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Abstract

Static scheduling of a program represented by a directed task graph on a multiprocessor

system to minimize the program completion time is a well-known problem in parallel

processing. Since finding an optimal schedule is an NP-complete problem in general,

researchers have resorted to devising efficient heuristics. A plethora of heuristics have been

proposed based on a wide spectrum of techniques, including branch-and-bound, integer-

programming, searching, graph-theory, randomization, genetic algorithms, and evolutionary

methods. The objective of this survey is to describe various scheduling algorithms and their

functionalities in a contrasting fashion as well as examine their relative merits in terms of

performance and time-complexity. Since these algorithms are based on diverse assumptions,

they differ in their functionalities, and hence are difficult to describe in a unified context. We

propose a taxonomy that classifies these algorithms into different categories. We consider 27

scheduling algorithms, with each algorithm explained through an easy-to-understand

description followed by an illustrative example to demonstrate its operation. We also outline

some of the novel and promising optimization approaches and current research trends in the

area. Finally, we give an overview of the software tools that provide scheduling/mapping

functionalities. 

Keywords: Static Scheduling, Task Graphs, DAG, Multiprocessors, Parallel Processing,
Software Tools, Automatic Parallelization.
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1  Introduction

Parallel processing is a promising approach to meet the computational requirements of a

large number of current and emerging applications [82], [100], [140]. However, it poses a

number of problems which are not encountered in sequential processing such as designing a

parallel algorithm for the application, partitioning of the application into tasks, coordinating

communication and synchronization, and scheduling of the tasks onto the machine. A large

body of research efforts addressing these problems has been reported in the literature [14],

[33], [65], [82], [111], [115], [116], [117], [137], [140], [148], [170], [172]. Scheduling and

allocation is a highly important issue since an inappropriate scheduling of tasks can fail to

exploit the true potential of the system and can offset the gain from parallelization. In this

paper we focus on the scheduling aspect.

The objective of scheduling is to minimize the completion time of a parallel application

by properly allocating the tasks to the processors. In a broad sense, the scheduling problem

exists in two forms: static and dynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times, communication,

data dependencies, and synchronization requirements) are known before program execution

[33], [65]. A parallel program, therefore, can be represented by a node- and edge-weighted

directed acyclic graph (DAG), in which the node weights represent task processing times and

the edge weights represent data dependencies as well as the communication times between

tasks. In dynamic scheduling, a few assumptions about the parallel program can be made

before execution, and thus, scheduling decisions have to be made on-the-fly [3], [130]. The

goal of a dynamic scheduling algorithm as such includes not only the minimization of the

program completion time but also the minimization of the scheduling overhead which

constitutes a significant portion of the cost paid for running the scheduler. We address only

the static scheduling problem. Hereafter, we refer to the static scheduling problem as simply

scheduling.

The scheduling problem is NP-complete for most of its variants except for a few

simplified cases (these cases will be elaborated in later sections) [32], [35], [36], [50], [51], [63],

[69], [72], [81], [90], [134], [135], [136], [143], [146], [165]. Therefore, many heuristics with

polynomial-time complexity have been suggested [8], [26], [35], [50], [51], [66], [92], [121],

[132], [139], [149], [156]. However, these heuristics are highly diverse in terms of their

assumptions about the structure of the parallel program and the target parallel architecture,

and thus are difficult to explain in a unified context. 
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Common simplifying assumptions include uniform task execution times, zero inter-task

communication times, contention-free communication, full connectivity of parallel

processors, and availability of unlimited number of processors. These assumptions may not

hold in practical situations for a number of reasons. For instance, it is not always realistic to

assume that the task execution times of an application are uniform because the amount of

computations encapsulated in tasks are usually varied. Furthermore, parallel and distributed

architectures have evolved into various types such as distributed-memory multicomputers

(DMMs) [82], shared-memory multiprocessors (SMMs) [82], clusters of symmetric

multiprocessors (SMPs) [140], and networks of workstations (NOWs) [82]. Therefore, their

more detailed architectural characteristics must be taken into account. For example, inter-task

communication in the form of message-passing or shared-memory access inevitably incurs a

non-negligible amount of latency. Moreover, a contention-free communication and full

connectivity of processors cannot be assumed for a DMM, a SMP or a NOW. Thus,

scheduling algorithms relying on such assumptions are apt to have restricted applicability in

real environments.

Multiprocessors scheduling has been an active research area and, therefore, many

different assumptions and terminology are independently suggested. Unfortunately, some of

the terms, and assumptions are neither clearly stated nor consistently used by most of the

researchers. As a result, it is difficult to appreciate the merits of various scheduling

algorithms and quantitatively evaluate their performance. To avoid this problem, we first

introduce the directed acyclic graph (DAG) model of a parallel program, and then proceed to

describe the multiprocessor model. This is followed by a discussion about the NP-

completeness of variants of the DAG scheduling problem. Some basic techniques used in

scheduling are introduced. Then we describe a taxonomy of DAG scheduling algorithms and

use it to classify several reported algorithms.

The problem of scheduling a set of tasks to a set of processors can be divided into two

categories: job scheduling and scheduling and mapping (see Figure 1(a)). In the former category,

independent jobs are to be scheduled among the processors of a distributed computing

system to optimize overall system performance [24], [28], [31]. In contrast, the scheduling and

mapping problem requires the allocation of multiple interacting tasks of a single parallel

program in order to minimize the completion time on the parallel computer system [1], [8],

[16], [26], [35], [164]. While job scheduling requires dynamic run-time scheduling that is not a

priori decidable, the scheduling and mapping problem can be addressed in both static [50],

[51], [66], [76], [77], [92], [121], [149] as well as dynamic contexts [3], [129]. When the
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characteristics of the parallel program, including its task execution times, task dependencies,

task communications and synchronization, are known a priori, scheduling can be

accomplished off-line during compile-time. On the contrary, dynamic scheduling in the

absence of a priori information is done on-the-fly according to the state of the system. 

Two distinct models of the parallel program have been considered extensively in the

context of static scheduling: the task interaction graph (TIG) model and the task precedence graph

(TPG) model (see Figure 1(b) and Figure 1(c)). 

The task interaction graph model, in which vertices represent parallel processes and

edges denote the inter-process interaction [23], is usually used in static scheduling of loosely-

Parallel Program Scheduling

Job Scheduling
 (independent tasks)

Scheduling and Mapping
 (multiple interacting tasks)

Dynamic Scheduling Static Scheduling

Task Interaction Graph Task Precedence Graph

n2

n1

n3

n4

(a)

(b) (c)

Figure 1: (a) A simplified taxonomy of the approaches to the scheduling
problem; (b) A task interaction graph; (c) A task precedence graph.
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coupled communicating processes (since all tasks are considered as simultaneously and

independently executable, there is no temporal execution dependency) to a distributed

system. For example, a TIG is commonly used to model the finite element method (FEM) [22].

The objective of scheduling is to minimize parallel program completion time by properly

mapping the tasks to the processors. This requires balancing the computation load uniformly

among the processors while simultaneously keeping communication costs as low as possible.

The research in this area was pioneered by Stone and Bohkari [22], [158]: Stone [158] applied

network-flow algorithms to solve the assignment problem while Bokhari described the

mapping problem as being equivalent to graph isomorphism, quadratic assignment and

sparse matrix bandwidth reduction problems [23]. 

The task precedence graph model or simply the DAG, in which the nodes represent the

tasks and the directed edges represent the execution dependencies as well as the amount of

communication, is commonly used in static scheduling of a parallel program with tightly-

coupled tasks on multiprocessors. For example, in the task precedence graph shown in

Figure 1(c), task n4 cannot commence execution before tasks n1 and n2 finish execution and

gathers all the communication data from n2 and n3. The scheduling objective is to minimize

the program completion time (or maximize the speed-up, defined as the time required for

sequential execution divided by the time required for parallel execution). For most parallel

applications, a task precedence graph can model the program more accurately because it

captures the temporal dependencies among tasks. This is the model we use in this paper.

As mentioned above, earlier static scheduling research made simplifying assumptions

about the architecture of the parallel program and the parallel machine, such as uniform

node weights, zero edge weights and the availability of unlimited number of processors.

However, even with some of these assumptions the scheduling problem has been proven to

be NP-complete except for a few restricted cases [63]. Indeed, the problem is NP-complete

even in two simple cases: (1) scheduling tasks with uniform weights to an arbitrary number

of processors [165] and (2) scheduling tasks with weights equal to one or two units to two

processors [165]. There are only three special cases for which there exists optimal polynomial-

time algorithms. These cases are: (1) scheduling tree-structured task graphs with uniform

computation costs on arbitrary number of processors [81], (2) scheduling arbitrary task

graphs with uniform computation costs on two processors [36] and (3) scheduling an interval-

ordered task graph [57] with uniform node weights to an arbitrary number of processors [135].

However, even in these cases, communication among tasks of the parallel program is

assumed to take zero time [35]. Given these observations, the general scheduling problem
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cannot be solved in polynomial-time, unless .

Due to the intractability of the general scheduling problem, two distinct approaches have

been taken: sacrificing efficiency for the sake of optimality and sacrificing optimality for the

sake of efficiency. To obtain optimal solutions under relaxed constraints, state-space search

and dynamic programming techniques have been suggested. However, these techniques are

not useful because most of them are designed to work under restricted environments and

most importantly they incur an exponential time in the worst case. In view of the

ineffectiveness of optimal techniques, many heuristics have been suggested to tackle the

problem under more pragmatic situations. While these heuristics are shown to be effective in

experimental studies, they usually cannot generate optimal solutions, and there is no

guarantee about their performance in general. Most of the heuristics are based on a list

scheduling approach [35], which is explained below.

2  The DAG Scheduling Problem

The objective of DAG scheduling is to minimize the overall program finish-time by

proper allocation of the tasks to the processors and arrangement of execution sequencing of

the tasks. Scheduling is done in such a manner that the precedence constraints among the

program tasks are preserved. The overall finish-time of a parallel program is commonly

called the schedule length or makespan. Some variations to this goal have been suggested. For

example, some researchers proposed algorithms to minimize the mean flow-time or mean

finish-time, which is the average of the finish-times of all the program tasks [25], [110]. The

significance of the mean finish-time criterion is that minimizing it in the final schedule leads

to the reduction of the mean number of unfinished tasks at each point in the schedule. Some

other algorithms try to reduce the setup costs of the parallel processors [159]. We focus on

algorithms that minimize the schedule length.

2.1  The DAG Model

A parallel program can be represented by a directed acyclic graph (DAG) ,

where V is a set of v nodes and E is a set of e directed edges. A node in the DAG represents a

task which in turn is a set of instructions which must be executed sequentially without

preemption in the same processor. The weight of a node  is called the computation cost and

is denoted by . The edges in the DAG, each of which is denoted by , correspond

to the communication messages and precedence constraints among the nodes. The weight of

an edge is called the communication cost of the edge and is denoted by . The source

node of an edge is called the parent node while the sink node is called the child node. A node

P NP=

G V E,( )=

ni

w ni( ) ni nj,( )

c ni nj,( )
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with no parent is called an entry node and a node with no child is called an exit node. The

communication-to-computation-ratio (CCR) of a parallel program is defined as its average edge

weight divided by its average node weight. Hereafter, we use the terms node and task

interchangeably. We summarize in Table 1 the notation used throughout the paper.

The precedence constraints of a DAG dictate that a node cannot start execution before it

gathers all of the messages from its parent nodes. The communication cost between two tasks

assigned to the same processor is assumed to be zero. If node  is scheduled to some

processor, then  and  denote the start-time and finish-time of , respectively.

After all the nodes have been scheduled, the schedule length is defined as 

across all processors. The goal of scheduling is to minimize .

The node and edge weights are usually obtained by estimation at compile-time [9], [33],

TABLE 1. 

Symbol Definition

The node number of a node in the parallel program task graph

The computation cost of node 

An edge from node  to 

The communication cost of the directed edge from node  to 

v Number of nodes in the task graph

e Number of edges in the task graph

p The number of processors or processing elements (PEs) in the target system

CP A critical path of the task graph

CPN Critical Path Node

IBN In-Branch Node

OBN Out-Branch Node

sl Static level of a node

b-level Bottom level of a node

t-level Top level of a node

ASAP As soon as possible start time of a node

ALAP As late as possible start time of a node

The actual start time of a node 

The possible data available time of  on target processor P

The start time of node  on target processor P

The finish time of node  on target processor P

The parent node of  that sends the data arrive last

Pivot_PE The target processor from which nodes are migrated

The processor accommodating node 

Lij The communication link between PE i and PE j.

CCR Communication-to-computation Ratio

SL Schedule Length

UNC Unbounded Number of Clusters scheduling algorithms

BNP Bounded Number of Processors scheduling algorithms

TDB Task Duplication Based scheduling algorithms

APN Arbitrary Processors Network scheduling algorithms

ni

w ni( ) ni

ni nj,( ) ni nj

c ni nj,( ) ni nj

TS ni( ) ni

DAT ni P,( ) ni

ST ni P,( ) ni

FT ni P,( ) ni

VIP ni( ) ni

Proc ni( ) ni

ni

ST ni( ) FT ni( ) ni

maxi FT ni( ){ }

maxi FT ni( ){ }
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[73], [38], [170]. Generation of the generic DAG model and some of the variations are

described below.

2.2  Generation of a DAG 

A parallel program can be modeled by a DAG. Although program loops cannot be

explicitly represented by the DAG model, the parallelism in data-flow computations in loops

can be exploited to subdivide the loops into a number of tasks by the loop-unraveling

technique [18], [108]. The idea is that all iterations of the loop are started or fired together, and

operations in various iterations can execute when their input data are ready for access. In

addition, for a large class of data-flow computation problems and many numerical

algorithms (such as matrix multiplication), there are very few, if any, conditional branches or

indeterminism in the program. Thus, the DAG model can be used to accurately represent

these applications so that the scheduling techniques can be applied. Furthermore, in many

numerical applications, such as Gaussian elimination or fast Fourier transform (FFT), the

loop bounds are known during compile-time. As such, one or more iterations of a loop can be

deterministically encapsulated in a task and, consequently, be represented by a node in a

DAG. 

The node- and edge-weights are usually obtained by estimation using profiling

information of operations such as numerical operations, memory access operations, and

message-passing primitives [87]. The granularity of tasks usually is specified by the

programmers [9]. Nevertheless, the final granularity of the scheduled parallel program is to

be refined by using a scheduling algorithm, which clusters the communication-intensive

tasks to a single processor [9], [172].

2.3  Variations in the DAG Model

There are a number of variations in the generic DAG model described above. The more

important variations are: preemptive scheduling vs. non-preemptive scheduling, parallel tasks vs.

non-parallel tasks and DAG with conditional branches vs. DAG without conditional branches.

