continues to dominate in the next step, then recursively 
apply the above three steps on the next longest path 
(SubDS) to reduce the number of unnecessary proces- 
sors. 

Some explanations are in order. Constraint CT2 is 
closely related to ptrw property T2. If at the step op, the 

top-level(n,, i - 1) can be strictly reduced, we should be 
able to get this reduction, or even more of a reduction, at 
some future step opj. If we do not reduce this DS, then 
we will not be able to reduce the parallel time since this 
DS will continue to dominate. Therefore, we want to 
make sure that edge zeroings that are not in the current 
DS do not affect the reducibility of the current DS at 
some future step. Of course, CT2 is not equivalent to T2, 
since the strict reduction of top-level(n,, i - 1) does not 
imply the strict reduction of PTi-1. In other words, the 
inequality top-leuel(n,., i) < top-leuel(n,,, i- 1) implies 
PT, 5 PTjmr rather than PT, < PTi-] because PT, = 
maxk,l:,{top-level(nk, i) + bot-level(nk, i)} and n, may 
or may not belong in LX;. 

Scheduling Algorithm. The breadth first strategy 
above warranties that the bot-levels in USNi do not have 
to be recomputed. We would also like to do the same for 
the top-levels of nodes in SN,. To do that we must 
choose a scheduling heuristic that avoids insertion of 
tasks between already scheduled tasks in SG;-i . Thus, 
SCH-ALG: A task is scheduled either after the last 
scheduled task of a cluster in SG;-i or as the first sched- 
uled task in a new cluster. 

Detecting the Reducibility of DS for CT2. Now the 
question that arises is how the reducibility of DS can be 
detected. This is done by examining the result of the 
zeroing of the first unexamined edge in DS. If reducibility 
is detected at the present step then it will be reducible at 
some future step because of constraint CT2. If we find 
that DS is not reducible then CT2 is ignored [ 15, 161. 

The Minimization Procedure to Achieve the Shortest 
top-leuel for CTl. The DSC algorithm minimizes the 
top-level(n,, i) at each step. The minimum is derived by 
using the optimum algorithm for the join set, which is 
similar to the fork set optimum clustering algorithm de- 
scribed in Section 3.1. The join set used for the minimiza- 
tion includes those scheduled predecessors of ?I, 
which have only one successor (i.e., II,). The priori- 
ties used for sorting the edges are the lengths of the 
top-level(n,,,, i) + T,,, + c ,,,.., , where n,, is a predeces- 
sor of n, . 

EXAMPLE. Applying DSC algorithm to the example 
of Fig. la, we obtain two clusters with PT = 9 as shown 
in Fig. 1 lc. The clustering steps are shown in Table III. 

At the beginning PT,, = 14. The first unexamined edge 
from top to bottom in DS is (n, ,[I?) and n2 is free. Zeroing 
this edge will minimize its starting time and this zeroing is 
accepted and nz is scheduled after nl . Next (n,, Q) is 
chosen for zeroing. Zeroing this edge will increase its 
starting time since it must be scheduled after 11~. There- 
fore, this zeroing is not accepted and n3 is marked exam- 
ined. Continuing with the algorithm we get the clusters 
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TABLE III 
Clustering Steps of DSC for Fig. la 

Step i 

0 
1 0 
2 MI, n2). (n,, nz) 
3 (nt, n3) 
4 (ni, nd. h n4 
5 (4 n5) 
6 h, 4). (4. n6) 
7 h, n7). (n,, n7) 

free node :ero(up,) PT, 

14 
0 14 
(n,. 124 13.5 
0 13.5 
(ni. n4) 12.5 
(n3. I14 Il.5 
h. n6). (nc. n6) IO 

h. n7) 9 

MO = 02, , &>, M, = (113, n 4, ns , nh, n-i}. and the parallel 
time is reduced to 9. 

