
Generalized Multiprocessor Scheduling for Directed Acylic Graphs

G. N. Srinivasa Prasanna Bruce R. Musicus

7D-311, AT&T Bell Laboratories Bolt, Beranek, & Newman, Inc.

Murray Hill, NJ 07974-0636 Cambridge,, MA 02138.

prasanna@aloft .att .com bmusicus(lbbn.com

Abstract

This paper considerably extends the multiprocessor
scheduling techniques in [1], and applies it to matrix

arithmetic compilation. In 1 we presented several

/1new results in the theory o omogeneous multipro-
cessor scheduling. A directed acyclic graph (DA G) of
tasks is to be scheduled. Tasks are assumed to be par-

allelizable - as more processors are applied to a task,
the time taken to compute it decreases, yielding some

speedup. Because of communication, synchronization,
and task scheduling overhead, this speedup increases
less than linearly with the number of processors ap-
plied. The optimal scheduling problem is to determine
the number of processors assigned to each task, and
task sequencing, to minimise the finishing time.

Using optimal control theory, in the special case
where the speedup function of each task is pa, where p

is the amount of processing power applied to the task, a
closed form solution for task graphs formed from paral-

lel and series connections was derived [1 . This paper

dextends these results for arbitrary DA S. The opti-

mality conditions impose nonlinear constraints on the
flow of processing power from predecessors to succes-
sors, and on the jinishing times of siblings. This paper
presents a fast algorithm for determining and solving

these nonlinear equations. The algorithm utilizes the
structure of the jinishing time equations to efficiently
run a conjugate gradient minimization, leading to the
optimal solution. The algorithm has been tested on a

variety of DA Gs. The results presented show that it is
superior to alternative heuristic approaches.

1 Introduction

In this paper we extend the multiprocessor schedul-

!

ing results in 1], and apply it to matrix arithmetic
compilation [2 . We start with a set of tasks (also
called nodes or macro nodes) and associated prece-
dence constraints, a finite pool of processor resources,

and specified speedup functions for each task as a func-

tion of applied processing power. The classical mul-
tiprocessor scheduling problem [3] is to specify work

for each processor over time such that the entire set
of tssks is computed in the shortest time, satisfying
all precedence constraints, and using only the avail-
able processor resources. In [1] we generalized mul-

tiprocessor scheduling to include parallelism in tasks.

We assume that any number of processors can be ap-
plied to each task at any time, and that the higher
the parallel processin power applied to the task, the

?faster it can execute higher its speedup). Because of
scheduling, synchronization and communication over-
head, the speedup is typically less than linear. our
problem is then to specify both an optimal number
of processors applied to a task (task parallelism)j as
well as an optimal sequencing of tasks. Clearly thn is
a generalization of classical multiprocessor scheduling,
which determines only task sequencing.

In [1], we used optimal control theory to tackle this
problem. In the special case where the speedup func-
tion of each task is pa, where p is the amount of
processing power applied to the task, a closed form
solution for task graphs formed from parallel and se-
ries connections was derived, using divide and conquer
techniques. In addition, processing power was shown
to behave much Iike electrical charge, passing from
task to task along the arcs of the precedence graph.
Processing power is released from each task only as it
completes, and flows only to those successors of the
task that become enabled to run at this moment. All
tasks with no successors finish simultaneously at the
end of the schedule. These resuIts were aDrdied in [21
for compiling matrix arithmetic. - “ L “

In this paper we extend these results for arbitrary
DAGS. We show that the optimality conditions yield a
set of simultaneous nonlinear equations on the flow of
processing power from predecessors to successors, and
on the finishing times of siblings. This paper presents
a fast algorithm for deriving and solving these nonlin-
ear equations. The algorithm utilizes the structure of
the finishing time equations to efficiently run a con-
jugate gradient minimization, leading to the optimal
solution. The algorithm has been tested on a vari-
ety of DAGs. The results presented show that it is
superior to alternative heuristic approaches.

1.1 Application to Matrix Computations

These multiprocessor scheduling results have con-
siderable practical significance. They can be directly

applied to compilation of matrix arithmetic, which

form the kernel of much signal processing and nu-
merical algorithms [4]. Expressions composed of ma-
trix additions, dot products, matrix multiplies, and
inverses commonly dominate the runtimes of these al-

237
1063-9535)94 $4.0001994 IEEE

&40 -

I -30

m
20 -

10 -
s -
8
7

6

5

4

s

32

/

20

Time on 1 Prec (cyclee)

~X64 32x32 20x20

6624666 1172678 321646

2

Ix’

0.= 0.8 a = 0.7 a -0.6

, ~.

Pr0e0s90re

Figure 1: Speedup curves for matrix product on
Alewife (drawn using log-log scales).

gorithms, and hence their optimal compilation on mul-

tiprocessors is of great interest.

Matrix operators can be systematically decomposed

into large numbers of parallel operations. For exam-
ple, an N x IV matrix product can be decomposed

into IV2 dot products, N3 scalar multiplies and ad-
ditions, etc. As more processors are applied to com-
pute a matrix operator, its runtime decreases, but less
than linearly because of overhead. Optimal compi-
lation of matrix arithmetic involves partitioning each

matrix operator into an optimal number of pieces (de-
termining operator parallelism), assigning a proces-

sor to each piece, and scheduling the pieces. If the
speedup functions of matrix operators can be approx-

imated by pa, for a suitably chosen a, our generalized

scheduling results can be directly applied.