Preemptive Scheduling vs. Non-preemptive Scheduling: In preemptive scheduling, the

execution of a task may be interrupted so that the unfinished portion of the task can be re-

allocated to a different processor [29], [70], [79], [142]. On the contrary, algorithms assuming

non-preemptive scheduling must allow a task to execute until completion on a single

processor. From a theoretical perspective, a preemptive scheduling approach allows more

flexibility for the scheduler so that a higher utilization of processors may result. Indeed, a
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preemptive scheduling problem is commonly reckoned as “easier” than its non-preemptive

counterpart in that there are cases in which polynomial time solutions exist for the former

while the latter is proved to be NP-complete [35], [69]. However, in practice, interrupting a

task and transferring it to another processor can lead to significant processing overhead and

communication delays. In addition, a preemptive scheduler itself is usually more

complicated since it has to consider when to split a task and where to insert the necessary

communication induced by the splitting. We concentrate on the non-preemptive approaches.

Parallel Tasks vs. Non-parallel Tasks: A parallel task is a task that requires more than one

processor at the same time for its execution [167]. Blazewicz et al. investigated the problem of

scheduling a set of independent parallel tasks to identical processors under preemptive and

non-preemptive scheduling assumptions [20], [21]. Du and Leung also explored the same

problem but with one more flexibility: a task can be scheduled to no more than a certain pre-

defined maximum number of processors [47]. However, in Blazewicz et al. ‘s approach, a task

must be scheduled to a fixed pre-defined number of processors. Wang and Cheng further

extended the model to allow precedence constraints among tasks [167]. They devised a list

scheduling approach to construct a schedule based on the earliest completion time (ECT)

heuristic. We concentrate on scheduling DAGs with non-parallel tasks.

DAG with Conditional Branches vs. DAG without Conditional Branches: Towsley [162]

addressed the problem of scheduling a DAG with probabilistic branches and loops to

heterogeneous distributed systems. Each edge in the DAG is associated with a non-zero

probability that the child will be executed immediately after the parent. He introduced two

algorithms based on the shortest path method for determining the optimal assignments of

tasks to processors. El-Rewini and Ali [52] also investigated the problem of scheduling DAGs

with conditional branches. Similar to Towsley’s approach, they also used a two-step method

to construct a final schedule. However, unlike Towsley’s model, they modeled a parallel

program by using two DAGs: a branch graph and a precedence graph. This model differentiates

the conditional branching and the precedence relations among the parallel program tasks.

The objective of the first step of the algorithm is to reduce the amount of indeterminism in the

DAG by capturing the similarity of different instances of the precedence graph. After this

pre-processing step, a reduced branch graph and a reduced precedence graph are generated.

In the second step, all the different instances of the precedence graph are generated according

to the reduced branch graph, and the corresponding schedules are determined. Finally, these

schedules are merged to produce a unified final schedule [52]. Since modeling branching and

looping in DAGs is an inherently difficult problem, little work has been reported in this area.
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We concentrate on DAGs without conditional branching in this research.

2.4  The Multiprocessor Model

In DAG scheduling, the target system is assumed to be a network of processing elements

(PEs), each of which is composed of a processor and a local memory unit so that the PEs do

not share memory and communication relies solely on message-passing. The processors may

be heterogeneous or homogeneous. Heterogeneity of processors means the processors have

different speeds or processing capabilities. However, we assume every module of a parallel

program can be executed on any processor even though the completion times on different

processors may be different. The PEs are connected by an interconnection network with a

certain topology. The topology may be fully-connected or of a particular structure such as a

hypercube or mesh. 

3  NP-Completeness of the DAG Scheduling Problem

The DAG scheduling problem is in general an NP-complete problem [63], and algorithms

for optimally scheduling a DAG in polynomial-time are known only for three simple cases

[35]. The first case is to schedule a uniform node-weight free-tree to an arbitrary number of

processors. Hu [81] proposed a linear-time algorithm to solve the problem. The second case is

to schedule an arbitrarily structured DAG with uniform node-weights to two processors.

Coffman and Graham [36] devised a quadratic-time algorithm to solve this problem. Both

Hu’s algorithm and Coffman et al.’s algorithm are based on node-labeling methods that

produce optimal scheduling lists leading to optimal schedules. Sethi [146] then improved the

time-complexity of Coffman et al.’s algorithm to almost linear-time by suggesting a more

efficient node-labeling process. The third case is to schedule an interval-ordered DAG with

uniform node-weights to an arbitrary number of processors. Papadimitriou and Yannakakis

[135] designed a linear-time algorithm to tackle the problem. A DAG is called interval-

ordered if every two precedence-related nodes can be mapped to two non-overlapping

intervals on the real number line [57]. 

In all of the above three cases, communication between tasks is ignored. Ali and El-

Rewini [10] showed that interval-ordered DAG with uniform edge weights, which are equal

to the node weights, can also be optimally scheduled in polynomial time. These optimality

results are summarized in Table 2. 

Ullman [165] showed that scheduling a DAG with unit computation to p processors is

NP-complete. He also showed that scheduling a DAG with one or two unit computation
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costs to two processor is NP-complete [35], [165]. Papadimitriou and Yannakakis [135]

showed that scheduling an interval ordered DAG with arbitrary computation costs to two

processors is NP-complete. Garey et al. [64] showed that scheduling an opposing forest with

unit computation to p processors is NP-complete. Finally, Papadimitriou and Yannakakis

[136] showed that scheduling a DAG with unit computation to p processors possibly with

task-duplication is also NP-complete. 

4  A Taxonomy of DAG Scheduling Algorithms

To outline the variations of scheduling algorithms and to describe the scope of our survey,

we introduce in Figure 1 below a taxonomy of static parallel scheduling [8], [9]. Note that

unlike the taxonomy suggested by Casavant and Kuhl [26] which describes the general

scheduling problem (including partitioning and load balancing issues) in parallel and

distributed systems, the focus of our taxonomy is on the static scheduling problem, and,

therefore, is only partial.

The highest level of the taxonomy divides the scheduling problem into two categories,

depending upon whether the task graph is of an arbitrary structure or a special structure

such as trees. Earlier algorithms have made simplifying assumptions about the task graph

representing the program and the model of the parallel processor system [35], [69]. Most of

these algorithms assume the graph to be of a special structure such as a tree, forks-join, etc. In

general, however, parallel programs come in a variety of structures and as such many recent

algorithms are designed to tackle arbitrary graphs. These algorithms can be further divided

into two categories. Some algorithms assume the computational costs of all the tasks to be

Table 2

Researcher(s) Complexity p Structure

Hu [81] — Uniform Free-tree NIL

Coffman and Graham 
[36]

2 Uniform — NIL

Sethi [146] 2 Uniform — NIL

Papadimitriou and 
Yannakakis [135]

— Uniform Interval-Ordered NIL

Ali and El-Rewini [10] — Uniform (= c) Interval-Ordered Uniform (= c)

Papadimitriou and 
Yannakakis [135]

NP-Complete — — Interval-Ordered NIL

Garey and Johnson [63] Open Fixed, > 2 Uniform — NIL

Ullman [165] NP-Complete — Uniform — NIL

Ullman [165] NP-Complete Fixed, > 1 = 1 or 2 — NIL

w ni( ) c ni nj,( )

O v( )

O v2( )

O vα v( ) e+( )

O v e+( )

O ev( )
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Figure 2: A partial taxonomy of the multiprocessor scheduling problem.
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(1993): DLS by Sih & Lee [154]

(1995): MH by El-Rewini & Lewis [49]

(1990): PY by Papadimitriou & Yannakakis [136]

(1993): LCTD by Chen et al. [30]

(1988): DSH by Kruatrachue & Lewis [99]

(1992): BTDH by Chung & Ranka [34]
(1991): LWB by Colin & Chretienne [37]

(1994): CPFD by Ahmad & Kwok [4]
(1996): PLW by Palis et al. [131]

 (1989): EZ by Sarkar [144]
 (1990): MD by Wu & Gadjski [170]
 (1994): DSC by Yang & Gerasoulis [173]

 (1996): DCP by Kwok & Ahmad [103]

 (1988): LC by Kim & Browne [95]

 (1994): KY by Kim & Yi [96]

 (1990): MCP by Wu & Gajski [170]

 (1989): CLANS by McCreary & Gill [120]
 (1989): LAST by Baxter & Patel [17]
 (1989): ETF by Hwang et al. [83]

 (1987): ISH by Kruatrachue & Lewis [99]

(1974): HLFET by Adam et al. [1]

(1961): Hu’s algorithm [81]

(1972): Coffman and Graham’s 2-Processor algorithm [36]

(1979): Papadimitriou and Yannakakis’s Interval-Order algorithm [135]
(1993): Ali and El-Rewini’s Interval-Order algorithm [10]

(1974): Level-based algorithms by Adam et al. [1]

(1984): CP/MISF by Kasahara and Narita [90]

(1984): DF/IHS by Kasahara and Narita [90]

(1972): Dynamic Prog. Scheduling by Rammamoorthy et al. [141]

(1961): Hu’s algorithm [81]
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uniform. Others assume the computational costs of tasks to be arbitrary. 

Some of the scheduling algorithms which consider the inter-task communication assume

the availability of unlimited number of processors, while some other algorithms assume a

limited number of processors. The former class of algorithms are called the UNC (unbounded

number of clusters) scheduling algorithms [95], [103], [103], [144], [169], [173] and the latter the

BNP (bounded number of processors) scheduling algorithms [1], [15], [96], [104], [120], [131],

[155]. In both classes of algorithms, the processors are assumed to be fully-connected and no

attention is paid to link contention or routing strategies used for communication. The

technique employed by the UNC algorithms is also called clustering [95], [112], [131], [144],

[173]. At the beginning of the scheduling process, each node is considered a cluster. In the

subsequent steps, two clusters are merged if the merging reduces the completion time. This

merging procedure continues until no cluster can be merged. The rationale behind the UNC

algorithms is that they can take advantage of using more processors to further reduce the

schedule length. However, the clusters generated by the UNC need a postprocessing step for

mapping the clusters onto the processors because the number of processors available may be

less than the number of clusters. As a result, the final solution quality also highly depends on

the cluster-mapping step. On the other hand, the BNP algorithms do not need such

postprocessing step. It is an open question as to which of UNC and BNP is better.

We use the term cluster and processor interchangeably since in the UNC scheduling

algorithms, merging a single node cluster to another cluster is analogous to scheduling a

node to a processor. 

There have been a few algorithms designed with the most general model in that the

system is assumed to consist of an arbitrary network topology, of which the links are not

contention-free. These algorithms are called the APN (arbitrary processor network) scheduling

algorithms. In addition to scheduling tasks, the APN algorithms also schedule messages on

the network communication links. Scheduling of messages may be dependent on the routing

strategy used by the underlying network. To optimize schedule lengths under such

unrestricted environments makes the design of an APN scheduling algorithm intricate and

challenging.

The TDB (Task-Duplication Based) scheduling algorithms also assume the availability of

an unbounded number of processors but schedule tasks with duplication to further reduce

the schedule lengths. The rationale behind the TDB scheduling algorithms is to reduce the

communication overhead by redundantly allocating some tasks to multiple processors. In
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duplication-based scheduling, different strategies can be employed to select ancestor nodes

for duplication. Some of the algorithms duplicate only the direct predecessors while others

try to duplicate all possible ancestors. For a recent quantitative comparison of TDB

scheduling algorithms, the reader is referred to [6].

5  Basic Techniques in DAG Scheduling

Most scheduling algorithms are based on the so called list scheduling technique [1], [8],

[26], [35], [50], [51], [66], [92], [104], [121], [149], [174]. The basic idea of list scheduling is to

make a scheduling list (a sequence of nodes for scheduling) by assigning them some

priorities, and then repeatedly execute the following two steps until all the nodes in the

graph are scheduled:

1) Remove the first node from the scheduling list;

2) Allocate the node to a processor which allows the earliest start-time.

There are various ways to determine the priorities of nodes such as HLF (Highest level

First) [35], LP (Longest Path) [35], LPT (Longest Processing Time) [60], [69] and CP (Critical

Path) [72]. 

Recently a number of scheduling algorithms based on a dynamic list scheduling approach

have been suggested [103], [154], [173]. In a traditional scheduling algorithm, the scheduling

list is statically constructed before node allocation begins, and most importantly the

sequencing in the list is not modified. In contrast, after each allocation, these recent

algorithms re-compute the priorities of all unscheduled nodes which are then used to

rearrange the sequencing of the nodes in the list. Thus, these algorithms essentially employ

the following three-step approaches:

1) Determine new priorities of all unscheduled nodes;

2) Select the node with the highest priority for scheduling;

3) Allocate the node to the processor which allows the earliest start-time.

Scheduling algorithms which employ this three-step approach can potentially generate

better schedules. However, a dynamic approach can increase the time-complexity of the

scheduling algorithm.

Two frequently used attributes for assigning priority are the t-level (top level) and b-level

(bottom level) [1], [8], [66]. The t-level of a node  is the length of a longest path (there can beni
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more than one longest path) from an entry node to  (excluding ). Here, the length of a

path is the sum of all the node and edge weights along the path. As such, the t-level of 

highly correlates with ’s earliest start-time, denoted by , which is determined after 

is scheduled to a processor. This is because after  is scheduled, its  is simply the

length of the longest path reaching it. The b-level of a node  is the length of a longest path

from  to an exit node. The b-level of a node is bounded from above by the length of a critical

path. A critical path (CP) of a DAG, which is an important structure in the DAG, is a longest

path in the DAG. Clearly a DAG can have more than one CP. Consider the task graph shown

in Figure 3(a). In this task graph, nodes  are the nodes of the only CP and are called

CPNs (Critical-Path Nodes). The edges on the CP are shown with thick arrows. The values of

the priorities discussed above are shown in Figure 3(b).

Below is a procedure for computing the t-levels:

Computation of t-level:
(1) Construct a list of nodes in topological order. Call it TopList.
(2) for each node  in TopList do 
(3) max = 0
(4) for each parent  of  do
(5) if t-level( ) +  +  > max then 
(6) max = t-level( ) +  +  
(7) endif
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(8)  endfor
(9)  t-level( ) = max
(10) endfor

The time-complexity of the above procedure is . A similar procedure, which also

has time-complexity , for computing the b-levels is shown below:

Computation of b-level:
(1) Construct a list of nodes in reversed topological order. Call it RevTopList.
(2) for each node  in RevTopList do
(3) max = 0
(4) for each child  of  do
(5) if  + b-level( ) > max then
(6) max =  + b-level( )
(7) endif
(8) endfor
(9) b-level( ) = + max
(10) endfor

In the scheduling process, the t-level of a node varies while the b-level is usually a

constant, until the node has been scheduled. The t-level varies because the weight of an edge

may be zeroed when the two incident nodes are scheduled to the same processor. Thus, the

path reaching a node, whose length determines the t-level of the node, may cease to be the

longest one. On the other hand, there are some variations in the computation of the b-level of

a node. Most algorithms examine a node for scheduling only after all the parents of the node

have been scheduled. In this case, the b-level of a node is a constant until after it is scheduled

to a processor. Some scheduling algorithms allow the scheduling of a child before its parents,

however, in which case the b-level of a node is also a dynamic attribute. It should be noted

that some scheduling algorithms do not take into account the edge weights in computing the

b-level. In such a case, the b-level does not change throughout the scheduling process. To

distinguish such definition of b-level from the one we described above, we call it the static b-

level or simply static level (sl).