DSC AS A PRIORITY SCHEDULING ALGORITHM. Un- 
der the above assumptions, the DSC algorithm can be 
implemented as a priority scheduling mechanism on an 
unbounded number of processors having the node priori- 
ties as follows: 

priority(nl;, i) = top-level(nk, i) + hot-level(nk, i). 

The free node with the highest priority will be scheduled 
to the processor that allows its earliest execution. If no 
such processor exists then it is scheduled into a new 
processor. At each scheduling step, we need to maintain 
two node lists: a partial free list PFL which contains 
nodes for which at least one predecessor has been sched- 
uled but not all predecessors have been scheduled, and a 
free list FL whose elements are free nodes. Both lists are 
sorted in a descending order of their task priorities. We 
break a tie in the priorities by using the most immediate 
successor first (MISF) strategy [8]. Function head(L) re- 
turns the first node in the sorted list L, which is the task 

USN,, = V; i = 0 
WHILE USN; # 0 DO 

nz = head(FL The free task with the highest priority. * / 
n, = head(PFL); /* The partial free task with the highest priority.*/ 
IF (priority(n,) 2 piority(n,)) THEN 

Minimize topJevel(n,, i) under the constraint CT1 
by zeroing some of its incoming edges. Schedule a task after the 
last scheduled task in that processor (cluster). 
If no zeroing is accepted then schedule n, in a new processor. 

ELSE 
Minimize topJevel(n,, i) under the constraint CT1 and CT2 
by zeroing some of its incoming edges. Schedule a task after the 
last scheduled task in that processor (cluster). 
If no zeroing is accepted then schedule n, in a new processor. 

ENDIF 
Delete nz from USN, and add it into SN;. Update FL and PFL. 
set i = it 1. 

ENDWHILE 

FIG. 9. DSC as a priority scheduling algorithm. 

with the highest priority. If L = { }, head(L) = NULL 
and priority(NULL) = 0. We summarize the scheduling 
algorithm in Fig. 9. 

We need to show that the above algorithm identifies 
the DS at each step. To do that we must show that a DS 
with at least one unexamined edge must pass through the 
head nodes of either FL or PFL. We have that 

PT; = max{priority(n,, i)} 
y=l:l: 

= max{max priority(n,, i), max priority(n,, i)}. 
n,t SN, n,E USN, 

In Yang and Gerasoulis [16] we have shown that 

max priority( nq , i) 
n,,t USN, 

= max{priority(n,, i), priority(n,. , i)}, 

where n, = head and nY = head(PFL), which 
proves our result. 

Complexity. We make a key observation regarding 
the complexity of the DSC algorithm. If the DS goes 
through the head of FL then updating both FL and PFL 
costs O(log v) per step if a balanced search tree data 
structure is used. On the other hand, if DS goes through 
the head n? of PFL then the result above implies that DS 
must go through an immediate predecessor of n, that be- 
longs in SN;. If the rest of the nodes in PFL depend on 
the head node n.,. of FL, then we must dynamically main- 
tain PFL since the top-level of its nodes will change at 
each step. This could cost O(v + e) since it requires the 
recomputation of top-leuels. 

We slightly modify the algorithm to reduce the com- 
plexity without affecting the final result. Instead of 
top-level(nk, i) we use 

startbound(nr, i) = max{top-level(n,,. i) + T,,, + c,),.~}. 
n,, E SN, rl PRED(nk , i) 
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CLUHEU (MCP) : Tasks with the highest priority in the critical path should start 
execution at the earliest possible time. 

SCHALG : A task is scheduled either after the last scheduled task of a cluster in SG,-1 
or it is the lint scheduled task in a new cluster. 

domain(op;) = Unexamined edges. 

focus(op.) = Incoming edge of a free node with the highest priority. 

constraint = CTl. 

rero(op;) = Incoming edge in focus(op,) if constraint is true. 