To investigate this issue, speedups of several ma-
trix operators have been measured on the Alewife [5]

distributed-shared memory multiprocessor, being con-
structed at MIT. For example, Figure 1 shows a log-log
plot of the speedup curves, for a matrix multiply, for
various matrix sizes. Functions of the form pa will

appear as straight lines on a log-log plot, whose slope
is the desired parameter cr. Since all the curves are

roughly straight lines, they are well approximated by
pa. The slopes (a’s), however, depend on the size of
the matrices, and range from from 0.6 (for 20x 20 ma-
trices) to O.8 (for 64 x 64 matrices). An average value
of a = 0.7 can be used for the matrix sizes above.

Based on these approximations, a matrix arith-
metic compiler, incorporating the techniques in this
work, has been written for the MIT Alewife machine
[2]. The compiler takes a matrix expression in LISP
like syntax, and first determines an optimal partition

and schedule of each operator, using our techniques

(Section 4). Then it uses this partition and schedule

to generate Multilisp code for the Alewife machine.
The runtimes on Alewife (not included) show that our
scheduling techniques result in faster code than other
heuristic approaches.

In related workl Banerjee et al. [6] have adapted
convex programming techniques to solve a problem
analogous to ours, using arbitrary speedup functions.
In our case, the optimality properties of the pa

speedup function greatly simplifies the optimization,
making convex programming techniques unnecessary.
Others [7, 3, 8, 9 have primarily dealt with the com-

)plexity of schedu ing task systems. However, their ap-
proaches, relying on approximately solving NP-Hard
problems, are quite different from the one pursued
here. They do not use speedup abstractions like ours.
Sarkar [10] has investigated techniques for partition-
ing and scheduling program dataflow graphs for ex-
ecution on multiprocessors. This implicitly involves

solving a generalised scheduling problem. However,
his approach relies on explicit knowledge of the inter-
nal structure (subtasks) of each task. General purpose
graph partitioning and classical scheduling algorithms
are applied to graphs derived from the original task
graph by appropriate task expansion.

Section 2 formulates the generalized scheduling
problem in the framework of optimal control theory,

and summarizes the optimality results in [1] for pa
speedup. Section 3 uses these optimality constraints

to derive a set of equations governing processor flows

at each node (node equations)? and another set of
equations governing finishing times of siblings (loop
equations). Section 4 presents an efficient algorlthm
for solving this coupled set of equations. Section 5
presents a couple of detailed examples. Section 6
presents some experimental results using this algo-
rithm on a variety of dags. Section 7 concludes.

2 Optimal Control Formulation

We first present a simple intuitive characteriza-
tion of the generalized scheduling problem. Then we
present the optimal control formulation and summa-
rize the results that emerge. A key result imposes
strong constraints on the finishing and starting times,
and processor allocations, of tasks and their succes-
sors.

2.1 Intuition

We start with a (acyclic) graph of tasks, with edges
representing precedence constraints. We assume that
each task can be treated as a dynamical system, whose
state can be changed by applying processing power.

Each task starts with state at O, and must end with its
state advanced to completion (state equal to length of
task). Tasks which are aggregations of atomic nodes
(ie macro nodes), commonly encountered in matrix
arithmetic, are well characterised by this model 12].
The state at a time instant corremonds to the fraction
of atomic nodes completed by that time instant.
more processors are applied, more atomic nodes
computed per unit time (state changes faster).

AS
are

238

The intuition underlying our algorithms is that as
we increase the number of processors allocated to a
task, overhead of various kinds - schedulin commu-

knication, synchronization - increases. There y, the in-
crement al speedup obtained keeps falling, which im-
plies that the speedup functions of the task are convex.

The convex speedup implies that processing efficiency
decreases as we increase the number of processors al-
located to a task. Hence overall computation speed is
maximized by running concurrently as many tasks as
the available parallelism allows, using few processors
for each task. In contrast, running the tasks one by
one, using all the processors for each task, is slower.
Essentially, running many tasks in parallel maximizes
the granularity of the threads produced from each
task, thus minimizing overhead. This intuition can
be given a rigorous foundation using optimal control
theory.

2.2 Control Theoretic Formulation

2.3 Formal Specification

Let Q={l,..., IV} be a set of N tasks to be exe-
cuted on a system with P processors. Let task z’have
length Li. That is, Li denotes the execution time of
the task on a single processor. A set of precedence
constraints is specified, wherein task i cannot start
until after all its predecessors have finished.