Different algorithms use the t-level and b-level in different ways. Some algorithms assign a

higher priority to a node with a smaller t-level while some algorithms assign a higher priority

to a node with a larger b-level. Still some algorithms assign a higher priority to a node with a

larger (b-level – t-level). In general, scheduling in a descending order of b-level tends to

schedule critical path nodes first, while scheduling in an ascending order of t-level tends to

schedule nodes in a topological order. The composite attribute (b-level – t-level) is a

compromise between the previous two cases. If an algorithm uses a static attribute, such as b-

level or static b-level, to order nodes for scheduling, it is called a static algorithm; otherwise, it
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is called a dynamic algorithm.

Note that the procedure for computing the t-levels can also be used to compute the start-

times of nodes on processors during the scheduling process. Indeed, some researchers call the

t-level of a node the ASAP (As-Soon-As-Possible) start-time because the t-level is the earliest

possible start-time.

Some of the DAG scheduling algorithms employ an attribute called ALAP (As-Late-As-

Possible) start-time [103], [170]. The ALAP start-time of a node is a measure of how far the

node’s start-time can be delayed without increasing the schedule length. An  time

procedure for computing the ALAP time is shown below:

Computation of ALAP:
(1) Construct a list of nodes in reversed topological order. Call it RevTopList.
(2) for each node  in RevTopList do
(3) min_ft = CP_Length
(4) for each child  of  do
(5) if alap( ) –  < min_ft then
(6) min_ft = alap( ) – 
(7) endif
(8) endfor
(9) alap( ) = min_ft – 
(10) endfor

After the scheduling list is constructed by using the node priorities, the nodes are then

scheduled to suitable processors. Usually a processor is considered suitable if it allows the

earliest start-time for the node. However, in some sophisticated scheduling heuristics, a

suitable processor may not be the one that allows the earliest start-time. These variations are

described in detail in Section 6.

6  Description of the Algorithms

In this section, we briefly survey algorithms for DAG scheduling reported in the

literature. We first describe some of the earlier scheduling algorithms which assume a

restricted DAG model, and then proceed to describe a number of such algorithms before

proceeding to algorithms which remove all such simplifying assumptions. The performance

of these algorithms on some primitive graph structures is also discussed. Analytical

performance bounds reported in the literature are also briefly surveyed where appropriate.

We first discuss the UNC class of algorithms, followed by BNP algorithms and TDB

algorithms. Next we describe a few of the relatively unexplored APN class of DAG

scheduling algorithms. Finally we discuss the issues of scheduling in heterogeneous
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environments and the mapping problem. 

6.1  Scheduling DAGs with Restricted Structures

Early scheduling algorithms were typically designed with simplifying assumptions about

the DAG and processor network model [1], [25], [61], [62]. For instance, the nodes in the DAG

were assumed to be of unit computation and communication was not considered; that is,

 and . Furthermore, some algorithms were designed for specially

structured DAGs such as a free-tree [35], [81]

6.1.1 Hu’s Algorithm for Tree-Structured DAGs

Hu [81] proposed a polynomial-time algorithm to construct optimal schedules for in-tree

structured DAGs with unit computations and without communication. The number of

processors is assumed to be limited and is equal to p. The crucial step in the algorithm is a

node labelling process. Each node  is labelled  where  and  is the length of

the path from  to the exit node in the DAG. Here, the notion of length is the number of

edges in the path. The labelling process begins with the exit node, which is labelled 1. 

Using the above labelling procedure, an optimal schedule can be obtained for p

processors by processing a tree-structured task graph in the following steps:

(1) Schedule the first p (or fewer) nodes with the highest numbered label, i.e., the entry
nodes, to the processors. If the number of entry nodes is greater than p, choose p
nodes whose  is greater than the others. In case of a tie, choose a node arbitrarily.

(2) Remove the p scheduled nodes from the graph. Treat the nodes with no predecessor
as the new entry nodes.

(3) Repeat steps (1) and (2) until all nodes are scheduled.

 The labelling process of the algorithm partitions the task graph into a number of levels.

In the scheduling process, each level of tasks are assigned to the available processors.

Schedules generated using the above steps are optimal under the stated constraints. The

readers are referred to [81] for the proof of optimality. This is illustrated in the simple task

graph and its optimal schedule shown in Figure 4. The complexity of the algorithm is linear

in terms of the number of nodes because each node in the task graph is visited a constant

number of times.

Kaufman [91] devised an algorithm for preemptive scheduling which also works on an

in-tree DAG with arbitrary computation costs. The algorithm is based on principles similar to

those in Hu’s algorithm. The main idea of the algorithm is to break down the non-unit

weighted tasks into unit weighted tasks. Optimal schedules can be obtained since the
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resulting DAG is still an in-tree.

6.1.2 Coffman and Graham’s Algorithm for Two-Processor Scheduling

Optimal static scheduling have also been addressed by Coffman and Graham [36]. They

developed an algorithm for generating optimal schedules for arbitrary structured task graphs

with unit-weighted tasks and zero-weighted edges to a two-processor system. The algorithm

works on similar principles as in Hu’s algorithm. The algorithm first assigns labels to each

node in the task graph. The assignment process proceeds “up the graph” in a way that

considers as candidates for the assignment of the next label all the nodes whose successors

have already been assigned a label. After all the nodes are assigned a label, a list is formed by

ordering the tasks in decreasing label numbers, beginning with the last label assigned. The

optimal schedule is then obtained by scheduling ready tasks in this list to idle processors.

This is elaborated in the following steps.

(1) Assign label 1 to one of the exit node.
(2) Assume that labels  have been assigned. Let S be the set of unassigned

nodes with no unlabeled successors. Select an element of S to be assigned label j as
follows. For each node x in S, let  be the immediate successors of x. Then,
define  to be the decreasing sequence of integers formed by ordering the set of
y’s labels. Suppose that  lexicographically for all  in S. Assign the label
j to x.

(3) After all tasks have been labeled, use the list of tasks in descending order of labels
for scheduling. Beginning from the first task in the list, schedule each task to one of
the two given processors that allows the earlier execution of the task.

Schedules generated using the above algorithm are optimal under the given constraints.
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Figure 4: (a) A simple tree-structured task graph with unit-cost tasks and without
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For the proof of optimality, the reader is referred to [36]. An example is illustrated in Figure 5.

Through counter-examples, Coffman and Graham also demonstrated that their algorithm

can generate sub-optimal solutions when the number of processors is increased to three or

more, or when the number of processors is two and tasks are allowed to have arbitrary

computation costs. This is true even when the computation costs are allowed to be one or two

units. The complexity of the algorithm is  because the labelling process and the

scheduling process each takes  time.

Sethi [146] reported an algorithm to determine the labels in  time and also gave

an algorithm to construct a schedule from the labeling in  time, where  is

an almost constant function of v. The main idea of the improved labeling process is based on

the observation that the labels of a set of nodes with the same height only depend on their

children. Thus, instead of constructing the lexicographic ordering information from scratch,

the labeling process can infer such information through visiting the edges connecting the

nodes and their children. As a result, the time-complexity of the labeling process is 

instead of . The construction of the final schedule is done with the aid of a set data

structure, for which v access operations can be performed in , where  is the

inverse Ackermann’s function. 

6.1.3 Scheduling Interval-Ordered DAGs

Papadimitriou and Yannakakis [135] investigated the problem of scheduling unit-

computational interval-ordered tasks to multiprocessors. In an interval-ordered DAG, two

nodes are precedence-related if and only if the nodes can be mapped to non-overlapping
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Figure 5: (a) A simple task graph with unit-cost tasks and no-cost communication
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intervals on the real line [57]. An example of an interval-ordered DAG is shown in Figure 6.

Based on the interval-ordered property, the number of successors of a node can be used as a

priority to construct a list. An optimal list schedule can be constructed in  time.

However, as mentioned earlier, the problem becomes NP-complete if the DAG is allowed to

have arbitrary computation costs. Ali and El-Rewini [10] worked on the problem of

scheduling interval-ordered DAGs with unit computation costs and unit communication

costs. They showed that the problem is tractable and devised an  algorithm to generate

optimal schedules. In their algorithm, which is similar to that of Papadimitriou and

Yannakakis, the number of successors is used as a node priority for scheduling.

6.2  Scheduling Arbitrary DAGs without Communication

In this section, we discuss algorithms for scheduling arbitrary structured DAGs in which

computation costs are arbitrary but communication costs are zero. 

6.2.1 Level-based Heuristics

Adam et al. [1] performed an extensive simulation study of the performance of a number

of level-based list scheduling heuristics. The heuristics examined are:

• HLFET (Highest Level First with Estimated Times): The notion of level is the sum of

computation costs of all the nodes along the longest path from the node to an exit node.

• HLFNET (Highest Levels First with No Estimated Times): In this heuristic, all nodes

are scheduled as if they were of unit cost.

• Random: The nodes in the DAG are assigned priorities randomly.
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Figure 6: (a) A unit-computational interval ordered DAG. (b) An optimal schedule of the DAG.
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• SCFET (Smallest Co-levels First with Estimated Times): A co-level of a node is

determined by computing the sum of the longest path from an entry node to the node.

A node has a higher priority if it has the smaller co-level.

• SCFNET (Smallest Co-levels First with No Estimated Times): This heuristic is the same

as SCFET except that it schedules the nodes as if they were of unit costs.

In [1], an extensive simulation study was conducted using randomly generated DAGs.

The performance of the heuristics were ranked in the following order: HLFET, HLFNET,

SCFNET, Random, and SCFET. The study provided strong evidence that the CP (critical path)

based algorithms have near-optimal performance. In another study conducted by Kohler

[94], the performance of the CP-based algorithms improved as the number of processors

increased.

Kasahara et al. [90] proposed an algorithm called CP/MISF (critical path/ most

immediate successors first), which is a variation of the HLFET algorithm. The major

improvement of CP/MISF over HLFET is that when assigning priorities, ties are broken by

selecting the node with a larger number of immediate successors. 

In a recent study, Shirazi et al. [149] proposed two algorithms for scheduling DAGs to

multiprocessors without communication. The first algorithm, called HNF (Heavy Node

First), is based on a simple local analysis of the DAG nodes at each level. The second

algorithm, WL (Weighted Length), considers a global view of a DAG by taking into account

the relationship among the nodes at different levels. Compared to a critical-path-based

algorithm, Shirazi et al. showed that the HNF algorithm is more preferable for its low

complexity and good performance.

6.2.2 A Branch-and-Bound Approach

In addition to CP/MISF, Kasahara et al. [90] also reported a scheduling algorithm based

on a branch-and-bound approach. Using Kohler et al.’s [93] general representation for

branch-and-bound algorithms, Kasahara et al. devised a depth-first search procedure to

construct near-optimal schedules. Prior to the depth-first search process, priorities are

assigned to those nodes in the DAG which may be generated during the search process. The

priorities are determined using the priority list of the CP/MISF method. In this way the

search procedure can be more efficient both in terms of computing time and memory

requirement. Since the search technique is augmented by a heuristic priority assignment

method, the algorithm is called DF/IHS (depth-first with implicit heuristic search). The DF/
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IHS algorithm was shown to give near optimal performance.

6.2.3 Analytical Performance Bounds for Scheduling without 
Communication

Graham [71] proposed a bound on the schedule length obtained by general list

scheduling methods. Using a level-based method for generating a list for scheduling, the

schedule length SL and the optimal schedule length  are related by the following:

Rammamoorthy, Chandy, and Gonzalez [141] used the concept of precedence partitions

to generate bounds on the schedule length and the number of processors for DAGs with unit

computation costs. An earliest precedence partition  is a set of nodes that can be started in

parallel at the same earliest possible time constrained by the precedence relations. A latest

precedence partition is a set of nodes which must be executed at the same latest possible time

constrained by the precedence relations. For any i and j,  and . The

precedence partitions group tasks into subsets to indicate the earliest and latest times during

which tasks can be started and still guarantee minimum execution time for the graph. This

time is given by the number of partitions and is a measure of the longest path in the graph.

For a graph of l levels, the minimum execution time is l units. In order to execute a graph in

the minimum time, the absolute minimum number of processors required is given by

.

Rammamoorthy et al. [141] also developed algorithms to determine the minimum

number of processors required to process a graph in the least possible amount of time, and to

determine the minimum time necessary to process a task graph given k processors. Since a

dynamic programming approach is employed, the computational time required to obtain the

optimal solution is quite considerable.

Fernandez et al. [54] devised improved bounds on the minimum number of processors

required to achieve the optimal schedule length and on the minimum increase in schedule

length if only a certain number of processors are available. The most important contribution

is that the DAG is assumed to have unequal computational costs. Although for such a general

model similar partitions as in Rammamoorthy et al. ‘s work could be defined, Fernandez et al.

[54] used the concepts of activity and load density, defined below. 
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Definition 1: The activity of a node  is defined as:

where  is the finish time of . 

Definition 2: The load density function is defined by:

Then,  indicates the activity of node  along time, according to the precedence

constraints in the DAG, and  indicates the total activity of the graph as a function of

time. Of particular importance are , the earliest load density function for which all

tasks are completed at their earliest times, and , the load density function for which all

tasks are completed at their latest times. Now let  be the load density function of

the tasks or parts of tasks remaining within  after all tasks have been shifted to form

minimum overlap within the interval. Thus, a lower bound on the minimum number of

processors to execute the program (represented by the DAG) within the minimum time is

given by: 

The maximum value obtained for all possible intervals indicate that the whole

computation graph cannot be executed with a number of processors smaller than the

maximum. Suppose that only p’ processors are available, Fernandez et al. [54] also showed

that the schedule length will be longer than the optimal schedule length by no less than the

following amount:

In a recent study, Jain and Rajaraman [85] reported sharper bounds using the above

expressions. The idea is that the intervals considered for the integration is not just the earliest

and latest start-times but are based on a partitioning of the graphs into a set of disjoint

sections. They also devised an upper bound on the schedule length, which is useful in

determining the worst case behavior of a DAG. Not only are their new bounds easier to

compute but are also tighter in that the DAG partitioning strategy enhances the accuracy of
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the load activity function.

6.3  UNC Scheduling

In this section we survey the UNC class of scheduling algorithms. In particular, we will

describe in more details five UNC scheduling algorithms: the EZ, LC, DSC, MD, and DCP

algorithms. The DAG shown in Figure 3 is used to illustrate the scheduling process of these

algorithms. In order to examine the approximate optimality of the algorithms, we will first

describe the scheduling of two primitive DAG structures: the fork set and the join set. Some

work on theoretical performance analysis of UNC scheduling is also discussed in the last

subsection.

6.3.1 Scheduling of Primitive Graph Structures

To highlight the different characteristics of the algorithms described below, it is useful to

consider how the algorithms work on some primitive graph structures. Two commonly used

primitive graph structures are fork and join [66], examples of which are shown in Figure 7.

These two graph primitives are useful for understanding the optimality of scheduling

algorithms because any task graph can be decomposed into a collection of forks and joins. In

the following, we derive the optimal schedule lengths for these primitive structures. The

optimal schedule lengths can then be used as a basis for comparing the functionality of the

scheduling algorithms described later in this section.