Termination criterion: All nodes have been scheduled 

FIG. 10. Edge zeroing operations in MCP 

where PRED(nk, i) is the set of immediate scheduled 
predecessors of nk in SG;. We can easily show that start- 
bound is a lower bound of top-level, see Yang and Gera- 
soulis [16], by proving 

startbound(nk , i) 5 top-level(nk , i), n!, E PFL, 
startbound(n,, i) = top-level(n,, i), n, = head(PFL), 
startbound(nk, i) = top-level(nk, i), n!. E FL. 

Maintaining FL and PFL priority lists cost O(log v) and 
since there are v steps the cost is O(v log v). Adding the 
graph traversal cost of O(u + e) for a total O(v log u + 
e). 

The incoming edge zeroing minimization procedure 
can be computed in O(l PRED(n,)llogl PRED(n,)l) which 
is the cost for sorting the priorities of its predecessors. 
Summing over all tasks we get an upper bound estimate 
of O(e log v). Thus the total time complexity of DSC is 
O((u + e)log u). The space complexity is O(v + e). For 
linear clustering the cost reduces to O(v log u + e). 

5.4. Wu and Gajski’s MCP O(v2 log v) Clustering 
Algorithm 

This implies that minimizing the starting time of the last 
task could result in the reduction of the overall parallel 
time. Therefore the transformed goal is the minimization 
of the starting time of the output task. The MCP heuristic 
is trying to achieve this by starting the execution of every 
‘,ask at the earliest possible time. Since ST(n,) = 
top-level(n,, i), then reducing the starting time for each 
task implies PTi 2 PTi- i and this algorithm satisfies Tl. 
The algorithm does not satisfy T2 for a general DAG. 

ALGORITHM. Wu and Gajski [17] have proposed two 
scheduling algorithms for a bounded number of proces- 
sors. These are the MCP (Modified Critical Path) and MD 
(Mobility Directed). The MCP reduces to an edge-zero- 
ing clustering algorithm when it is used as a scheduling 
algorithm on a completely connected architecture with 
unbounded number of processors. On the other hand, the 
MD algorithm is not an edge-zeroing algorithm and we 
will not compare it with the other algorithms in this pa- 
per. 

EXAMPLE. We apply this algorithm on the task graph 
in Figure l(a). The final clustering is shown in Fig. 1 la. 
The stepwise result is shown in Table IV. 

Initially, the tasks are mapped in separate clusters and 
the priorities are computed. The following priority list, 
along with the priority tuples, which include the bottom 
up level, the highest bottom up level of its child, and so 
on, iseasilyderived: {n, (14, 115.8, . . . . l), n1(11.5, 6.5, 
. . . ) I), nz (8, l), n4 (6.5, 3, 1). ns (6.5, 3. I), Q, (3, l), 117 
(1)). 

The MCP algorithm is described below: 
First 12~ is scheduled to processor PO. At the second 

step, the free task n3 is selected and is scheduled to PO 
since its starting time reduces from 2 to 1. At the third 
step, rzz is scheduled in PO after 12~ according to 
SCH-ALG, since again this processor allows its earliest 
execution. Now the parallel time becomes PT7 = 12.5 
which is the length of the DS = (n, , n3, n4. nh. n,). Next 

Determine a priority list based on the “highest bot-level 
first” ordering of SGO. If two tasks have the same level 
then break the tie by using the highest level of its succes- 
sor tasks, the successor of its successors and so on. 

WHILE (There exists an unscheduled task) DO 
Find an unscheduled free node with the highest 

priority in the priority list. 
Schedule this task to a processor (cluster) that 

allows its earliest execution. 
ENDWHILE 

There are certain similarities between the DSC and the 
MCP algorithm. They are both implemented as schedul- 
ing algorithms that have the earliest starting time heuris- 
tic as a scheduling guide. There is however a major differ- 
ence in the choice of the priorities in the free list. The 
DSC uses the sum of top-level and hot-level of SG; while 
the MCP uses only the hot-leuel of SGo. As a result the 
MCP cannot identify the dominant sequence and may not 
zero its edges. The view of the MCP algorithm as an 
edge-zeroing algorithm is given in Fig. 10. 