It is convenient to define the state xi(t) of task i at

time t to be the amount of work done so far on the
task, O ~ ~i(t)< Li. Let tibe the earliest time at

which all predecessors of i (if any) have finished, so

that i can begin running. Thus xi(t) = O for t < ti,
and Xj (ti) = Lj for all of i’s predecessor task j. If
task i has no predecessors, ti = O. The finishing time

of task i is denoted by t:.
Let pi(t) be the processing power (number of pro-

cessors or processor assignment) apphed to task i at
time t,and Iet P be the total processing power avail-
able. The pi(t) are all non-negative, and must sum to
at most P. Note that we have allowed the pi (t)’s to
be arbitrary continuous time varying functions, thus
allowing arbitrary preemptive (generalized) schedules.
The assumption of continuity is necessary to apply the
optimal control techniques. Strictly speaking, we have
to determine the optimal integral processing powers.
These are generally close to the optimal continuous
pi(t) ‘s, and can be well approximated by discretizing
the optimal continuous pi(t) ‘s. Unless otherwise spec-
ified, all the optimalit y results stated refer to Pi (t)‘s
allowed to be in the cent inuous domain,

Finally, assume that once a task’s predecessors have
finished, the rate at which it proceeds, d~i(t)/dt,de-
pends in some nonlinear fashion on the amount of
processor power applied, pi(t), but not on the state
#i(t)of the task, nor explicitly on the time t. We call
this the assumption of space-time invariant dynamics.
Thus we can write:

dzi(t)= o
{

for t < ti

d S~(p~(t)) for t > t*
(1)

i
where si pi(t)) will be called the speedtip function. It
is clear t at si (p) > 0 for p > 0. Also, it is a non-
decreasing function, since adding more processors can
only make the task run faster. Our goal is to finish all
tasks in the minimum amount of time tF, by properly
allocating processor resources pi(t).

In all that follows, we consider the important spe-
cial case

Sj (p) = pa

(all tasks have the same a) for which we had derived
very powerful scheduling techniques in [1], which are
summarized in Section 2.4. In this case, the runt ime
of a task i on p processors is Li /p”.

2.4 Results for si(p) = pa

In this case the optimal processor assignment pi(t)
for any task i does not vary during its computation,
but is constant. This processor assignment will be
denoted by pi itself for simplicity. A key result is the
following:

Theorem 2.1 [A) Once a task is runnable, it is as-

(B)

(c)

signed (const~nt) non-zero processor power until

it finishes, pi(t) = pi > 0 for all ti < t < t~.

Otherwise, pi(t) = O for t < ti and t > t?.
This property implies that the optimal schedule
can be found by determining a set of constants,
the pi ‘s, instead of the processor assignment func-

tions pi(t) ‘s.

When task i finishes, either t; = tF and the

entire graph is finished, or else all the process-

ing power originally allocated to i is reallocated to
those successors of i which begin at the same time

that i ends. The optimal schedule has to satisfy
this flow conservation property at each task in the
graph. Also, the finishing times of all those prede-
cessors of a task, which feed processing power to
it, should be the same. This timing constraint re-
sults in a set of loop equations which the optimal
schedule should satisfy.

The optimal solution for any arbitrary number of
processors P can be found by solving for P = 1,

and then scaling the resulting processor alloca-
tions by P. This is referred to as homogeneity.

It follows from this theorem (proposition B) that
under pa dynamics, we can treat processing power as
if it were electric charge and precedence constraints as
if they were wires. Tasks with no predecessors are ini-
tially allocated a given amount of processor “charge”;
tasks with predecessors are given no initial processor
power. The processing power allocated to an initial
task does not change until the task finishes. At this
time, the processor ‘(charge” flows out of the task, into
its successors. Not all successors of the task get this
processor charge - only the ones which become enabled
to run at this time because all of their predecessors are
finishing. As these tasks finish, their processor power
is released and pours into their enabled successors.

239

This flow continues until finally the tasks with no suc-
cessors are all running and they all complete at the
same moment, t~.

This flow and finishing time property clearly results
in a major reduction in the complexity of scheduling,
since it reduces a functional optimization problem over
the space of all p~(t)’s, to one determining a set of
constant processor allocations p:s. These processor
allocations in turn are completely determined by the
flow Pij of processing power along each edge from j to
i. The homogeneity property (proposition C) implies
that the optimal schedule for one total processor power
P automatically yields the solution for all P.

For tree structured dataflow graphs, a closed form
solution emerges [1]. The optimal schedule can be
written down based on recursively decomposing the
tree into series and parallel aggregates. The decom-
position rules are simple. Tasks in series are equivalent
to a single task of length equal to the sum of lengths of
the individual tasks, and have the same processor allo-
cation. Tasks in parallel merge to a single task, whose
length is the 1110 norm of the individual tasks. Pro-
cessors are allocated in proportion to the Ilia norm

of task lengths, which equalizes run times of all the
parallel tasks.

For general DAGS, closed form solutions do not
emerge, The flow and finishing time constraints have
to be explicitly solved.

3 Equations for the Optimal Schedule

The optimality theorem 2.1 imposes strong (non-
linear) constraints on the optimal solution. In this
section we describe the nature of these constraints. A
fast (polynomial time) gradient based technique for
the solution of this system is described in Section 4.
This takes time 0(E2 + EN + I(N + E)) per iteration,
where N is the number of nodes? E is the number of
edges in the task graph, and 1 1s a constant. In all
that follows, we assume, without loss of generality,
that the task graph has a unique start node (task) s
and a unique final node f. The total number of pr~
cessors is, as before, denoted by P.