Without loss of generality, assume that for the fork structure, we have:

n1 n2
nk

n3

nx

Figure 7: (a) A fork set; and (b) a join set.
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Then the optimal schedule length is equal to:

where j is given by the following conditions:

In addition, assume that for the join structure, we have:

Then the optimal schedule length for the join is equal to:

where j is given by the following conditions:

From the above expressions, it is clear that an algorithm has to be able to recognize the

longest path in the graph in order to generate optimal schedules. Thus, algorithms which

consider only b-level or only t-level cannot guarantee optimal solutions. To make proper

scheduling decisions, an algorithm has to dynamically examine both b-level and t-level. In the

coming sub-sections, we will discuss the performance of the algorithms on these two

primitive graph structures. 

6.3.2 The EZ Algorithm

The EZ (Edge-zeroing) algorithm [144] selects clusters for merging based on edge

weights. At each step, the algorithm finds the edge with the largest weight. The two clusters

incident by the edge will be merged if the merging (thereby zeroing the largest weight) does

not increase the completion time. After two clusters are merged, the ordering of nodes in the

resulting cluster is based on the static b-levels of the nodes. The algorithm is briefly described

below.

(1) Sort the edges of the DAG in a descending order of edge weights.
(2) Initially all edges are unexamined.

max w nx( ) w ni( ) w nx( ) c nx nj 1+,( ) w nj 1+( )+ +,
i 1=

j

∑+ 
 
 

,

w ni( ) c nx nj,( ) w nj( )  and w ni( ) c nx nj 1+,( ) w nj 1+( ) .+>
i 1=

j 1+
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i 1=

j

∑
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Repeat

(3) Pick an unexamined edge which has the largest edge weight. Mark it as examined.
Zero the highest edge weight if the completion time does not increase. In this
zeroing process, two clusters are merged so that other edges across these two
clusters also need to be zeroed and marked as examined. The ordering of nodes in the
resulting cluster is based on their static b-levels. 

Until all edges are examined.

The time-complexity of the EZ algorithm is . For the DAG shown in Figure 3,

the EZ algorithm generates a schedule shown in Figure 8(a). The steps of scheduling are

shown in Figure 8(b). 

Performance on fork and join: Since the EZ algorithm considers only the communication

costs among nodes to make scheduling decisions, it does not guarantee optimal schedules for

both fork and join structures.

6.3.3 The LC Algorithm

The LC (Linear Clustering) algorithm [95] merges nodes to form a single cluster based on

the CP. The algorithm first determines the set of nodes constituting the CP, then schedules all

the CP nodes to a single processor at once. These nodes and all edges incident on them are

then removed from the DAG. The algorithm is briefly described below. 

(1) Initially, mark all edges as unexamined.

Repeat
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Figure 8: (a) The schedule generated by the EZ algorithm
(schedule length = 18); (b) A scheduling trace of the EZ algorithm.
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(2) Determine the critical path composed of unexamined edges only.
(3) Create a cluster by zeroing all the edges on the critical path.
(4) Mark all the edges incident on the critical path and all the edges incident to the

nodes in the cluster as examined.

Until all edges are examined.

The time-complexity of the LC algorithm is . For the DAG shown in Figure 3,

the LC algorithm generates a schedule shown in Figure 9(a). The steps of scheduling are

shown in Figure 9(b).

Performance on fork and join: Since the LC algorithm does not schedule nodes on different

paths to the same processor, it cannot guarantee optimal solutions for both fork and join

structures.

6.3.4 The DSC Algorithm

The DSC (Dominant Sequence Clustering) algorithm [173] considers the Dominant

Sequence (DS) of a graph. The DS is the CP of the partially scheduled DAG. The algorithm is

briefly described below.

(1) Initially, mark all nodes as unexamined. Initialize a ready node list L to contain all
entry nodes. Compute b-level for each node. Set t-level for each ready node.

Repeat

(2) If the head of L, ni, is a node on the DS, zeroing the edge between ni and one of its
parents so that the t-level of ni is minimized. If no zeroing is accepted, the node
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Figure 9: (a) The schedule generated by the LC algorithm
(schedule length = 19); (b) A scheduling trace of the LC algorithm.
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remains in a single node cluster. 
(3) If the head of L, ni, is not a node on the DS, zeroing the edge between ni and one of

its parents so that the t-level of ni is minimized under the constraint called Dominant
Sequence Reduction Warranty (DSRW). If some of its parents are entry nodes that do
not have any child other than ni, merge part of them so that the t-level of ni is
minimized. If no zeroing is accepted, the node remains in a single node cluster.

(4) Update the t-level and b-level of the successors of ni and mark ni as examined.

Until all nodes are examined.

DSRW: Zeroing incoming edges of a ready node should not affect the future reduction of t-level( ),
where  is a not-yet ready node with a higher priority, if t-level( ) is reducible by zeroing an
incoming DS edge of .

The time-complexity of the DSC algorithm is . For the DAG shown in

Figure 3, the DSC algorithm generates a schedule shown in Figure 10(a). The steps of

scheduling are given in the table shown in Figure 10(b). In the table, the start-times of the

node on the processors at each scheduling step are given and the node is scheduled to the

PE 0 PE 1 PE 2 PE 3 

Step  (prio)  (prio) Parent PE0 PE1 PE2 PE3

1  (23) NIL NIL 0* N.C. N.C. N.C.
2  (21)  (23) 2 6* N.C. N.C.
3  (23) NIL 5 N.C. N.C. N.C.
4  (8)  (16) 9 3* N.C. N.C.
5  (18)  (16) 9 N.C. 3* N.C.
6  (17)  (18) 9 N.C. N.C. 3*
7  (20)  (16) 9* N.C. N.C. N.C.
8  (18)  (19) N.C. N.C. 7* N.C.
9  (19) NIL 16* N.C. N.C. N.C.
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Figure 10: (a) The schedule generated by the DSC algorithm (schedule length = 17);
(b) A scheduling trace of the DSC algorithm (N.C. indicates “not considered”).
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processor on which the start-time is marked by an asterisk.

Performance on fork and join: The DSC algorithm dynamically tracks the critical path in the

DAG using both t-level and b-level. In addition, it schedules each node to start as early as

possible. Thus, for both fork and join structures, the DSC algorithm can guarantee optimal

solutions.

Yang and Gerasoulis [67] also investigated the granularity issue of clustering. They

considered that a DAG consists of fork( ) and join( ) structures such as the two shown in

Figure 7. Suppose we have:

Then the granularity of a DAG is defined as  where . A

DAG is called coarse grain if . Based on this definition of granularity, Yang and

Gerasoulis proved that the DSC algorithm has the following performance bound:

Thus, for a coarse grain DAG, the DSC algorithm can generate a schedule length within a

factor of two from the optimal. Yang and Gerasoulis also proved that the DSC algorithm is

optimal for any coarse grain in-tree, and any single-spawn out-tree with uniform

computation costs and uniform communication costs.

6.3.5 The MD Algorithm

The MD (Mobility Directed) algorithm [170] selects a node ni for scheduling based on an

attribute called the relative mobility, defined as:

If a node is on the current CP of the partially scheduled DAG, the sum of its b-level and t-

level is equal to the current CP length. Thus, the relative mobility of a node is zero if it is on

the current CP. The algorithm is described below.

(1) Mark all nodes as unexamined. Initially, there is no cluster.

Repeat
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min w ni( ){ }
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(2) Compute the relative mobility for each node.
(3) Let L' be the group of unexamined nodes with the minimum relative mobility. Let ni

be a node in L' that does not have any predecessors in L'. Start from the first cluster,
check whether there is any cluster that can accommodate ni. In the checking process,
all idle time slots in a cluster are examined until one is found to be large enough to
hold ni. A large enough idle time slot may be created by pulling already scheduled
nodes downward because the start-times of the already scheduled nodes are not
fixed yet. If ni cannot be scheduled to the first cluster, try the second cluster, and so
on. If ni cannot be scheduled to any existing cluster, leave it as a new cluster.

(4) When ni is scheduled to cluster m, all edges connecting ni and other nodes already
scheduled to cluster m are changed to zero. If ni is scheduled before node nj on
cluster m, add an edge with weight zero from ni to nj in the DAG. If ni is scheduled
after node nj on the cluster, add an edge with weight zero from nj to ni, then check if
the adding edges form a loop. If so, schedule ni to the next available space.

(5) Mark ni as examined.

Until all nodes are examined.

The time-complexity of the MD algorithm is . For the DAG shown in Figure 3, the

MD algorithm generates a schedule shown in Figure 11(a). The steps of scheduling are given

in the table shown in Figure 11(b). In the table, the start-times of the node on the processors at

each scheduling step are given and the node is scheduled to the processor on which the start-

time is marked by an asterisk.

Performance on fork and join: Using the notion of relative mobility, the MD algorithm is also

able to track the critical path of the DAG in the scheduling process. Thus, the algorithm can

generate optimal schedules for fork and join as well.

6.3.6 The DCP Algorithm

The DCP (Dynamic Critical Path) algorithm [103] is proposed by Kwok and Ahmad and

is designed based on an attribute which is slightly different from the relative mobility used in

the MD algorithm. Essentially, the DCP algorithm examines a node ni for scheduling if,

among all nodes, ni has the smallest difference between its ALST (Absolute-Latest-Start-Time)

and AEST (Absolute-Earliest-Start-Time). The value of such difference is equivalent to the

value of the node’s mobility, defined as: . The

DCP algorithm uses a lookahead strategy to find a better cluster for a given node. The DCP

algorithm is briefly described below.

Repeat

(1) Compute  for each node ni.
(2) Suppose that nx is the node with the largest priority. Let nc be the child node (i.e., the

critical child) of nx that has the largest priority.

O v3( )
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(3) Select a cluster P such that the sum  is the smallest among all the
clusters holding nx’s parents or children. In examining a cluster, first try not to pull
down any node to create or enlarge an idle time slot. If this is not successful in
finding a slot for nx, scan the cluster for suitable idle time slot again possibly by
pulling some already scheduled nodes downward.

(4) Schedule nx to P. 

Until all nodes are scheduled.

The time-complexity of the DCP algorithm is . For the DAG shown in Figure 3, the

DCP algorithm generates a schedule shown in Figure 12(a). The steps of scheduling are given

in the table shown in Figure 12(b). In the table, the composite start-times of the node (i.e., the

start-time of the node plus that of its critical child) on the processors at each scheduling step

are given and the node is scheduled to the processor on which the start-time is marked by an

asterisk.

PE 0 PE 1 PE 2 

Step Rel. Mob. PE0 PE1 PE2 PE3

1 0.0 0* N.C. N.C. N.C.
2 0.0 10* N.C. N.C. N.C.
3 0.0 2* N.C. N.C. N.C.
4 0.0 N.R. 3* N.C. N.C.
5 0.0 N.R. 7* N.C. N.C.
6 0.0 N.R. N.R. 3* N.C.
7 0.0 16* N.C. N.C. N.C.
8 0.25 5* N.C. N.C. N.C.
9 1.8 N.R. 11* N.C. N.C.
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Figure 11: (a) The schedule generated by the MD algorithm
(schedule length = 17); (b) A scheduling trace of the MD algorithm
(N.C. indicates “not considered”, N.R. indicates “no room”).
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Performance on fork and join: Since the DCP algorithm examines the first unscheduled node

on the current critical path by using mobility measures, it constructs optimal solutions for

fork and join graph structures.

6.3.7 Other UNC Approaches

Kim and Yi [96] proposed a two-pass scheduling algorithm with time-complexity

. The idea of the algorithm comes from the scheduling of in-trees. Kim and Yi

observed that an in-tree can be efficiently scheduled by iteratively merging a node to the

parent node that allows the earliest completion time. To extend this idea to arbitrary

structured DAGs, Kim and Yi devised a two-pass algorithm. In the first pass, an independent

v-graph is constructed for each exit node and an iterative scheduling process is carried out on

the v-graphs. This phase is called forward-scheduling. Since some intermediate nodes may be

assigned to different processors in different schedules, a backward-scheduling phase—the

PE 0 PE 1 PE 2 

Step AEST ALST Cri. Child PE0 PE1 PE2 PE3

1 0 0 0+10* N.C. N.C. N.C.
2 12 12 10+19* 12+19 N.C. N.C.
3 6 6 2+5* 6+9 N.C. N.C.
4 3 3 N.R. 3+7* N.C. N.C.
5 8 8 N.C. 7+15* 8+15 N.C.
6 3 3 N.R. N.R. 3+7* N.C.
7 16 16 NIL 16+0 15+0* N.C. 16+0
8 6 6 N.R. 11+0* N.C. 6+15
9 3 11 NIL 9+0 N.R. 6+0* N.C.
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Figure 12: (a) The schedule generated by the DCP algorithm
(schedule length = 16); (b) A scheduling trace of the DCP algorithm
(N.C. indicates “not considered”, N.R. indicates “no room”).
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second pass of the algorithm—is needed to resolve the conflicts. In their simulation study, the

two-pass algorithm outperformed a simulated annealing approach. Moreover, as the

principles of the algorithm originated from scheduling trees, the algorithm is optimal for

both fork and join structures.

6.3.8 Theoretical Analysis for UNC Scheduling

In addition to the granularity analysis performed for the DSC algorithm, Yang and

Gerasoulis [171] worked on the general analysis for UNC scheduling. They introduced a

notion called  which is defined below.

Definition 3: Let  be the optimum schedule length at step i of a UNC scheduling

algorithm. A UNC scheduling algorithm is called  if  where  is

a given constant.

In their study, they examined two critical-path-based simple UNC scheduling heuristics

called RCP and RCP*. Essentially, both heuristics use b-level as the scheduling priority but

with a slight difference in that RCP* uses (b-level – ) as the priority. They showed that

both heuristics are , and thus, demonstrated that critical path based scheduling

algorithms are near-optimal.

6.4  BNP Scheduling

In this section we survey the BNP class of scheduling algorithms. In particular we discuss

in detail six BNP scheduling algorithms: the HLFET, ISH, MCP, ETF, DLS, and LAST

algorithms. Again the DAG shown in Figure 3 is used to illustrate the scheduling process of

these algorithms. The analytical performance bounds of BNP scheduling will also be

discussed in the last subsection.

6.4.1 The HLFET Algorithm

The HLFET (Highest Level First with Estimated Times) algorithm [1] is one of the

simplest list scheduling algorithms and is described below. 

(1) Calculate the static b-level (i.e., sl or static level) of each node.
(2) Make a ready list in a descending order of static b-level. Initially, the ready list

contains only the entry nodes. Ties are broken randomly.

Repeat

(3) Schedule the first node in the ready list to a processor that allows the earliest
execution, using the non-insertion approach.

δ-lopt

SLi
lopt

δ-lopt maxi SLi SLi
lopt–{ } δ≤ δ

w ni( )
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(4) Update the ready list by inserting the nodes that are now ready.

Until all nodes are scheduled.

The time-complexity of the HLFET algorithm is . For the DAG shown in Figure 3,

the HLFET algorithm generates a schedule shown in Figure 13(a). The steps of scheduling are

given in the table shown in Figure 13(b). In the table, the start-times of the node on the

processors at each scheduling step are given and the node is scheduled to the processor on

which the start-time is marked by an asterisk.

Performance on fork and join: Since the HLFET algorithm schedules nodes based on b-level

only, it cannot guarantee optimal schedules for fork and join structures even if given

sufficient processors.