Goal Transformation. The primary goal for this algo- 
rithm is Gl, the minimization of the parallel time. The 
cost function for GI is the parallel time which is equal to 

PT = max(ST(nj) + Tj) 5 max ST(n;) + max 7i. 
.i i i 
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TABLE IV 
Clustering Steps of MCP for Fig. la 

Step i free node xro(op,J PT, 

0 
1 0 0 
2 O?l, nz), (n,. n7J (n,, nd 
3 (~ZI, 4. h nd, h. n<l (n,. 112) 
4 h, nd. (9. 4 h, t2d 
5 (n3, 4) h, nd 
6 (4, 4). h. 4) h. 4). (4. 4 
7 (n2. n7), (n,. n,J h n7). (4. n,) 

14 
nl 0 14 
n, (fll, ?I 14 
,,I 011, t1d 12.5 
n4 63 12.5 
II5 0 12.5 
4 (n4, nd Il.5 
n7 (n6, n7) 10.5 

124 is considered but cannot be scheduled in PO ; otherwise 
its start time would be delayed. Thus n4 is scheduled in a 
new processor Pi. Similarly, n5 is scheduled in P?. Then 
at the next step, n6 is scheduled in P, by zeroing edge (n4, 
nJ. At the last step, (n6, n,) is zeroed and the parallel 
time reduces to 10.5. The resulting clustering is MO = 
{nk, 4, nd, MI = (124, n6, n71, M7 = (4. 

Complexity. Wu and Gajski have given a worst time 
complexity of O(u? log u) because of the cost in the tie 
breaking. If there are no ties then the complexity is simi- 
lar to DSC. 

5.5. Clustering Figures 

In Fig. 11 we summarize the results of three algorithms 
on our example. The KB/L result is given in Fig. lb with 
PT = 11.5. 

6. OPTIMALITY RESULTS FOR PRIMITIVE STRUCTURES 

In this section, we study the performance of the pre- 
vious four algorithms in the clustering of some special 
primitive structures such as join, fork, and coarse grain 
tree structures. The reason for studying the performance 
on primitive structures is that a DAG is composed of a set 
of join and fork nodes, and join and fork trees are span- 

FIG. 11. Clusterings of (a) Wu and Gajski’s algorithm with PT = 
10.5: (b) Sarkar’s algorithm with PT = IO: (c) DSC with PT = 9. 

ning trees of a DAG. Therefore studying the performance 
of clustering algorithms on such structures will further 
enhance our understanding of their behavior. 

We first need to clarify our definition of coarse and fine 
grain task graphs; for more details see [S, 61. For each 
join and fork of a task we define 

h= I:m k=l:nr 
g(F,) = min {rk}/max {c.~J,}. 

h= I:m h=l~,,r 

The grain. gl, of a task n., and the granularity of a DAG 
are defined by 

g, = minkdt;,), g(J,)), g(G) = min kc>. 
tl,Eb’ 

We call a DAG coarse grain if s(G) Z- 1, otherwise we 
call it fine grain. For coarse grain DAGs each task com- 
municates a small amount of data compared to the com- 
putation of its neighbors. Coarse grain graphs possess 
many interesting properties. For example, the ratio be- 
tween the parallel time of any linear clustering and that of 
the optimum is less than or equal to 1 + l/g(G), [6]. This 
implies that for coarse grain graphs we can always be 
within a factor of 2 from the optimum by using linear 
clustering. As a matter of fact the optimum parallel time 
can be derived by a linear clustering, [6]. Therefore, we 
can exploit all parallelism in coarse grain graphs by using 
linear clustering. This is not the case for fine grain graphs 
where parallel tasks must be sequentialized to minimize 
the parallel time. If we look at the optimum fork algo- 
rithm in Fig. 4, if the fork is coarse grain then the algo- 
rithm will stop after zeroing only the first edge; otherwise 
it will continue sequentializing parallel tasks by zeroing 
more edges. 