3.0.1 Flow Conservation - Node Equations

At each task i, the processing power pi allocated to
those predecessors which finish when i starts, flows
into i. These flow conservation equations are of the
form

Ni= ~ Pij– ~ Pji=O, i=l...2–2

jtSPred(i) jeSuce(i)

)
(2)

at interior nodes, where Pred(i and Succ(i) refer to
those predecessors of i which eed processing power
to it, and those successors of node i to which node i

releases its processing power (see also Section 3.1).
At the start task s, we have

jesucc(s)

Finally, at the final task f,

These equations are analogous to the Kirchoff’s
Current law KCL) equations of electrical circuit the-

\ory. It is easi y ,seen that N — 1 of these equations are
linearly independent.

3.0.2 Finishing Time Constraint - Loop Equa-
tions

At each node, the finishing times of all predecessors
which feed this node must mat ch. This constraint can
be translated into a set of loop timing equations, in
a manner analogous to the Kirchoff’s voltage law of
circuit theory. Basically, a breadth first search (BFS)
spanning tree of the task graph is constructed. The
E – N + 1 fundamental loops resulting from this span-
ning tree yield a necessary and sufficient set of timing
equations. These equations are of the form

LOi = ~ &tjr= ~ +~=0, i=l. ..(N+l)l)

jCLOOpl jELoop,
Pj 0

(3)
where

Pj =

E Pjk

ke%ed(j)

is the total processing power allocated to node j from
its predecessors. Lj is the length of task j. We have
also introduced the notation tjT= f’ — tj to refer to

the total run time of task j (equal to ~). The sign

(+) assigned to the coefficient refers to ~he direction in
which the particular task is being traversed in the di-
rected loop. Note that the start and final nodes in the
loop do not appear in the timing equation. This can
in general lead to a multiplicity of optimal solutions,

The N – 1 node flow conservation equations, to-
gether with the E – N + 1 loop timing equations com-
pletely determine the E processor flows p~j’s (see also
Section 3.1 . This set of equations can be solved very

kfast, as is s own in Section 4.

3.1 Non Essential Flows - Node Augmen-

tation

The description abov$ has been deliberately sim-

plified to avoid a potential complication arising from
the multiple edges available for flow from a task to its
successors. Flow has to necessarily occur along certain
edges, and may or may not appear on others.

An edge can be classified as flow-essential or non-
jlow-essential depending on whether it can sustain a
zero flow or not. In Figure 2 (a), the task has either
a single incoming edge, or a single outgoing edge. In
both czsw the flOW Pij on that edge has to be nec-
essarily non-zero, else the task either cannot get any

240

/f yj

(a) Essential Flows Pij

b!
1 2

Pij

3 4

(b) Non Essential Flow Pij

N
1 2

Pij

Pij’

5

3 4

(c) Node Augumentation to convert

Pij to essential flow

Figure 2: Essential and Non Essential Flows

processors to compute it, or cannot release its proces-
sors to successors after it is done.

In Figure 2 (b), the edge 1 – 4 between tasks 1
and 4 is non-flow-essential, since task 1 can release its
processing power to task 3 after task 1 is completed,

and task 4 can obtain its processing power from task
2 after task 2 is completed. If non-zero flow pi ~ does

“findeed occur alon edge 1-4, nodes 1 and 2 WI 1 have

fto finish together Theorem 2.1), and this is automati-

cally guaranteed by solving the loop equations. If flow

does not occur along edge 1 – 4, the precedence con-

straint implies that node 1 can finish no later than the

start time of node 4. Thus, a non-flow-essential edge

imposes a latest-jinish-tirne constraint on its source
node.

Latest-finish-time constraints cause the loop equa-
tions to become inequalities, complicating their solu-
tion. It is not possible to predict apriori which equa-
tions will be satisfied as equalities (this corresponds to
non-zero flow on the corresponding non-flow-essential

edge). All possible combinations will have to be
searched in general - an exponential process. How-

ever, a simple graph conversion fixes this problem.

We insert a new dummy node in each non-essential

edge, with very small length c, yielding a new node-
augment ed graph, without non-essential flows (Figure

1
2 (c) . It is clear that node augmentation does not
undu y increase the optimal finish time or the size of

the DAG. At most O(E) new nodes are created.

proces sor_f low (graph)
Phase 1:
Remove.transitive-edges (Graph);
liode_au~ent (Graph);

Phase 2:

Ii= Iiode_Equat ions (Graph);
LO= Loop-Equations (Graph);

Phase 3:
Oli = Orthonormal Basis (1?);
Flow=Init ial_Flow (Graph);
Repeat

Raw Gradient = Gradient (ERR, Flow);

find gradient at flow vector
Delta = Corrected Gradient =

Remove_ component (Raw Gradient, ON);
F= linemin(ERR, Flow, Delta);

update flow vector

(Minimize ERR along (Flow + k Delta))
until convergence

igure 3: Psuedo Code for Processor Flow Algorithm

4 Solution Method

The E– N+ 1 loop equations (Equations 3) are

nonlinear in the processor flows p~js. Solving a cou-

pled nonlinear system is very difficult ingeneral, but

the strict convexity and rnonotonicity of the speedup

function pa greatly simphfies the task, by facilitating
gradient based techniques.