O v2( )

PE 0 PE 1 PE 2 PE 3 

Step PE0 PE1 PE2 PE3

1 0* N.C. N.C. N.C.
2 2* 3 N.C. N.C.
3 6* 6 N.C. N.C.
4 9 3* N.C. N.C.
5 9 6 3* N.C.
6 9* 10 10 10
7 13 12* 12 12
8 13 16 8 7*
9 22 18* 22 22
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Figure 13: (a) The schedule generated by the HLFET algorithm (schedule length = 19);
(b) A scheduling trace of the HLFET algorithm (N.C. indicates “not considered”).
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6.4.2 The ISH Algorithm

The ISH (Insertion Scheduling Heuristic) algorithm [98] uses the “scheduling holes”—

the idle time slots—in the partial schedules. The algorithm tries to fill the holes by scheduling

other nodes into them and uses static b-level as the priority of a node. The algorithm is briefly

described below.

(1) Calculate the static b-level of each node.
(2) Make a ready list in a descending order of static b-level. Initially, the ready list

contains only the entry nodes. Ties are broken randomly.

Repeat

(3) Schedule the first node in the ready list to the processor that allows the earliest
execution, using the non-insertion algorithm.

(4) If scheduling of this node causes an idle time slot, then find as many nodes as
possible from the ready list that can be scheduled to the idle time slot but cannot be
scheduled earlier on other processors.

(5) Update the ready list by inserting the nodes that are now ready.

Until all nodes are scheduled.

The time-complexity of the ISH algorithm is . For the DAG shown in Figure 3, the

ISH algorithm generates a schedule shown in Figure 14(a). The steps of scheduling are given

in the table shown in Figure 14(b). In the table, the start-times of the node on the processors at

each scheduling step are given and the node is scheduled to the processor on which the start-

time is marked by an asterisk. Hole tasks are the nodes considered for scheduling into the

idle time slots.

Performance on fork and join: Since the ISH algorithm schedules nodes based on b-level only,

it cannot guarantee optimal schedules for fork and join structures even if given sufficient

processors.

6.4.3 The MCP Algorithm

The MCP (Modified Critical Path) algorithm [170] uses the ALAP of a node as the

scheduling priority. The MCP algorithm first computes the ALAPs of all the nodes, then

constructs a list of nodes in an ascending order of ALAP times. Ties are broken by

considering the ALAP times of the children of a node. The MCP algorithm then schedules the

nodes on the list one by one such that a node is scheduled to a processor that allows the

earliest start-time using the insertion approach. The MCP algorithm and the ISH algorithm

have different philosophies in utilizing the idle time slot: MCP looks for an idle time slot for a

O v2( )
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given node, while ISH looks for a hole node to fit in a given idle time slot. The algorithm is

briefly described below. 

(1) Compute the ALAP time of each node.
(2) For each node, create a list which consists of the ALAP times of the node itself and

all its children in a descending order. 
(3) Sort these lists in an ascending lexicographical order. Create a node list according to

this order.

Repeat

(4) Schedule the first node in the node list to a processor that allows the earliest
execution, using the insertion approach.

(5) Remove the node from the node list.

Until the node list is empty.

The time-complexity of the MCP algorithm is . For the DAG shown in Figure

PE 0 PE 1 PE 2 PE 3 

Step PE0 PE1 PE2 PE3 Idle Slot Hole Tasks (start-time)

1 0* N.C. N.C. N.C. NIL NIL
2 2* 3 N.C. N.C. NIL NIL
3 6 3* N.C. N.C. [0..3] (6), (3)
4 6 6 6* N.C. [0..6] (3), (7)
5 6 6 9 3* [0..3] (10), (12), (7)
6 7* 7 9 8 [6..7] (10), (10)
7 11* 12 12 12 NIL NIL
8 15 10 9* 10 NIL NIL
9 18* 21 21 21 [15..18] NIL
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Figure 14: (a) The schedule generated by the ISH algorithm (schedule length = 19);
(b) A scheduling trace of the ISH algorithm (N.C. indicates “not considered”).
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3, the MCP algorithm generates a schedule shown in Figure 15(a). The steps of scheduling are

given in the table shown in Figure 15(b). In the table, the start-times of the node on the

processors at each scheduling step are given and the node is scheduled to the processor on

which the start-time is marked by an asterisk.

Performance on fork and join: Since the MCP algorithm schedules nodes based on ALAP

(effectively based on b-level) only, it cannot guarantee optimal schedules for fork and join

structures even if given sufficient processors.

6.4.4 The ETF Algorithm

The ETF (Earliest Time First) algorithm [83] computes, at each step, the earliest start-times

for all ready nodes and then selects the one with the smallest start-time. Here, the earliest

start-time of a node is computed by examining the start-time of the node on all processors

PE 0 PE 1 PE 2 PE 3 

Step PE0 PE1 PE2 PE3

1 0* N.C. N.C. N.C.
2 2* 3 N.C. N.C.
3 6* 6 N.C. N.C.
4 9 3* N.C. N.C.
5 9* 12 12 N.C.
6 13 10* 10 N.C.
7 13 14 7* N.C.
8 13 14 11 3*
9 19* 19 19 19
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Figure 15: (a) The schedule generated by the MCP algorithm (schedule length = 20);
(b) A scheduling trace of the MCP algorithm (N.C. indicates “not considered”).
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exhaustively. When two nodes have the same value in their earliest start-times, the ETF

algorithm breaks the tie by scheduling the one with the higher static priority. The algorithm is

described below

(1) Compute the static b-level of each node.
(2) Initially, the pool of ready nodes includes only the entry nodes.

Repeat

(3) Calculate the earliest start-time on each processor for each node in the ready pool.
Pick the node-processor pair that gives the earliest time using the non-insertion
approach. Ties are broken by selecting the node with a higher static b-level. Schedule
the node to the corresponding processor.

(4) Add the newly ready nodes to the ready node pool.

Until all nodes are scheduled.

The time-complexity of the ETF algorithm is . For the DAG shown in Figure 3, the

ETF algorithm generates a schedule shown in Figure 16(a). The steps of scheduling are given

in the table shown in Figure 16(b). In the table, the start-times of the node on the processors at

each scheduling step are given and the node is scheduled to the processor on which the start-

time is marked by an asterisk.

Performance on fork and join: Since the ETF algorithm schedules nodes based on b-level only,

it cannot guarantee optimal schedules for fork and join structures even if given sufficient

processors.

Hwang et al. also analyzed the performance bound of the ETF algorithm [83]. They

showed that the schedule length produced by the ETF algorithm  satisfies the following

relation:

where  is the optimal schedule length without considering communication delays and C

is the communication requirements over some parent-parent pairs along a path. An

algorithm is also provided to compute C.

6.4.5 The DLS Algorithm

The DLS (Dynamic Level Scheduling) algorithm [154] uses an attribute called dynamic

level (DL) which is the difference between the static b-level of a node and its earliest start-time

on a processor. At each scheduling step, the algorithm computes the DL for every node in the

ready pool on all processors. The node-processor pair which gives the largest value of DL is
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selected for scheduling. This mechanism is similar to the one used by the ETF algorithm.

However, there is one subtle difference between the ETF algorithm and the DLS algorithm:

the ETF algorithm always schedules the node with the minimum earliest start-time and uses

static b-level merely to break ties. In contrast, the DLS algorithm tends to schedule nodes in a

descending order of static b-levels at the beginning of scheduling process but tends to

schedule nodes in an ascending order of t-levels (i.e., the earliest start-times) near the end of

the scheduling process.The algorithm is briefly described below.

(1) Calculate the b-level of each node. 
(2) Initially, the ready node pool includes only the entry nodes.

Repeat 

(3) Calculate the earliest start-time for every ready node on each processor. Hence,
compute the DL of every node-processor pair by subtracting the earliest start-time
from the node’s static b-level. 

(4) Select the node-processor pair that gives the largest DL. Schedule the node to the

PE 0 PE 1 PE 2 

Step PE0 PE1 PE2 PE3

1 0* N.C. N.C. N.C.
2 2* 3 N.C. N.C.
3 6 3* N.C. N.C.
4 6 6 3* N.C.
5 6* 6 8 N.C.
6 9 7* 8 N.C.
7 9* 11 10 N.C.
8 13 12* 12 N.C.
9 22 18* 22 N.C.
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Figure 16: (a) The schedule generated by the ETF algorithm (schedule length = 19);
(b) A scheduling trace of the ETF algorithm (N.C. indicates “not considered”).
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corresponding processor.
(5) Add the newly ready nodes to the ready pool.

Until all nodes are scheduled.

The time-complexity of the DLS algorithm is . For the DAG shown in Figure 3, the

ETF algorithm generates a schedule shown in Figure 17(a). The steps of scheduling are given

in the table shown in Figure 17(b). In the table, the start-times of the node on the processors at

each scheduling step are given and the node is scheduled to the processor on which the start-

time is marked by an asterisk.

Performance on fork and join: Even though the DLS algorithm schedules nodes based on

dynamic levels, it cannot guarantee optimal schedules for fork and join structures even if

given sufficient processors.

O pv3( )

PE 0 PE 1 PE 2 

Step sl PE0 PE1 PE2 PE3 DL

1 11 0* N.C. N.C. N.C. 11
2 9 2* 3 N.C. N.C. 6
3 8 6 3* N.C. N.C. 5
4 8 6* 6 N.C. N.C. 2
5 5 9 6 3* N.C. 2
6 5 9 7* 8 N.C. -2
7 5 9* 11 10 N.C. -4
8 5 13 12* 12 N.C. -7
9 1 22 18* 22 N.C. -17
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Figure 17: (a) The schedule generated by the DLS algorithm (schedule length = 19);
(b) A scheduling trace of the DLS algorithm (N.C. indicates “not considered”).
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6.4.6 The LAST Algorithm

The LAST (Localized Allocation of Static Tasks) algorithm [17] is not a list scheduling

algorithm, and uses for node priority an attribute called D_NODE, which depends only on

the incident edges of a node. D_NODE is defined below:

In the above definition, D_EDGE is equal to 1 if one of the nodes on the edge is assigned

to some processor. The main goal of the LAST algorithm is to minimize the overall

communication. The algorithm is briefly described below.

(1) For each entry node, set its D_NODE to be 1. Set all other D_NODEs to 0.

Repeat

(2) Let candidate be the node with the highest D_NODE value.
(3) Schedule candidate to the processor which allows the minimum start-time.
(4) Update the D_EDGE and D_NODE values of all adjacent nodes of candidate.

Until all nodes are scheduled.

The time-complexity of the LAST algorithm is . For the DAG shown in

Figure 3, the LAST algorithm generates a schedule shown in Figure 18(a). The steps of

scheduling are given in the table shown in Figure 18(b). In the table, the start-times of the

node on the processors at each scheduling step are given and the node is scheduled to the

processor on which the start-time is marked by an asterisk.

Performance on fork and join: Since the LAST algorithm schedules nodes based on edge

costs only, it cannot guarantee optimal schedules for fork and join structures even if given

sufficient processors.

6.4.7 Other BNP Approaches

McCreary and Gill [120] proposed a BNP scheduling technique based on the clustering

method. In the algorithm, the DAG is first parsed into a set of CLANs. Informally, two nodes

 and  are members of the same CLAN if and only if parents of  outside the CLAN are

also parents of , and children of  outside the CLAN are also children of . Essentially a

CLAN is a subset of nodes where every element outside the set is related in the same way to

each member in the set. The CLANs so derived are hierachically related by a parse tree. That

is, a CLAN can be a subset of another CLAN of larger size. Trivial CLANs include the single

D_NODE ni( )
c nk ni,( ) D_EDGE nk ni,( ) c ni nj,( ) D_EDGE ni nj,( )∑+∑

c nk ni,( ) c ni nj,( )∑+∑
-----------------------------------------------------------------------------------------------------------------------------------------------------.=
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nodes and the whole DAG. Depending upon the number of processors available, the CLAN

parse tree is traversed to determine the optimal CLAN size for assignment so as to reduce the

schedule length.

Sih and Lee [155] reported a BNP scheduling scheme which is also based on clustering.

The algorithm is called declustering because upon forming a hierarchy of clusters the optimal

cluster size is determined possibly by cracking some large clusters in order to gain more

parallelism while minimizing schedule length. Thus, using similar principles as in McCreary

and Gill’s approach, Sih and Lee’s scheme also traverses the cluster hierarchy from top to

bottom in order to match the level of cluster granularity to the characteristic of the target

architecture. The crucial difference between their methods is in the cluster formation stage.

While McCreary and Gill’s method is based on CLANs construction, Sih and Lee’s approach

is to isolate a collection of edges that are likely candidates for separating the nodes at both

ends onto different processors. These cut-edges are temporarily removed from the DAG and

PE 0 PE 1 PE 2 PE 3 

Step D_NODE PE0 PE1 PE2 PE3

1 1.00 0* N.C. N.C. N.C.
2 1.00 2* 3 N.C. N.C.
3 0.67 7 6* N.C. N.C.
4 0.59 10* 12 12 N.C.
5 0.50 14 9 3* N.C.
6 0.50 14 9 7 3*
7 0.29 14 9 7* 8
8 0.17 14 9* 11 10
9 1.00 18* 20 20 20
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Figure 18: (a) The schedule generated by the LAST algorithm (schedule length = 19);
(b) A scheduling trace of the LAST algorithm (N.C. indicates “not considered”).
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the algorithm designates each remaining connected component as an elementary cluster. 

Lee, Hurson, and Feng [108] reported a BNP scheduling algorithm targeted for data-flow

multiprocessors based on a vertical layering method for the DAG. In their scheme, the DAG

is first partitioned into a set of vertical layers of nodes. The initial set of vertical layers is built

around the critical path of the DAG and is then optimized by considering various cases of

accounting for possible inter-processor communication, which may in turn induce new

critical paths. Finally, the vertical layers of nodes are mapped to the given processors in order

to minimize the schedule length.

Zhu and McCreary [176] reported a set of BNP scheduling algorithms for trees. They first

devised an algorithm for finding optimal schedules for trees, in particular, binary trees.

Nonetheless the algorithm is of exponential complexity since optimal scheduling of trees is

an NP-complete problem. They then proposed a number of heuristic approaches that can

generate reasonably good solutions within a much shorter amount of time. The heuristics are

all greedy in nature in that they attempt to minimize the completion times of paths in the tree

and exploit only a small number of possible paths in the search of a good schedule. 

Varvarigou, Roychowdhury, Kallath, and Lawler [163] proposed a BNP scheduling

scheme for in-forests and out-forests. However, their algorithm assumes that the trees are

with unit computation costs and unit communication costs. Another distinctive feature of

their algorithm is that the time-complexity is pseudo-polynomial— , which is

polynomial if p is fixed and small. The idea of their algorithm is to first transform the trees

into delay-free trees, which are then scheduled using an optimal merging algorithm. This

transformation step is crucial and is done as follows. For each node, a successor node is

selected to be scheduled immediately after the node. Then, since the communication costs are

unit, the communication costs between the node and all other successors can be dropped.

Only an extra communication free edge is needed to add between the chosen successor and

the other successors. The successor node is so selected that the resulting DAG does not

violate the precedence constraints of the original DAG.