6.1. Performance on Primitive Structures 

An in-tree is a directed tree in which the root has out- 
going degree zero and other nodes have outgoing degree 
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TABLE V 
Performance of Clustering Algorithms on Primitive Structures 

Join Fork In-tree Out-tree 

T? Opt. T7 Opt. T? Opt. T2 opt. 

Coarse grain 
KBIL Yes Yes Yes Yes Yes No Yes No 
Sarkar No No No No No No No No 
DSC Yes Yes Yes Yes Yes Yes Yes No 
MCP Yes Yes No No Yes Yes No No 

Fine grain 
KBiL No No No No No No No No 
Sarkar No No No No No No No No 
DSC Yes Yes Yes Yes Yes No Yes No 
MCP No No No No No No No No 

one. An out-tree is a directed tree in which the root has 
incoming degree zero and other nodes have incoming de- 
gree one. A join is an in-tree of depth 1. Afovli is an out- 
tree of depth 1. 

All algorithms satisfy property Tl, the monotonic re- 
duction in the parallel time. For other performance fea- 
tures, Table V summarizes the comparative results on 
the primitive structures. 

We now provide the proof for the above performance 
results. 

6.1.1. Performance on Fork and Join 

PROPOSITION 6.1.1 (DSC Algorithm). For the fork 
and join graphs thr DSC algorithm derives the optimum 
clustering and also satisJies property T2. 

Proof. For both join and fork, the DSC algorithm de- 
rives the same edge zeroing sequence as the optimal algo- 
rithm in Section 3.1 which satisfies Tl and T2, as shown 
in Section 4. n 

PROPOSITION 6. I .2 (MCP Algorithm). The MCP ulgo- 
rithm does not derive the optimum for arbitrary fork and 
join graphs and also does not sati& T2. Only for a 
coarse grain join does the MCP determine the optimum 
and satisfy T2. 

Proof. Consider a join set with the root n.,; invert the 
fork shown in Fig. 3a, with pi + T, 2 pi+, + T;+, . The 
MCP only zeroes one incoming edge (n, , n,) and the 
parallel time is PT,,,, = T.~ + max(T,, pZ + TV). If 
the graph is coarse grain, 7, 2 p1 + 7? and MCP finds the 
optimal solution. However, if the graph is fine grain and 
zeroing (nz, 12,) strictly reduces PT,,]+, , then (nz, n,) is in 
ptrw(op,,,+,). Since MCP does not zero this edge at any 
step it does not satisfy the T2 property and also it does 
not derive the optimum. 

For a fork set, we present a counterexample shown in 
Fig. 12. The optimal clustering for this fork, derived by 

DSC, has parallel time equal to 8 and is given by M, = 
InI, n2, n3. IQ}, Mz = {n4}. MCP derives the following 
clusters with PT = 10: M, = {n, , n!, n3}, Mz = {n4}, 
M4 = ins). 

The MCP examines the free nodes in the order n3, IQ, 
n4, n5. Moreover, ptni>(op”) = ((0, , ns)}, but this edge is 
never zeroed. Thus MCP does not satisfy the T2 prop- 
erty. n 

PROPOSITION 6.1.3 (Sarkar’s Algorithm). Sarkar’s al- 
gorithm does not satisfy T2 and is not optimal for a join 
or fork. 

Proof. We only present a counterexample for a fork 
in Fig. 12. The join case is similar. Sarkar’s clustering 
with PT = 9 is given below and this is not optimum: 
M, = {n, , nz, n4, IIS}, M2 = {II-(}. Regarding the T2 prop- 
erty, we look at the zeroing sequence. At step I, (/I,, n) 
is zeroed. At step 2, (n,, n2) is zeroed. Then PT? = 9 
and ptrw(op,) = {(n, , nd}. But this edge is never 
zeroed. n 

PROPOSITION 6.1.4 (KBIL Algorithm.) KBiL does 
not satisfv T2 and it is not optimal for an arbitrary join or 
fork. In the special case of a coarse grain join or fork, 
KBIL satisfies T2 and is optimal. 