The E – N + 1 loop equations are solved simulta-
neously, using the sum of squares error criterion

ERR= ~LO@l... (i V+l)l) (4)

i

This has the gradient

VERR=2~LOiVLOi, i=l... (N+N+ 1)

i

Note however, that the raw gradient cannot be di-
rectly used for minimization, since it in general vio-

lates the node equations. lye have to use only that
component which lies inside the subspace spanned by
the node equations. Note that other methods like mul-
tidimensional Newton-Raphson can also be used for
solving the nonlinear system.

4.1 Processor Flow Allocation Algorithm

The Constrained Gradient algorithm used to solve

the system of Equations 2 and 3 is shown in a simpli-
fied form in Figure 3. Since there are E flOWS Pij, We

perform a E-dimensional minimization.
The first task is to remove transitive edges (which

have zero flow anyway), and do node-augmentation.
Node-augmentation can be skipped if there are only a
few non-essential edges - a complete search will yield a

241

more accurate solution. Then, forthemodified DAG,
we determine the node equations Ni and loop equa-
tions LOi in time O(N + E + EN). A breadth first
spanning tree (BFS tree) of the DAG is constructed in
the process of determining the loop equations. Then,
an orthonormal basis ON is determined for the set of
node equations - the standard Gramm-Schmidt proce-

dure takes time 0(EN2). An initial flow is determined
using a simple algorithm wherein the total inflow at

a task is distributed equally amongst all successors,
taking time O(J3 + N).

The gradient descent begins by determining the
gradient of the error criterion 131U?(I’) at the current

flow vector F. This takes time 0(E2), since there are

O(E – N + 1) % O(E gradients to be summed, each
Jwith E components. his raw gradient in general vio-

lates the flow conservation equations. Hence the next

step removes any component not in the hyperspace
spanned by the node equations Ni. The projection
of the raw gradient on each basis vector in ON is
summed, yielding a corrected gradient A, and taking
time O(EN). This correction step can be eliminated,
provided we use the node equations to eliminate N – 1

extra variables in the loop equations apriori, yielding
an even faster algorithm.

In the next step, the error ERR is minimized along
the corrected gradient, using standard l-dimensional
line minimization techniques, ie., the constant k is de-
termined such that

ERR(F + kA)

is minimized. A variety of techniques can be used here,

varying from simple olden section search, to Newton-

fRaphson methods [4 . These methods require efficient
calculation of ERR and its (l-D) derivative with re-

spect to k. At each iteration of the line minimization,
ERR is efficiently calculated by computing the node

finishing times along the BFS tree used to generate
the loop equations, taking the differences in finishing
time at the forward and reverse branches of each fun-
damental loop, squaring, and summing, taking time

O(N+E) overall. It can be shown that the derivative
of ERR can also be calculated in a similar fashion.

The algorithm converges when all loop timing er-
rors are adequately small, relative to the computed
finishing time of the graph.

The line minimization hence takes time O(I(N+E))
in all, where 1 is the number of iterations used in the 1-
D minimization (which can be bounded by a moderate
constant). The overall time taken for each update of
the flow vector F is then

0(E2 + EN + I(N + E))

which is a low order polynomial in the input size of
the t ssk graph. The sparsity of the task graph can be

exploited to further reduce the run time.
As presented above, the minimization proceeds in

the direction of the corrected gradient. In practice,

the optimal direction to minimize is not exactly the

gradient, but the conjugate gradient, yielding the well
known conjugate gradient algorithm [4]. The algo-

rithm uses only the corrected gradient at this iteration

and the previous iteration, and hence does not differ
materially from what is presented above. Our imple-

mentation uses the conjugate gradient algorithm.

4.2 Suboptimal Heuristics for Processor

Allocation

We have compared the processor flow algorithm
with two heuristic scheduling approaches – Naive and

Greedy [1, 2]. The Naive heuristic runs each task in
sequence, on all the available processors. Clearly this
is very inefficient. However, the heuristic is consid-

ered because it is commonly used in scheduling matrix
computation. The Greedy heuristic is an as-soon-as-
possible greedy schedule. A task is run at the earliest
time at which it is ready (all predecessors completed).
All tasks that are ready at a certain time are started
together and finished together. Computation proceeds
as a wavefront picking up task sets that get ready in
succession. This heuristic is selected, since it is quite
good in many cases, especially if the nodes lengths are

not very different (Section 6). These two heuristics are
illustrated in det ad in Section 5 below.