Pande, Agrawal, and Mauney [131] proposed a BNP scheduling scheme using a

thresholding technique. The algorithm first computes the earliest start-times and latest start-

times of the nodes. A threshold for a node is then the difference between its earliest and the

latest start-times. A global threshold is varied between the minimum threshold among the

nodes to the maximum. For a node with threshold less than the global value, a new processor

is allocated for the node, if there is any available. For a node with threshold above the global

O v2p( )
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value, the node is then scheduled to the same processor as its parent which allows the earliest

start-time. The rationale of the scheme is that as the threshold of a node represents the

tolerable delay of execution without increasing overall schedule length, a node with smaller

threshold deserves a new processor so that it can start as early as possible. Depending upon

the number of given processors, there is a trade-off between parallelism and schedule length,

and the global threshold is adjusted accordingly. 

6.4.8 Analytical Performance Bounds of BNP Scheduling

For the BNP class of scheduling algorithms, Al-Mouhamed [12] extended Fernandez et

al.’s [54] work (described in Section 6.2.3) and devised a bound on the minimum number of

processors for optimal schedule length and a bound on the minimum increase in schedule

length if only a certain smaller number of processor is available. Essentially, Al-Mouhamed

extended the techniques of Fernandez et al. for arbitrary DAGs with communication.

Furthermore, the expressions for the bounds are similar to the ones reported by Fernandez et

al. except that Al-Mouhamed conjectured that the bounds need not be computed across all

possible integer intervals within the earliest completion time of the DAG. However, Jain and

Rajaraman [86] in a subsequent study found that the computation of these bounds in fact

needs to consider all the integer intervals within the earliest completion time of the DAG.

They also reported a technique to partition the DAGs into nodes with non-overlapping

intervals so that a tighter bound is obtained. In addition, the new bounds can take lesser time

to compute. Jain and Rajaraman also found that using such a partitioning facilitates all

possible integer intervals to be considered in order to compute a tighter bound. 

6.5  TDB Scheduling

In this section we survey the TDB class of DAG scheduling algorithms. We describe in

detail six TDB scheduling algorithms: the PY, LWB, DSH, BTDH, LCTD, and CPFD

algorithms. The DAG shown in Figure 3 is used to illustrate the scheduling process of these

algorithms. 

In the following we do not discuss the performance of the TDB algorithms on fork and

join sets separately because with duplication the TDB scheduling schemes can inherently

produce optimal solutions for these two primitive structures. For a fork set, a TDB algorithm

duplicates the root on every processor so that each child starts at the earliest possible time.

For a join set, although no duplication is needed to start the sink node at the earliest time, all

the TDB algorithms surveyed in this section employ a similar recursive scheduling process to

minimize the start-times of nodes so that an optimal schedule results. 
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6.5.1 The PY Algorithm

The PY algorithm (named after Papadimitriou and Yannakakis) [136] is an approximation

algorithm which uses an attribute, called e-value, to approximate the absolute achievable

lower bound of the start-time of a node. This attribute is computed recursively beginning

from the entry nodes to the exit nodes. A procedure for computing the e-values is given

below.

(1) Construct a list of nodes in topological order. Call it TopList.
(2) for each node  in TopList do
(3) if  has no parent then  = 0 
(4) else
(5) for each parent  of  do  endfor
(6) Construct a list of parents in decreasing f. Call it ParentList.
(7) Let min_e = the f value of the first parent in ParentList
(8) Make  as a single node cluster. Call it Cluster( ).
(9) for each parent  in ParentList do
(10) Include Cluster( ) in Cluster( ).
(11) Compute the new min_e (i.e., start-time) of  in Cluster( ).
(12) if new min_e > original min_e then exit this for-loop endif
(13) endfor
(14)  = min_e
(15) endif
(16) endfor

After computing the e-values, the algorithm inserts each node into a cluster, in which a

group of ancestors are to be duplicated such that the ancestors have data arrival times larger

than the e-value of the node. Papadimitriou and Yannakakis also showed that the schedule

length generated is within a factor of two from the optimal. The PY algorithm is briefly

described below.

(1) Compute e-values for all nodes.
(2) for each node  do
(3) Assign  to a new processor PE i.
(4) for all ancestors of , duplicate an ancestor  if:

(5) Order the nodes in PE i so that a node starts as soon as all its data is available.
(6) endfor

The time-complexity of the PY algorithm is . For the DAG shown in

Figure 3, the PY algorithm generates a schedule shown in Figure 19(a). The e-values are also

shown in Figure 19(b).
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6.5.2 The LWB Algorithm

We call the algorithm the LWB (Lower Bound) algorithm [37] based on its main principle:

it first determines the lower bound start-time for each node, and then identifies a set of

critical edges in the DAG. A critical edge is the one in which a parent’s message-available

time for the child is greater than the lower bound start-time of the child. Colin and

Chrietenne [37] showed in that the LWB algorithm can generate optimal schedules for DAGs

in which node weights are strictly larger than any edge weight.The LWB algorithm is briefly

described below.

(1) For each node , compute its lower bound start-time, denoted by , as
follows:

a) For any entry node ,  is zero. 

b) For any node  other than an entry node, consider the set of its parents. Let  be
the parent such that  is the largest among all parents.
Then, the lower bound of , , is given by, with ,

(2) Consider the set of edges in the task graph. An edge  is labelled as “critical”
if . 

(3) Assign each path of critical edges to a distinct processor such that each node is
scheduled to start at its lower bound start-time.

The time-complexity of the LWB algorithm is . For the DAG shown in Figure 3, the

LWB algorithm generates a schedule shown in Figure 19(a). The lower bound values are also

shown in Figure 19(b).

PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 PE 6

0
2
2
2
2
5
5
6
14

ni e ni( )

n1

n2

n3

n4

n5

n6

n7

n8

n9

n1

2

n2

3
n5

5

n9
1

n3

3

n7

4

n4

4

0

5

10

15

20

n8 

4

n6

4

Figure 19: (a) The schedule generated by the PY algorithm (schedule
length = 21); (b) The e-values of the nodes computed by the PY algorithm.
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6.5.3 The DSH Algorithm

The DSH (Duplication Scheduling Heuristic) algorithm [99] considers each node in a

descending order of their priorities. In examining the suitability of a processor for a node, the

DSH algorithm first determines the start-time of the node on the processor without

duplication of any ancestor. Then, it considers the duplication in the idle time period from the

finish-time of the last scheduled node on the processor and the start-time of the node

currently under consideration. The algorithm then tries to duplicate the ancestors of the node

into the duplication time slot until either until the slot is used up or the start-time of the node

does not improve. The algorithm is briefly described below.

(1) Compute the static b-level for each node.

Repeat

(2) Let ni be an unscheduled node with the largest static b-level.
(3) For each processor P, do:

a) Let the ready time of P, denoted by RT, be the finish-time of the last node on P.
Compute the start-time of ni on P and denote it by ST. Then the duplication time
slot on P has length . Let candidate be ni.

b) Consider the set of candidate’s parents. Let nx be the parent of ni which is not
scheduled on P and whose message for candidate has the latest arrival time. Try to
duplicate nx into the duplication time slot.

c) If the duplication is unsuccessful, then record ST for this processor and try
another processor; otherwise, let ST be candidate’s new start-time and candidate be

PE 0 PE 1 PE 2 PE 3 PE 4

lwb

0
2
2
2
2
5
5
6
15

ni

n1

n2

n3

n4

n5

n6

n7

n8

n9

n1

2

n2

3
n5

5

n9
1

n3

3

n7

4

n4

4

0

5

10

15

20

n8 

4

n6

4

Figure 20: (a) The schedule generated by the LWB algorithm (schedule length = 16);
(b) The lwb (lower bound) values of the nodes computed by the LWB algorithm.
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nx. Goto step b).
(4) Let P’ be the processor that gives the earliest start-time of ni. Schedule ni to P’ and

perform all the necessary duplication on P’.

Until all nodes are scheduled.

The time-complexity of the DSH algorithm is . For the DAG shown in Figure 3, the

DSH algorithm generates a schedule shown in Figure 21(a). The steps of scheduling are given

in the table shown in Figure 21(b). In the table, the start-times of the node on the processors at

each scheduling step are given and the node is scheduled to the processor on which the start-

time is marked by an asterisk.

6.5.4 The BTDH Algorithm

The BTDH (Bottom-Up Top-Down Duplication Heuristic) algorithm [34] is an extension

of the DSH algorithm described above. The major improvement of the BTDH algorithm over

O v4( )

PE 0 PE 1 PE 2 PE 3 PE 4

Step PE 0 PE 1 PE 2 PE 3 PE 4 PE 5 Nodes Dup.

1 0* N.C. N.C. N.C. N.C. N.C. NIL
2 2* 2 N.C. N.C. N.C. N.C. NIL
3 6 2* N.C. N.C. N.C. N.C.
4 6 5 2* N.C. N.C. N.C.
5 N.C. 5* 6 N.C. N.C. N.C. NIL
6 6* N.C. 7 7 N.C. N.C. NIL
7 10 9 6 5* N.C. N.C. , 
8 10 9 5 9 2* N.C.
9 14* 15 N.C. 15 N.C. 15
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Figure 21: (a) The schedule generated by the DSH algorithm (schedule length
= 15); (b) A scheduling trace of the DSH algorithm.
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the DSH algorithm is that the algorithm keeps on duplicating ancestors of a node even if the

duplication time slot is totally used up (i.e., the start-time of the node temporarily increases)

with the hope that the start-time will eventually be minimized. That is, the BTDH algorithm

is the same as the DSH algorithm except for step (3)c) of the latter in that the duplication of an

ancestor is considered successful even if the duplication time slot is used up. The process

stops only when the final start-time of the node is greater than before the duplication. The

time-complexity of the BTDH algorithm is also . For the DAG shown in Figure 3, the

BTDH algorithm generates the same schedule as the DSH algorithm which is shown in

Figure 21(a). The scheduling process is also the same except at step 5 when node  is

considered for scheduling on PE 2, the start-time computed by the BTDH algorithm is also 5

instead of 6 as computed by the DSH algorithm. This is because the BTDH algorithm does

not stop the duplication process even though the start-time increases.

6.5.5 The LCTD Algorithm

The LCTD (Linear Clustering with Task Duplication) algorithm [30] is based on linear

clustering of the DAG. After performing the clustering step, the LCTD algorithm identifies

the edges among clusters that determines the completion time. Then, it tries to duplicate the

parents corresponding to these edges to reduce the start-times of some nodes in the clusters.

The algorithm is described below.

(1) Apply the LC algorithm to the DAG to generate a set of linear clusters.
(2) Schedule each linear cluster to a distinct processor and let the nodes start as early as

possible on the processors.
(3) For each linear cluster  do:

a) Let the first node in  be .

b) Consider the set of ’s parents. Select the parent that allows the largest reduction
of ’s start-time. Duplicate this parent and all the necessary ancestors to .

c) Let  be the next node in . Goto step b).
(4) Consider each pair of processors. If their schedules have enough common nodes so

that they can be merged without increasing the schedule length, then merge the two
schedules and discard one processor.

The time-complexity of the LCTD algorithm is . For the DAG shown in Figure

3, the LCTD algorithm generates a schedule shown in Figure 22(a). The steps of scheduling

are given in the table shown in Figure 22(b). In the table, the original start-times of the node

on the processors after the linear clustering step are given. In addition, the improved start-

times after duplication are also given.
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6.5.6 The CPFD Algorithm

The CPFD (Critical Path Fast Duplication) algorithm [4], proposed by Ahmad and Kwok,

is based on partitioning the DAG into three categories: critical path nodes (CPN), in-branch

nodes (IBN) and out-branch nodes (OBN). An IBN is a node from which there is a path

reaching a CPN. An OBN is a node which is neither a CPN nor an IBN. Using this

partitioning of the graph, the nodes can be ordered in decreasing priority as a list called the

CPN-Dominant Sequence. In the following, we first describe the construction of this

sequence.

In a DAG, the CP nodes (CPNs) are the most important nodes since their finish-times

effectively determine the final schedule length. Thus, the CPNs in a task graph should be

considered as early as possible for scheduling in the scheduling process. However, we cannot

consider all the CPNs without first considering other nodes because the start-times of the

CPNs are determined by their parent nodes. Therefore, before we can consider a CPN for

PE 0 PE 1 PE 2 PE 3 PE 4

Step Org. ST New ST Nodes Dup.

1 0 0 NIL
2 10 5
3 18 16
4 3 2
5 7 7 NIL
6 6 2
7 9 5 NIL
8 3 2
9 3 2
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Figure 22: (a) The schedule generated by the LCTD algorithm (schedule
length = 17); (b) A scheduling trace of the LCTD algorithm.
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scheduling, we must first consider all its parent nodes. In order to determine a scheduling

order in which all the CPNs can be scheduled as early as possible, we classify the nodes of the

DAG into three categories given in the following definition.

Definition 4: In a connected graph, an In-Branch Node (IBN) is a node, which is not a CPN,

and from which there is a path reaching a Critical Path Node (CPN). An Out-Branch Node

(OBN) is a node, which is neither a CPN nor an IBN.

After the CPNs, the most important nodes are IBNs because their timely scheduling can

help reduce the start-times of the CPNs. The OBNs are relatively less important because they

usually do not affect the schedule length. Based on this reasoning, we make a sequence of

nodes called the CPN-Dominant sequence which can be constructed by the following

procedure:

Construction of CPN-Dominant Sequence:
(1) Make the entry CPN to be the first node in the sequence. Set Position to 2. Let  be

the next CPN.

Repeat

(2) If  has all its parent nodes in the sequence then 
(3)  Put  at Position in the sequence and increment Position. 
(4) else
(5) Suppose  is the parent node of  which is not in the sequence and has the

largest b-level. Ties are broken by choosing the parent with a smaller t-level. If 
has all its parent nodes in the sequence, put  at Position in the sequence and
increment Position. Otherwise, recursively include all the ancestor nodes of  in
the sequence so that the nodes with a larger communication are considered first. 

(6) Repeat the above step until all the parent nodes of  are in the sequence. Put 
in the sequence at Position.

(7) endif 
(8) Make  to be the next CPN.

Until all CPNs are in the sequence.

(9) Append all the OBNs to the sequence in a decreasing order of b-level.

The CPN-Dominant sequence preserves the precedence constraints among nodes as the

IBNs reaching a CPN are always inserted before the CPN in the CPN-Dominant sequence. In

addition, the OBNs are appended to the sequence in a topological order so that a parent OBN

is always in front of a child OBN. 

The CPN-Dominant sequence of the DAG shown in Figure 3 is constructed as follows.

nx

nx
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ny nx
ny

ny
ny

nx nx

nx
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Since  is the entry CPN, it is placed in the first position in the CPN-Dominant sequence.

The second node is  because it has only one parent node. After  is appended to the CPN-

Dominant sequence, all parent nodes of  have been considered and can, therefore, also be

added to the sequence. Now, the last CPN,  is considered. It cannot be appended to the

sequence because some of its parent nodes (i.e., the IBNs) have not been examined yet. Since

both  and  have the same b-level but has a smaller t-level,  is considered first.