Proof. For a join with the root n, and pi + ~~ 2 
pi+, + 7;+, , the CP is (~2~. n,) and after it is zeroed PT, = 
T., + maX(Tl, pz + T?). This is optimum for coarse grain 
graphs. However, if the graph is not coarse grain, then 
nonlinear clustering is necessary and KBiL is not opti- 
mum. Also since ptrwl(op,) = ()I,, n,) and this edge is 
never zeroed it does not satisfy T2. For Fig. 12 Kim’s 
algorithm gives PT = 9 and M, = {nz}, MZ = {n-i}, M4 = 
{nd}, Mc = {n, , n5}. The results are similar for a join. l 

6.1.2. Performance on inlOut Trees 

Finding an optimal solution for a tree is still NP-com- 
plete as shown by Chretienne [2]. However, when this 
tree is coarse grain, the optimal solution is computable in 
polynomial time. This can be shown by using the fact that 
an optimum schedule can be derived by linear clustering 
for coarse grain DAGs and then the special tree structure 
can be used to determine the optimum linear clustering in 
polynomial time. As a matter of fact, the DSC algorithm 
will find the optimum linear clustering for trees. 

%.A.. 2 4 2 I 

FIG. 12. A counterexample of a fork 
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PROPOSITION 6.1.5 (DSC Algorithm). DSC satisfies 
T2 and gives the optimal solution for coarse grain in- 
trees but not for fine grain in-trees. For both fine and 
coarse grain out-trees, DSC satisfies T2 but it is not opti- 
mal. 

Proof. The optimum solution can be derived by DSC 
for coarse grain in-trees. It is proven by induction on the 
depth of the tree in Yang and Gerasoulis [15, 161 by 
showing that DSC produces a schedule where every node 
has the minimum starting time. 

nlo 2 n2 . 2 

2 

v 

0.5 

“‘L 7’ 

\/ 
ng.4 

FIG. 13. A counterexample of an in-tree. 

Without inverting an out-tree, DSC cannot get the opti- 
mum but it still satisfies the T2 property. We prove it in 
two steps. 

In the first step we show that ifptrw(op;) # 0, then the 
edges in ptrw(opi) must be unexamined. If not, suppose 
(n,, n,) E ptrw(op;) and it has been examined and n1 has 
been scheduled. Zeroing (n,, , n,) will strictly reduce the 
parallel time implying that the starting time n, can be 
reduced. Since n, has only one incoming edge (rzY, n,), if 
the assumption were true, (n, n,) would have been ze- 
roed when nt was scheduled, a contradiction. 

Next we must prove that (n,, n,) will be zeroed at some 
future step. Assume that the topmost unexamined edge in 
the current DS, and which also belongs to ptrw(opi), is 
0% 1 n,). From step i + 1 to the step when n, becomes 
free, the parallel time cannot be reduced and ()I,~, n,) is 
always in the ptrw set. At the step at which n, becomes 
free, it must have the highest priority and then (n,, , n,) 
must be zeroed to reduce the starting time of n,. H 

PROPOSITION 6.1.6 (MCP Algorithm). MCP satisjes 

DS; = CPi since KB/L is a linear clustering algorithm. 
Now assume that (n, n,) E ptrw(op;). This means that 
the parallel time is reducible by zeroing this edge. We 
first show that no incoming edge of n, has been examined 
or zeroed at any step less or equal to i. Assume the con- 
trary, which means that one incoming edge has been ze- 
roed and the others, including (n,, , n,), have been exam- 
ined. Then zeroing (n,, n,) is impossible to reduce the 
parallel time because the tree is coarse grain. That is a 
contradiction. Secondly, since KB/L zeroes all edges in 
the CP of each subgraph at each step and the subgraph is 
a subtree, we can easily see that all edges in the subtree 
rooted with n, are not examined. As a result, when the 
global CP of the whole tree (called GCP) goes through 
any unexamined subtree, the part of GCP in this subtree 
is also the CP of this subtree. And when KB/L is working 
on the subtree where (n, , n,) resides, the edges in its CP 
including (n, n,) will be zeroed. 