5 Detailed Examples

5.1 DAG with all Essential flows

Consider the dag in Figure 4 (a). It has five nodes
(three matrix multiplies and two additions). All of its
8 edges are clearly flow-essential. Flow conservation
at nodes s (start node), 1,2, 3,4, and 5 respectively
implies the node equations below:

P1S+P2S = p ; pls–p31–p41 = o

p2a–p52 = O ; P31 – p53 = o

p41–pj4 = O ; p52+p53–pf5 = O

Figure 4 (b) shows a BFS tree, together with two
fundamental loops - s1352 and s14~52. The loop equa-
tion corresponding to s1352 equalizes the finish times
of nodes (tasks) 2 and 3. The loop equation corre-
sponding to s14 f 52 equalizes the finish times of nodes
4 and 5. The respective loop equations are

L1
7+$–$ = o
n,

L1 L4 L2 L5
~+—–—–
PI, P:l P% (P52 + P53)@ = 0

These 8 equations completely determine the pro-
cessor flows along the 8 edges and hence the optimal
schedule. This system was solved (Section 6 and Sec-
tion 4) assuming that the task size of an N x N x N

matrix multiply is ill = 2N3 (N3 multiplies and addi-
tions), and the task size of an N x N matrix addition is

N2 (only additions). 32x 32 matrices and P = 64 pro-

cessors were used. The resultant schedule, in Fimre
4 (c), splits processors in such

matrix multiplies get roughly
a way that the three

P/3 = 21 processors

242

t ‘w

El
1+ *2

3

*

4* +5

Finish (fJ
@

1+ *Z

*
. .

. ...

4* +

,.,
j

Ftish (f)

(a) Example Dag (b) Two FundamentalLoops

(c) Gantt Chart of optimal Schedule

Figure 4: DAG with Essential flows

each. Note that the homogeneity y property (Theorem
2.1 (C)) implies that this solution holds for arbitrary

P, by a suitable scaling. The computed finishing time

is approximately 2. 18 M/Pe, where M = 2N3 is the
time taken to perform a matrix multiply on 1 proces-
sor.

Figure 5 compares the optimal schedule with those
obtained using the Naive and Greedy Heuristics. The

Naive schedule in Figure 5 (c) runs all the five tasks

in sequence, assigning all P = 64 processors to each.

This clearly incurs the maximum overhead, and is
the slowest possible schedule, with a finishing time of

about 3M/Pa. The Greedy schedule in Figure 5 (d)
runs matrix multiply 2 in parallel with matrix addition

1. Processors are distributed between the two tasks in
such a way that they finish together - the multiply gets
most of the processors. Then multiplies 3 and 4 are
run in parallel, each with P/2 = 32 processors. Then
the final addition is computed. The resultant schedule
is again sub-optimal, with a finishing time of approxi-

mately 2.62 M/P”, since it missed the opportunity to
run all the three matrix products together. The op-

timal schedule, with a finishing time of 2. 18M/Pa is

38 % faster than the Naive Heuristic, and 20 Yo faster
than the Greedy Heuristic. Naive. This testifies to

the utility of our scheduling techniques.

5.2 DAG with Non-Essential flows

Consider the dag in Figure 6 (a). It has four nodes
(two multiplies and two additions). The edge between
1 and 4 is non-flow-essential.

Assume that non-zero flow exist on edge 14. Figure

@

Statt (s)

1 2

+ *

3
*

4* +

Finish (f)

(a) Example Dag

P

5

(64

E!l-2 (21 Proc

3 (21)
1

4(21) Time

(b) optimal Schedule

F’roc

P

b

1 2(M) 3(6I) 4(64)

(c) Naive Schedule
‘lime

+Rcrc

P(64)

Time on Alewife

Q

3(32)
2

Optimal = 99478 cycles

Naive = 116664 cycles
4(32)

Greedy= 102233 cycles
1

(d) Greedy Schedule
lime

Figure 5: Comparison of Optimal, Naive, and Greedy

Schedules

8

stars(s)

1+ *

Ow

3* +

Finish (fI

(a) Example Dag

aStarr(s)

2 1+

$

*2
....

...O
-...

...
%,,

4 3* +4

‘,
Finish (f)

@)Fun&menrat LOOpS

(d1+

before nodeaugmentation.

3

Starr (s)

v J *2 (c) Furtdamenrai

b
Loops after nede

\~ U

... augmentation
V.

3*5+4
..

Figure 6: DAG with Non Essential flow

243

{
6 b) shows a BFS tree, together with two fundamen-
tal loops - s142 and s13 f 42. The loop equation cor-

responding to s142 equalizes the finish times of nodes
(tasks) 1 and 2. The loop equation corresponding to
s13 f 42 equalizes the finish times of nodes 3 and 4.
These two constraints immediately imply that nodes

1 and 2 run in parallel, finishing simultaneously, and
then nodes 3 and 4 run in parallel. Since the multi-
plies are much larger than adds, the finishing time of
the DAG is the roughly the time taken to compute

two multiplies, 2M/P=. However, this is clearly suts-
optimal, since if no flow occurs on edge 14, the two

branches run together in parallel, using P/2 proces-
sors each, and maximizing efficiency. The run time is

1

then M/(P/2 a = 2“M/P”.

Figure 6 (c shows how node-augmentation enables
the algorithm to solve for the optimal schedule, ig-

noring non-essentiality. A very small task, 5, is int re-
duced in edge 14. Now task 1 is no longer constrained

to finish together with task 2. It can finish faster,
pouring most of its processors to task 3, and sssigning

a small amount to task 5, to make it finish together
with task 2. Clearly this effectively allows the two

branches to be computed independently, leading to a
solution which is very close to optimal.