However, both parent nodes of  have not been examined, thus, its two parent nodes, 

and  are appended to the CPN-Dominant sequence first. Next,  is appended followed by

. The only OBN, , is the last node in the CPN-Dominant sequence. The final CPN-

Dominant sequence is as follows:  (see Figure 3(b); the CPNs are

marked by an asterisk). Note that using sl (static level) as a priority measure will generate a

different ordering of nodes: . 

Based on the CPN-Dominant sequence, the CPFD algorithm is briefly described below.

(1) Determine a critical path. Partition the task graph into CPNs, IBNs, and OBNs. Let
candidate be the entry CPN.

Repeat

(2) Let P_SET be the set of processors containing the ones accommodating the parents
of candidate plus an empty processor.

(3) For each processor P in P_SET, do:

a) Determine candidate’s start-time on P and denote it by ST.

b) Consider the set of candidate’s parents. Let m be the parent which is not scheduled
on P and whose message for candidate has the latest arrival time.

c) Try to duplicate m on the earliest idle time slot on P. If the duplication is successful
and the new start-time of candidate is less than ST, then let ST be the new start-time
of candidate. Change candidate to m and goto step a). If the duplication is
unsuccessful, then return control to examine another parent of the previous
candidate.

(4) Schedule candidate to the processor P’ that gives the earliest start-time and perform
all the necessary duplication.

(5) Let candidate be the next CPN.

Until all CPNs are scheduled.

(6) Repeat the process from step (2) to step (5) for each OBN with P_SET containing all
the processors in use together with an empty processor. The OBNs are considered
one by one topologically.

The time-complexity of the CPFD algorithm is . For the DAG shown in Figure 3,

the CPFD algorithm generates a schedule shown in Figure 23(a). The steps of scheduling are

given in the table shown in Figure 23(b). In this table, the start-times of the node on the
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processors at each scheduling step are given and the node is scheduled to the processor on

which the start-time is marked by an asterisk.

6.5.7 Other TDB Approaches

Anger, Hwang, and Chow [15] reported a TDB scheduling scheme called JLP/D (Joint

Latest Predecessor with Duplication). The algorithm is optimal if the communication costs

are strictly less than any computation costs, and there are sufficient processors available. The

basic idea of the algorithm is to schedule every node with its latest parent to the same

processor. Since a node can be the latest parent of several successors, duplication is necessary. 

Markenscoff and Li [118] reported a TDB scheduling approach based on an optimal

technique for scheduling in-trees. In their scheme, a DAG is first transformed into a set of in-

trees. A node in the DAG may appear in more than one in-tree after the transformation. Each

tree is then optimally scheduled independently and hence, duplication comes into play. 

In a recent study, Darbha and Agrawal [41] proposed a TDB scheduling algorithm using

similar principles as the LCTD algorithm. In the algorithm, a DAG is first parsed into a set of

PE 0 PE 1 PE 2 PE 3 PE 4

Step PE 0 PE 1 PE 2 PE 3 PE 4 Nodes Dup.

1 0* N.C. N.C. N.C. N.C. NIL
2 2* 2 N.C. N.C. N.C. NIL
3 5* 5 N.C. N.C. N.C. NIL
4 9 5* N.C. N.C. N.C. , 
5 9 9 2* N.C. N.C.
6 9 9 5 2* N.C.
7 N.C. N.C. 7 6* 6 NIL
8 14 15 14 14* N.C.
9 9 9 5 15 2*
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Figure 23: (a) The schedule generated by the CPFD algorithm (schedule
length = 15); (b) A scheduling trace of the CPFD algorithm.
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linear clusters. Then each cluster is examined to determine the critical nodes for duplication.

Critical nodes are the nodes that determine the data arrival time of the nodes in the cluster

but are themselves outside the cluster. Similar to the LCTD algorithm, the number of

processors required is also optimized by merging schedules with the same set of “prefix”

schedules.

Palis et al. [131] also investigated the problem of scheduling task graphs to processors

using duplication. They proposed an approximation TDB algorithm which produces

schedule lengths at most twice from the optimal. They also showed that the quality of the

schedule improves as the granularity of the task graph becomes larger. For example, if the

granularity is at least 1/2, the schedule length is at most 5/3 times optimal. The time-

complexity of the algorithm is , which is v times faster than the PY

algorithm proposed by Papadimitriou and Yannakakis [136]. In [131], similar algorithms

were also developed that produce: (1) optimal schedules for coarse grain graphs; (2) 2-

optimal schedules for trees with no task duplication; and (3) optimal schedules for coarse

grain trees with no task duplication.

6.6  APN Scheduling

In this section we survey the APN class of DAG scheduling algorithms. In particular we

describe in detail four APN algorithms: the MH (Mapping Heuristic) algorithm [49], the DLS

(Dynamic Level Scheduling) algorithm [154], the BU (Bottom Up) algorithm [122], and the

BSA (Bubble Scheduling and Allocation) algorithm [102]. Before we discuss these algorithms,

it is necessary to examine one of the most important issues in APN scheduling—the message

routing issue. 

6.6.1 The Message Routing Issue

In APN scheduling, a processor network is not necessarily fully-connected and

contention for communication channels need to be addressed. This in turn implies that

message routing and scheduling must also be considered. Recent high-performance

architectures (nCUBE-2 [82], iWarp [82], and Intel Paragon [140]) employ wormhole routing

[40] in which the header flit of a message establishes the path, intermediate flits follow the

path, and the tail flit releases the path. Once the header gets blocked due to link contention,

the entire message waits in the network, occupying all the links it is traversing. Hence, it is

increasingly becoming important to take link contention into account as compared to

distance when scheduling computations onto wormhole-routed systems. Routing strategies

can be classified as either deterministic or adaptive. Deterministic schemes, such as the e-cube

O v v v e+log( )( )
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routing for hypercube topology, construct fixed routes for messages and cannot avoid

contention if two messages are using the same link even when other links are free. Yet

deterministic schemes are easy to implement and routing decisions can be made efficiently.

On the other hand, adaptive schemes construct optimized routes for different messages

depending upon the current channel allocation in order to avoid link contention. However,

adaptive schemes are usually more complex as they require much state information to make

routing decisions.

Wang [166] suggested two adaptive routing schemes suitable for use in APN scheduling

algorithms. The first scheme is a greedy algorithm which seeks a locally optimal route for

each message to be sent between tasks. Instead of searching for a path with the least waiting

time, the message is sent through a link which yields the least waiting time among the links

that the processor can choose from for sending a message. Thus, the route is only locally

optimal. Using this algorithm, Wang observed that there are two types of possible blockings:

(i) a later message blocks an earlier message (called LBE blocking), and (ii) an earlier message

blocks a later message (called EBL blocking). LBE blocking is always more costly than EBL

blocking. In the case that several messages are competing for a link and blocking becomes

unavoidable, LBE blockings should be avoided as much as possible. Given this observation,

Wang proposed the second algorithm, called the least blocking algorithm, which works by

trying to avoid LBE blocking. The basic idea of the algorithm is to use Dijkstra’s shortest path

algorithm to arrange optimized routes for messages so as to avoid LBE blockings.

Having determined routes for messages, the scheduling of different messages on the links

is also an important aspect. Dixit-Radiya and Panda [46] proposed a scheme for ordering

messages in a link so as to further minimize the extent of link contention. Their scheme is

based on the Temporal Communication Graph (TCG) which, in addition to task precedence,

captures the temporal relationship of the communication messages. Using the TCG model,

the objective of which is to minimize the contention on the link, the earliest start-times and

latest start-times of messages can be computed. These values are then used to heuristically

schedule the messages in the links. 

6.6.2 The MH Algorithm

The MH (Mapping Heuristic) algorithm [49] first assigns priorities by computing the sl of

all nodes. A ready node list is then initialized to contain all entry nodes ordered in decreasing

priorities. Each node is scheduled to a processor that gives the smallest start-time. In

calculating the start-time of node, a routing table is maintained for each processor. The table
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contains information as to which path to route messages from the parent nodes to the node

under consideration. After a node is scheduled, all of its ready successor nodes are appended

to the ready node list. The MH algorithm is briefly described below. 

(1) Compute the sl of each node ni in the task graph.
(2) Initialize a ready node list by inserting all entry nodes in the task graph. The list is

ordered according to node priorities, with the highest priority node first.

Repeat

(3) ni ← the first node in the list
(4) Schedule ni to the processor which gives the smallest start-time. In determining the

start-time on a processor, all messages from the parent nodes are scheduled and
routed by consulting the routing tables associated with each processor. 

(5) Append all ready successor nodes of ni, according to their priorities, to the ready
node list.

Until the ready node list is empty.

The time-complexity of the MH algorithm is shown to be , where p is the

number of processors in the target system.

For the DAG shown in Figure 3(a), the schedule generated by the MH algorithm for a 4-

processor ring is shown in Figure 24. Here,  denotes a communication link between PE i

and PE j. The MH algorithm schedules the nodes in the following order: n1, n4, n3, n5, n2, n8, n7,

n6, n9. Note that the MH algorithm does not strictly schedule nodes according to a descending

order of sls (static levels) in that it uses the sl order to break ties. As can be seen from the

schedule shown in Figure 24, the MH algorithm schedules n4 first before n2 and n7, which are

more important nodes. This is due to the fact that both algorithms rank nodes according to a

descending order of their sls. The nodes n2 and n7 are more important because n7 is a CPN

and n2 critically affects the start-time of n7. As n4 has a larger static level, both algorithms

examine n4 first and schedule it to an early time slot on the same processor as n1. As a result,

n2 cannot start at the earliest possible time—the time just after n1 finishes.

6.6.3 The DLS Algorithm

The DLS (Dynamic Level Scheduling) algorithm [154] described in Section 6.4.5 can also

be used as an APN scheduling algorithm. However, the DLS algorithm requires a message

routing method to be supplied by the user. It then computes the earliest start-time of a node

on a processor by tentatively scheduling and routing all messages from the parent nodes

using the given routing table. 

O v p3v e+( )( )
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For APN scheduling, the time-complexity of the DLS algorithm is shown to be

, where  is the time-complexity of the message routing algorithm. For the

DAG shown in Figure 3(a), the schedule generated by the DLS algorithm for a 4-processor

ring is the same as that generated by the MH algorithm shown in Figure 24. The DLS

algorithm also schedules the nodes in the following order: n1, n4, n3, n5, n2, n8, n7, n6, n9.

6.6.4 The BU Algorithm

The BU (Bottom-Up) algorithm [122] first determines the critical path (CP) of the DAG

and then assigns all the nodes on the CP to the same processor. Afterwards, the algorithm

assigns the remaining nodes in a reversed topological order of the DAG to the processors.

The node assignment is guided by a load-balancing processor selection heuristic which

attempts to balance the load across all processors. The BU algorithm examines the nodes at

each topological level in a descending order of their b-levels. After all the nodes are assigned

to the processors, the BU algorithm tries to schedule the communication messages among

them using a channel allocation heuristic which tries to keep the hop count of every message

roughly a constant constrained by the processor network topology. Different network

topologies require different channel allocation heuristics. The BU algorithm is briefly

described below. 

(1) Find a critical path. Assign the nodes on the critical path to the same processor.
Mark these nodes as assigned and update the load of the processor.

Figure 24: The schedule generated by the MH and DLS algorithm
(schedule length = 20, total comm. costs incurred = 16).

n1

2

2→ 6 (1)

PE 0

n2

3

n5

5

n9
1

n3

3

n7

4

n4

4

0

5

10

15

20

n8 

4

n6

4

5 ←1 (1)

9 ← 6 (5)
7 → 9 (6)

4 → 8 (1)

1 → 3 (1)

2→ 6 (1)

L 01 L 12 L 23 L 30PE 1 PE 2 PE 3 

O v3pf p( )( ) f p( )



- 59 -

(2) Compute the b-level of each node. If the two nodes of an edge are assigned to the
same processor, the communication cost of the edge is taken to be zero.

(3) Compute the p-level (precedence level) of each node, which is defined as the
maximum number of edges along a path from an entry node to the node.

(4) In a decreasing order of p-level, for each value of p-level, do:
(a) In a decreasing order of b-level, for each node at the current p-level, assign the

node to a processor such that the processing load is balanced across all the
given processors.

(b) Re-compute the b-levels of all nodes.
(5) Schedule the communication messages among the nodes such that the hop count of

each message is maintained constant.

The time-complexity of the BU algorithm is shown to be .

For the DAG shown in Figure 3(a), the schedule generated by the BU algorithm† for a 4-

processor ring is shown in Figure 25. As can be seen, the schedule length is considerably

longer than that of the MH and DLS algorithms. This is because the BU algorithm employs a

processor selection heuristic which works by attempting to balance the load across all the

processors. .

6.6.5 The BSA Algorithm

The BSA (Bubble Scheduling and Allocation) algorithm [102] is proposed by us and is

†. In this example, we have used the PSH2 processor selection heuristic with . Such a
combination is shown [122] to give the best performance.

O v2 vlog( )

ρ 1.5=

n1

2

6← 2 (1)

PE 0

n2

3

n5

5

n9
1

n3

3

n7

4

n4

4

0

5

10

15

20

n8

4

n6

4

9 ← 8 (5)

4 → 8 (1)

1 → 3 (1)

2→ 7 (1)

L 01 L 12 L 23 L 30PE 1 PE 2 PE 3 

24

4 → 8 (1)

6 → 9 (5)6 → 9 (5)

4 ←1 (1)

2 ←1 (4)
1 → 5 (1) 1 → 5 (1)

Figure 25: The schedule generated by the BU algorithm
(schedule length = 24, total comm. costs incurred = 27).
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based on an incremental technique which works by improving the schedule through

migration of tasks from one processor to a neighboring processor. The algorithm first

allocates all the tasks to a single processor which has the highest connectivity in the processor

network and is called the pivot processor. In the first phase of the algorithm, the tasks are

arranged in the processor according to the CPN-Dominant sequence discussed earlier in

Section 6.5.6. In the second phase of the algorithm, the tasks migrate from the pivot processor

to the neighboring processors if the start-times improve. This task migration process

proceeds in a breadth-first order of the processor network in that after the migration process

is complete for the first pivot processor, one of the neighboring processor becomes the next

pivot processor and the process repeats. 

In the following outline of the BSA algorithm, the Build_processor_list() procedure

constructs a list of processors in a breadth-first order from the first pivot processor. The

Serial_injection() procedure constructs the CPN-Dominant sequence of the nodes and injects

this sequence to the first pivot processor.

The BSA Algorithm:
(1) Load processor topology and input task graph
(2) Pivot_PE ← the processor with the highest degree
(3) Build_processor_list(Pivot_PE)
(4) Serial_injection(Pivot_PE)
(5) while  Processor_list_not_empty do
(6)  Pivot_PE ← first processor of Processor_list
(7)  for  each  on Pivot_PE do
(8) if ST( , Pivot_PE) > DAT( , Pivot_PE) or Proc(VIP( )) =¼ Pivot_PE then
(9) Determine DAT and ST of  on each adjacent processor PE’
(10) if  there exists a PE’ s.t. ST( , PE’) < ST( , Pivot_PE) then
(11)  Make  to migrate from Pivot_PE to PE’ 
(12) Update start-times of nodes and messages
(13) else if ST( , PE’) = ST( ,Pivot_PE) and Proc(VIP( )) = PE’ then
(14) Make  to migrate from Pivot_PE to PE’
(15)  Update start-times of nodes and messages
(16)  end if
(17)  end if
(18) end for
(19) end while

The time-complexity of the BSA algorithm is .