T2 and gives the optimal solution for coarse grain in- 
trees but not for general in-trees. For out-trees, MCP 
does not satisfy T2 and it is not optimal. 

Proof. Since the problem itself is NP-complete, for 
general in-trees and out-trees the MCP cannot determine 
the optimum. Also since for the special case of fork/join 
MCP does not satisfy T2, it does not satisfy T2 in general. 

The proof that for a coarse grain in-tree, MCP is opti- 
mal and satisfies T2 is similar to DSC. When the tree has 
height 1 and is a coarse grain join then MCP determines 
the optimum. Inductively, we can prove that it deter- 
mines the optimum for coarse grain in-trees. n 

PROPOSITION 6.1.7 (KBIL Algorithm). KBIL is not 
optimalfor any tree and in general does not sati& T2. It 
only satisfies T2 for coarse-grain inlout-trees. 

Next, we show that one such edge (rzY, n,) is still in 
ptrw when that edge is zeroed. If KB/L does not zero any 
edge in ptrw(opi) after step i until stepj, then no edge in 
GCP is zeroed during those steps and ptrw does not 
change. If this is not true, assume that (n, , n?) is an edge 
in GCP but not in ptrw which is zeroed in step k such that 
i < k < j. Now since (n, n,) is also in the GCP, the edge 
(nl , n2) must lie either on the root side of (n, , n,) or on the 
leaf side. If (nl , n2) lies on the leaf side of (n, n,), all the 
edges in the CP of the subtree including (n,, , n,) will be 
zeroed in step k which is a contradiction. If on the other 
hand, (n,, nz) lies on the root side of (n,, 1~) then it 
should also be in ptrw(opi) which is again a contradic- 
tion. n 

PROPOSITION 6.1.8 (Sarkar’s Algorithm). Sarkar’s al- 
gorithm does not satisfy T2 and is not optimal for a tree. 

Proof. The simplest counterexample is a fork (or 
join), where Sarkar’s does not satisfy T2 and is not opti- 
mal in general. n 

Proof. To show that KB/L is not optimal we present 
a counterexample in Fig. 13. The optimal result derived 
by DSC is MI = {n,, n3}, MZ = {nz}, M3 = {n4, ns} with 
PT = 13.5. The result derived by Kim’s algorithm is 
MI = {n, , n3. ns}, MZ = {nz}. Mj = {nd} with PT = 14. 

We prove that KB/L satisfies T2 for a coarse grain in- 
tree. The proof for an out-tree is similar. We note that four algorithms. 

6.2. A General Summary 

In Table VI we summarize the characterization of the 
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Sarkar MCP KBiL DSC 

Goals 
Transformed goals 

Multiplicity of zeroing 
Constraint imposed 
Tl 
T2 

Complexity 

Gl 
Reduce 

cv 
One 
Tl 
Yes 
No 

e(u + e) 

GllG2 

Minimize starting time 
One 
Nonincrease in ST 
Yes 
No 

d log v 

G4IG 1 

Compress CP in subgraphs 
All in CP 
Linearity of clustering 
Yes 
No 

v(v + f) 

GIIG2 

Compress DS 
Some incoming edges of a free node 
CTI, or CTI and CT2 
Yes 
No for fine grain 
Yes for coarse grain 
(e + LJ) log u 

Note that DSC satisfies T2 for any coarse grain DAG. 
The proof is similar to the one given for the out-tree case. 
The coarse grain constraint ensures that only one incom- 
ing edge would be zeroed if it would be zeroed. 