6 Algorithm Results

In this section we present scheduling results from
the processor flow algorithm. The graphs chosen in-

clude both dags explicitly synthesized to evaluate the
processor flow algorithm, as well ss dags correspond-

ing to frequently encountered matrix algorithms. All
tasks correspond to matrix operators. Operator sizes
are determined by a simple count of the number of

adds, multiplies, etc. performed by the operator - eg.

an IV x IV matrix product has IV3 scalar adds and
multiplies (scalar adds and multiplies are assumed to
take the same time). The matrix size iV is taken to
be 32 x 32, which 1s a reasonable choice for (dense)
matrix algorithms. We compare the results from the
processor flow algorithm with those from the Naive

and Greedy Heuristics (Section 4.2).

Several parameters have to be chosen for the proces-
sor flow algorithm. Firstly, the homogeneity property

of the pa speedup function (Theorem 2.1) implies that
the solution for any arbitrary number of processors P

can be found by solving for P = 1, and then scal-
ing the resulting processor allocations by P. Hence,
in what goes below, the processor flow algorithm has
been run with P = 1. Of course, in a real multipro-

cessor schedule, we would have to scale by P (typi-
cally large), to get the precise processor assignment.
Next, the speedup parameter was taken to be a = 0.7,
based on measurements made on actual matrix multi-

plies of this size, on the Alewife multiprocessor (Sec-
tion 1.1). Finally, the size of the dummy node used

to perform node-augmentation was taken to be 2.5%

of the largest task in the graph (Section 3.1). This is

small enough not to unduly perturb the optimal solu-
tion, yet large enough not to cause undue convergence

difficulties. Widely varying task sizes can cause the

b
+**J
*+

BFish

(a) Dag O

Rstall

7$$
\

1 * 2* *3

Q4*5* *6

‘?5/“
Finish

(c) Dag 2

@

Stan

+ *

* +

Finish

(b) Dag 1

{d) Dag 3

Figure 7: DAG dago, dagl, dag2, and dag3

system of loop equations to become ill conditioned,
causing convergence problems. To facilitate conver-
gence, the minimum task size was initially restricted

to be 5% of the largest. The solution obtained was
used ss a start point for the next stage, where the

minimum task size was halved. This procedure was
cent inued till the smallest task size was allowed.

6.1

Dags

Lattices

DAG’s Used

Dago (Figure 7 (a)) is the dag discussed in Section

5. It has three matrix multiplies and two addi-
tions. All its edges are flow-essential. This pro-
vides a simple test of the processor-flow algorithm

on non-trees. Dagl has a single non-essential

edge. Dag2 (Figure 7 (b)), with 3-outputs, hsa 3
non-essential edges, 1 –5, 2 –5, and 2 –6. As such

upto 8 combinations of non-essential flows are po
tential candidates for the optimal solution. This
dag provides a simple test of the node augmen-
tation technique of the processor flow algorithm.
Dag3 is two copies of Dagl, run in parallel, and
has 2 non-essential edges.

All edges of these two lattice structured dags

L
Latt 1, Latt2 in Figure 8) are flow-essential.
att2 is basically two copies of Lattl run in series.

The algorithm has also been tested on lattices
which are 3, 4, and 8 copies of Lattl in series. The

optimal flows vary widely in magnitude, and are

244

Polys

Strass

6.2

!5$
*++++**+

Finish

0) Lan 2

Figure 8: Lattices Lattl and Lattz

very far away from the initial equally distributed

flows. The forward edges from one stage to the
next have significant processor flows, with the left
side being larger than the other. The cross edges,
containing only additions, have very small flow.

Hence these furnish difficult convergence tests for
the processor-flow algorithm.

Polya and PO1yIG (not shown) are matrix poly-

nomials, of degree 8 and 16, commonly encoun-
tered in matrix arithmetic. Poly8 has 2 non-flow-

essential edges, while Poly16 hss 10. Po/y16 pro-
vides a stringent teat of node-augmentation.

Figure 9 shows a matrix inverse using Strassen’s
method [4, page 75]. Two inverses, six matrix
multiplies and two matrix additions are being per-
formed. This graph provides a practical exam-
ple of an relatively complex unstructured matrix

computation, for which our techniques are useful.

It has both transitive and non-essential edges.

Analysis of Results

The results on each of these examples are tabu-
lated in Table 1. We tabulate the optimal run time as

determined by the algorithm scaled by Pa), and the
itotal number of iterations (up ates of the flow vector).

For purposes of comparison, the time as determined
by the Naive and Greedy Heuristics is also tabulated.
The last two columns (SPN and SPG) show the ratio
of these times to the optimal, and indicate the gains

obtained by using the optimal algorithm.

>
111

a12

82%

C22

Figure 9: Strassen Matrix Inverse. Thick arrows show

processor flow

..
11~raph IT opt II ter I TN I TG l~ls~~ll

H Latt~ I 4.24 I 278 I 5.14

II Latt* I 14.05 I 648 I 1 (.!

Table 1: Results from the Processor Flow Algorithm

245

The speedups over the Naive algorithm vary from a
low of 1.14 to a high of 1.57 (57%), while those over the
Greedy algorithm vary from 1.0 to 1.22 (22%). Clearly
the gains from the optimal algorithm are substantial

(the gains can be even higher for lattice-structured
graphs with more parallel paths than Latt ~/Latt2).

PO~~lIj and St?’assen nicely illustrate the properties

of the optimal solution, and we analyse them below.

PO1~~G has 10 non-flow-essential edges. The pro-
cessor flow algorithm correctly determined the cor-
rect set of non-zero flows using the node-augmentation
technique of Section 3.1. The flows varied widely
in size, from a low of 0.0015 to a high of 0.6, well
over two orders of magnitude. Two edges had a very
small flow of 0.0015. The rest had flows at least 20
times higher. This indicates that these two edges are
non-flow-essential, testifying to the utility of node-
augmentation.

Strassen’s optimal schedule (Figure 9) shows a gain
of 17 Yo over the Naive and a gain of 6 YO over the

Greedy heuristic. The processor flow algorithm as-

signs 82 ~0 of the processors to the longer of the two
branches R3 – R4 – R5 – R6, and only 18 YO for the

smaller branch R2. R2 and R6 finish at the same time.
Most to the processors (55 Yo) computing R6 are trans-
ferred to compute C21, R7, and Cll. The remaining (27
%) compute clz and CZZ. Clearly this schedule cannot
be derived by any heuristic like Naive or Greedy.

The number of iterations for all cases is less than

350, except for Latts, which takes 648 iterations. The
run times for our substantially sub-optimal implemen-
tation is less than 3 minutes on a SPARC-10 in all
cases, except for Latt8, which takes around 12 min-

utes. However, Latt8 is a very large task graph, with
17 matrix products, and 33 additions. So many op-
erators typically result from extensive loop unrolling/
software pipelining employed at the macro node level,
in a matrix expression compiler. In addition the ma-
trix additions are very small in size compared to the
multiplies (1.6 910). It is encouraging to note that the
algorithm converges even for this large graph, with

very different task sizes. The algorithm can hence be

effectively used to determine the optimal node paral-

lelism (number of processors allocated to node) and

node sequencing, in a matrix arithmetic compiler.

7 Conclusion

In this paper we have presented a fsst algorithm
for the determining optimal task parallelism and se-
quencing (generalized scheduling), for arbitrary dags,

considerably extending the previous results in [1]. We
assume that the speedup function of each task was p“,
for the same a. The optimal schedule is shown to be
the solution of a coupled nonlinear system of equa-

tions, analogous to the KCL and KVL equations of
electrical circuit theory. Our algorithms use gradient

based techniques to solve this system. The runtimes

are a low order polynomial (0(.E2 + EN + I(N + E))
per iteration), in the size of the task graph. The algo-

rithm was tested on a wide variety of dags representa-
tive oft ypical matrix comput ation. It takes only a few
minutes on a SPARC-10 for all but the largest graphs.

It is also robust enough to handle dags with widely

varying task sizes. The optimal solutions found are
upto 57 Yo faster than those derived using alternative
heuristic approaches.

Our techniques are directly applicable to compila-
tion of matrix computations. Indeed we have shown

that the assumption of pa speedup is reasonable for

matrix operations, and have written a matrix expres-
sion compiler [2], incorporating the ideaa presented
here. Results on the MIT Alewife machine (not in-
cluded) have shown the superiority of this scheduling
technique over commonly used alternatives.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

G. N. Srinivasa Prasanna and Bruce R. Musicus.
Generalised Multiprocessor Scheduling Using Op-
timal Control. In Third Annual A CM Symposium

on Parallel Algorithms and Architectures, pages

216-228, July 1991.

G.N.S. Prasanna, A. Agarwal, and B. R. Musi-
CUS. Hierarchical Compilation of Macro Dataflow
Graphs for Multiprocessors with Local Memory.
IEEE TPDS, July 1994.

Co ffman E. F., Jr., editor. Computer and Job
Shop Scheduling Theory. John Wiley and Sons,
N. Y., 1976.

W.H. Press, B.P. Flannery, S.A. Teukolsky, and

W.T. Vetterling. Numerical Recipies The Art
of Scientij’ic Computing, chapter 10. Cambridge

University Press, 1986.

A. Agarwal et al. The MIT Alewife Machine: A
Large-Scale Distributed-Memory Multiprocessor.
In Workshop on Scalable Shared Memory Mul-

tiprocessors. Kluwer Academic Publishers, 1991.
Also MIT/LCS Memo TM-454, 1991.

K. P. Belkhale and P. Banerjee. Scheduling Al-

gorithms for Parallelizable Tasks. Center for Re-

liable and High-Perf. Computing, CSL., Univ. of

Illinois, Urbana IL-61801, 1993.

M. Blazewicz, J. Drabowski and J. Welgarz.

Scheduling multiprocessor tasks to minimise
schedule length. IEEE Transactions on Compute-
rs, C-35(5):389–393, 1986.

J. Du and J.Y.T Leung. Complexity of Schedul-
ing Parallel Task Systems. SIAM J. Discrete
Math., 2(4):473-487, November 1989.

C.C Han and K.J. Lin. Scheduling Parallelizable

Jobs on Multiprocessors. In IEEE Conf on Real-
Time Systems, pages 59-67, 1989.

V. Sarkar. Partitioning and Scheduling Programs
for Multiprocessors. Technical Report CSL-TR-

87-328, Ph.D Thesis, Computer Systems Lab.,
Stanford University, April 1987.

246