7. EXPERIMENTAL RESULTS AND COMPARISONS 

DSC vs. SARKAR'S. In Yang and Gerasoulis [15] we 
compared the DSC algorithm and Sarkar’s algorithm on 
100 randomly generated DAGs and weights. These 
graphs are produced by randomly generating the number 
of tasks and edges and assigning random numbers as 
weights. The size of the graphs varies from a minimum of 
70 nodes with 311 edges to a maximum of 329 nodes with 
3430 edges. The ratio of computation and communication 
varies from 0.8 to 8.7. On the average we found that 
PTDsc = .83 PTSarkar for these graphs. As far as the algo- 
rithm execution speed is concerned, DSC is one order 
faster than Sarkar’s. 

DSC vs. OTHER CLUSTERING HEURISTICS. We have 
chosen for experimentation the well-known Cholesky 
Decomposition (CD) DAG. There are several reasons for 
choosing this DAG for comparison. One is that we can 
compute the clustering of KB/L analytically rather than 
computationally which will be impossible because of the 
high complexity. Another reason is that we would like to 
compare DSC with the natural clustering which is a 
widely used clustering for this DAG [4, 121. However, we 
did not include Sarkar’s heuristic because the graph is 
too large to be handled. 

In Fig. 14, we give the DAG for the special case of n = 
4, where n is the dimension of the matrix. Each task T$ 
represents a vector modification while T:’ is the pivot 
operation. The weights are 

r: = (n - k + 2)w, ri = (2(n - j) + l)w, 
k=l:n-1, j=k+l:n 

c$ = (n - k + 2)& cf+’ = (n - j +I)& 
k=l:n-1, j=k+l:n, 

where 7i are the computation weights, c$ is the communi- 
cation cost between tasks Tf and T$, cf+’ is the commun- 
ication cost between tasks Ti and T$+, . 

In Fig. 15, we fix n = 200 and vary the granularity of 
the DAG by increasing the communication constant fac- 
tors as follows; p = w, 2w, SW, 4Ow, lOOw, 200~. The 
number of tasks is about 2000 and edges 4000. We ob- 
serve that the DSC is superior to all methods for this 
example particularly when the DAG becomes fine grain. 
For coarse grain DAGs the DSC algorithm is better at 
most by a factor of 2. This result is expected, since we 
have shown in [6] that any linear clustering is within fac- 
tor of 2 of the optimum. Both Natural and KBlL are 

FIG. 14. The Cholesky Decomposition task graph and natural linear 
clustering for n = 4. 
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PT Speedup Ratio for CD.n=200 

<-coax grain lk Fine grain-> 

FIG. 15. DSC vs. other clustering algorithms for the CD DAG: (+) 
Natural/D%: (*) Kim and BrowneiDSC: (0) Wu and GajskiiDSC. 

linear clusterings, and the clusterings produced by DSC 
and MCP are also linear. 

Figure 1.5 also verifies our theoretical analysis of the 
previous section and the importance of zeroing edges in 
the dominant sequence. MCP and DSC are similar with 
the one major exception that DSC zeroes the edges in DS 
while MCP does not. Note that the MCP parallel time is 3 
times longer than the DSC parallel time, while both natu- 
ral and KB/L parallel times are within a factor of 4 with 
DSC when g = l/200. With regards to the computational 
complexity, DSC is much faster than all other heuristics. 
Similar results have been derived for other task graphs. 

8. CONCLUSIONS 10. 

We have provided a general framework for comparing 
clustering algorithms. Guided by this framework we were 
able to present, evaluate, and compare several existing 
algorithms in a systematic manner. We have demon- 
strated the importance of having performance features Tl 
and T2 in each clustering step. We have shown that every 
algorithm satisfies Tl for any DAG but only DSC satisfies 
additional performance properties and has a lower com- 
plexity. This is why DSC is superior to other algorithms 
in practice, which has been demonstrated in the experi- 
mental results. 

Several interesting questions remain open for future 
investigation. Is it possible to develop a clustering algo- 
rithm that has better performance than DSC with the 
same computational complexity? How does the perfor- 
mance of DSC compares to higher complexity clustering 

algorithms that satisfy TI and T2 and are optimal for the 
primitive structures? 
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