The BSA algorithm, as shown in Figure 26(a), injects the CPN-Dominant sequence to the

first pivot processor PE 0. In the first phase, nodes n1, n2, and n7 do not migrate because they

are already scheduled to start at the earliest possible times. However, as shown in Figure
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26(b), node n4 migrates to PE 1 because its start-time improves. Similarly, as depicted in

Figure 26(c), node n3 also migrates to a neighboring processor PE 3. Figure 26(d) shows the

intermediate schedule after n8 migrates to PE 1 following its VIP n4. Similarly, n6 also migrates
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Figure 26: Intermediate schedules produced by BSA after (a) serial injection (schedule
length = 30, total comm. cost = 0); (b) n4 migrates from PE 0 to PE 1 (schedule length = 26,
total comm. cost = 2); (c) n3 migrates from PE 0 to PE 3 (schedule length = 23, total comm.
cost = 4); (d) n8 migrates from PE 0 to PE 1 (schedule length = 22, total comm. cost = 9).
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to PE 3 following its VIP n3, as shown in Figure 27(a). The last CPN, n9, migrates to PE 1 to

which its VIP n8 is scheduled. Such migration allows the only OBN n5 to bubble up. The

resulting schedule is shown in Figure 27(b). This is the final schedule as no more nodes can

improve the start-time through migration. 

6.6.6 Other APN Approaches

Kon’ya and Satoh [97] reported an APN scheduling algorithm for the hypercube

architectures. Their algorithm, called the LST (Latest Starting Time) algorithm, works by

using a list scheduling approach in that the priorities of nodes are first computed and a list is

constructed based on these priorities. The priority of a node is defined as its latest starting

time, which is determined before scheduling starts. Thus, the list is static and does not

capture the dynamically changing importance of nodes, which is crucial in APN scheduling.

In a later study, Selvakumar and Murthy [145] reported an APN scheduling scheme

which is an extension of Sih and Lee’s DLS algorithm. The distinctive new feature in their

algorithm is that it exploits schedule holes in processors and communication links in order to

produce better schedules. Essentially, it differs from the DLS algorithm in two respects: (i) the

way in which the priority of a task with respect to a processor in a partial schedule; and (ii)

the way in which a task and all communications from its parents are scheduled. The priority

(b)(a)

Figure 27: (a) Intermediate schedule produced by BSA after n6 migrates from PE 0 to PE 3
(schedule length = 22, total comm. cost = 15); (b) final schedule produced by BSA after n9
migrates from PE 0 to PE 1 and n5 is bubbled up (schedule length = 16, total comm. cost = 21).
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of a node is modified to be the difference between the static level and the earliest finish-time.

During the scheduling of a node, a router is used to determine the best possible path between

the processors that need communication. In their simulation study, the improved scheduling

algorithm outperformed both the DLS algorithm and the MH algorithm.

6.7  Scheduling in Heterogeneous Environments

Heterogeneity has been shown to be an important attribute in improving the

performance of multiprocessors [53], [59], [123], [151], [153], [168]. In parallel computations,

the serial part is the bottleneck, according to Amhdal’s law [14]. In homogeneous

multiprocessors, if one or more faster processors are used to replace a set of cost-equivalent

processors, the serial computations and other critical computations can be scheduled to such

faster processors and performed at a greater rate so that speedup can be increased.

As we have seen in earlier parts of this section, most DAG scheduling approaches assume

the target system is homogeneous. Introducing heterogeneity into the model inevitably

makes the problem more complicated to handle. This is because the scheduling algorithm has

to take into account the different execution rate of different processors when computing the

potential start-times of tasks on the processors. Another complication is that the resulting

schedule for a given heterogeneous system immediately becomes invalid if some of the

processing elements are replaced even though the number of processors remain the same.

This is because the scheduling decisions are made not only on the number of processors but

also on the capability of the processors. 

Static scheduling targeted for heterogeneous environments was unexplored until

recently. Menasce et al. [124], [125], [126], [127] investigated the problem of scheduling

computations to heterogeneous multiprocessing environments. The heterogeneous

environment was modeled as a system with one fast processor plus a number of slower

processors. In their study, both dynamic and static scheduling schemes were examined but

nevertheless DAGs without communication are used to model computations [13]. Markov

chains were used to analyze the performance of different scheduling schemes. In their

findings, out of all the static scheduling schemes, the LTF/MFT (Largest Task First/

Minimizing finish-time) significantly outperformed all the others including WL (Weighted

Level), CPM (Critical Path Method) and HNF (Heavy Node First). The LTF/MFT algorithm

works by picking the largest task from the ready tasks list and schedules it to the processor

which allows the minimum finish-time, while the other three strategies select candidate

processor based on the execution time of the task. Thus, based on their observations, an
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efficient scheduling algorithm for heterogeneous systems should concentrate on reducing the

finish-times of tasks. Nonetheless, if communication delays are also considered, different

strategies may be needed.

6.8  Mapping Clusters to Processors

As discussed earlier, mapping of clusters to physical processors is necessary for UNC

scheduling when the number of clusters is larger than the number of physical processors.

However, the mapping of clusters to processors is a relatively unexplored research topic

[109]. In the following we discuss a number of approaches reported in the literature.

Upon obtaining a schedule by using the EZ algorithm, Sarkar [144] used a list-scheduling

based method to map the clusters to physical processors. In the mapping algorithm, each task

is considered in turn according to the static level. A processor is allocated to the task if it

allows the earliest execution, then the whole cluster containing the task is also assigned to

that processor and all the member tasks are marked as assigned. In this scheme, two clusters

can be merged to a single processor but a cluster is never cracked. Furthermore, the allocation

of channels to communication messages was not considered.

Kim and Browne [95] also proposed a mapping scheme for the UNC schedules obtained

from their LC algorithm. In their scheme, the linear UNC clusters are first merged so that the

number of clusters is at most the same as the number of processors. Two clusters are

candidates for merging if one can start after another finishes, or the member tasks of one

cluster can be merged into the idle time slots of another cluster. Then a dominant request tree

(DRT) is constructed from the UNC schedule which is a cluster graph. The DRT consists of

the connectivity information of the schedule and is, therefore, useful for the mapping stage in

which two communicating UNC clusters attempt to be mapped to two neighboring

processors, if possible. However, if for some clusters this connectivity mapping heuristic fails,

another two heuristics, called perturbation mapping and foster mapping, are invoked. For both

mapping strategies, a processor is chosen which has the most appropriate number of

channels among currently unallocated processors. Finally, to further optimize the mapping, a

restricted pairwise exchange step is called for. 

Wu and Gajski [170] also suggested a mapping scheme for assigning the UNC clusters

generated in scheduling to processors. They realized that for best mapping results, a

dedicated traffic scheduling algorithm that balances the network traffic should be used.

However, traffic scheduling requires flexible-path routing, which incurs higher overhead.

Thus, they concluded that if network traffic is not heavy, a simpler algorithm which
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minimizes total network traffic can be used. The algorithm they used is a heuristic algorithm

designed by Hanan and Kurtzberg [74] to minimize the total communication traffic. The

algorithm generates an initial assignment by a constructive method and the assignment is

then iteratively improved to obtain a better mapping.

Yang and Gerasoulis [171] employed a work profiling method for merging UNC clusters.

The merging process proceeds by first sorting the clusters in an increasing order of aggregate

computational load. Then a load balancing algorithm is invoked to map the clusters to the

processors so that every processor has about the same load. To take care of the topology of

the underlying processor network, the graph of merged clusters are then mapped to the

network topology using Bokhari’s algorithm.

Yang, Bic, and Nicolau [175] reported an algorithm for mapping cluster graphs to

processor graphs which is suitable for use as the post-processing step for BNP scheduling

algorithms. The mapping scheme is not suitable for UNC scheduling because it assumes the

scheduling algorithm has already produced a number of clusters which is less than or equal

to the number of processors available. The objective of the mapping method is to reduce

contention and optimize the schedule length when the clusters are mapped to a topology

which is not fully-connected as assumed by the BNP algorithms. The idea of the mapping

algorithm is based on determining a set of critical edges, each of which is assigned a single

communication link. Substantial improvement over random mapping was obtained in their

simulation study.

In a recent study, Liou and Palis [113] investigated the problem of mapping clusters to

processors. One of the major objectives of their study was to compare the effectiveness of

one-phase scheduling (i.e., BNP scheduling) to that of the two-phase approach (i.e., UNC

scheduling followed by clusters mapping). To this end, they proposed a new UNC algorithm

called CASS-II (Clustering And Scheduling System II), which was applied to randomly

generated task graphs in an experimental study using three clusters mapping schemes,

namely, the LB (load-balancing) algorithm, the CTM (communication traffic minimizing)

algorithm and the RAND (random) algorithm. The LB algorithm uses processor workload as

the criterion of matching clusters to processors. By contrast, the CTM algorithm tries to

minimize the communication costs between processors. The RAND algorithm simply makes

random choices at each mapping step. To compare the one-phase method with the two-phase

method, in one set of test cases the task graphs were scheduled using CASS-II with the three

mapping algorithms while in the other set using the mapping algorithms alone. Liou and

Palis found that two-phase scheduling is better than one-phase scheduling in that the
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utilization of processors in the former is more efficient than the latter. Furthermore, they

found that the LB algorithm finds significantly better schedules than the CTM algorithm.

7  Some Scheduling Tools

Software tools providing automated functionalities for scheduling/mapping can the

parallel programming task easier. Despite a vast volume of research on scheduling exists,

building useful scheduling tools is only recently addressed. A scheduling tool should allow a

programmer to specify a parallel program in certain textual or graphical form, and then

perform automatic partitioning and scheduling of the program. The tool should also allow

the user to specify the target architecture. Performance evaluation and debugging functions

are also highly desirable. Some tools provide interactive environments for performance

evaluation of various popular parallel machines but do not generate an executable scheduled

code [137]. Under the above definition, such tools provide other functionalities but cannot be

classified as scheduling tools. 

In the following we survey some of the recently reported prototype scheduling tools.

7.1  Hypertool

Hypertool takes a user-partitioned sequential program as input and automatically

allocates and schedules the partitions to processors [170]. Proper synchronization primitives

are also automatically inserted. Hypertool is a code generation tool since the user program is

compiled into a parallel program for the iPSC/2 hypercube computer using parallel code

synthesis and optimization techniques. The tool also generates performance estimates

including execution time, communication and suspension times for each processor as well as

network delay for each communication channel. Scheduling is done using the MD algorithm

or the MCP algorithm. 

7.2  PYRROS

PYRROS is a compile-time scheduling and code generation tool [172]. Its input is a task

graph and the associated sequential C code. The output is a static schedule and a parallel C

code for a given architecture (the iPSC/2). PYRROS consists of a task graph language with an

interface to C, a scheduling system which uses only the DSC algorithm, a X-Windows based

graphic displayer, and a code generator. The task graph language lets user define partitioned

programs and data. The scheduling system is used for clustering the task graph, performing

load balanced mapping, and computation/communication ordering. The graphic displayer

is used for displaying task graphs and scheduling results in the form of Gantt charts. The
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code generator inserts synchronization primitives and performs parallel code optimization

for the target parallel machine.

7.3  Parallax

Parallax incorporates seven classical scheduling heuristics designed in the seventies [111],

providing an environment for parallel program developers to find out how the schedulers

affect program performance on various parallel architectures. Users must provide the input

program as a task graph and estimate task execution times. Users must also express the target

machine as an interconnection topology graph. Parallax then generates schedules in the form

of Gantt charts, speedup curves, processor and communication efficiency charts using X-

Windows interface. In addition, an animated display of the simulated running program to

help developers to evaluate the differences among the scheduling heuristics provided.

Parallex, however, is not reported to generate an executable code.

7.4  OREGAMI

OREGAMI is designed for use in conjunction with parallel programming languages that

support a communication model, such as OCCAM, C*, or C and FORTRAN with

communication extension [115]. As such, it is a set of tools that includes a LaRCS compiler to

compile textual user task descriptions into specialized task graphs, which are called TCG

(Temporal Communication Graphs) [114]. In addition, OREGAMI includes a mapper tool for

mapping tasks on a variety of target architectures, and a metrics tools for analyzing and

displaying the performance. The suite of tools are implemented in C for SUN workstations

with an X-Windows interface. However, precedence constraints among tasks are not

considered in OREGAMI. Moreover, no target code is generated. Thus, like Parallax,

OREGAMI is rather a design tool for parallel program development.

7.5  PARSA

PARSA is a software tool developed for automatic scheduling and partitioning of

sequential user programs [148]. PARSA consists of four components: an application

specification tool, an architecture specification tool, a partitioning and scheduling tool, and a

performance assessment tool. PARSA does not generate any target code. The application

specification tool accepts a sequential program written in the SISAL functional language and

converts it into a DAG, which is represented in textual form by the IF1 (Intermediate Form 1)

acyclic graphical language. The architecture specification tool allows the user to interactively

specify the target system in graphical form. The execution delay for each task is also

generated based on the architecture specification. The partitioning and scheduling tool
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consists of the HNF algorithm, the LC algorithm, and the LCTD algorithm. The performance

assessment tool displays the expected run-time behavior of the scheduled program. The

expected performance is generated by the analysis of the scheduled program trace file, which

contains the information on where each task is assigned for execution and exactly where each

task is expected to start execution, stop execution, or send a message to a remote task. 

7.6  CASCH

CASCH (Computer-Aided SCHeduling) tool [9] is aimed to be a complete parallel

programming environment including parallelization, partitioning, scheduling, mapping,

communication, synchronization, code generation, and performance evaluation.

Parallelization is performed by a compiler that automatically converts sequential

applications into parallel codes. The parallel code is optimized through proper scheduling

and mapping, and is executed on a target machine. CASCH provides an extensive library of

state-of-the-art scheduling algorithms from the recent literature. The library of scheduling

algorithms is organized into different categories which are suitable for different architectural

environments.

The scheduling and mapping algorithms are used for scheduling the task graph

generated from the user program, which can be created interactively or read from disk. The

weights on the nodes and edges of the task graph are computed using a database that

contains the timing of various computation, communication, and I/O operations for different

machines. These timings are obtained through benchmarking. An attractive feature of

CASCH is its easy-to-use GUI for analyzing various scheduling and mapping algorithms

using task graphs generated randomly, interactively, or directly from real programs. The best

schedule generated by an algorithm can be used by the code generator for generating a

parallel program for a particular machine—the same process can be repeated for another

machine.

7.7  Commercial Tools

There is only a few commercially available tools for scheduling and program

parallelization. Examples include ATEXPERT by Cray Research [39], PARASPHERE by DEC

[45], IPD by Intel [84], MPPE by MasPar [119], and PRISM by TMC [161]. Most of these tools

provide software development and debugging environments. Some of them also provide

performance tuning tools and other program development facilities.
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8  New Ideas and Research Trends

With the advancements in processors and networking hardware technologies, parallel

processing can be accomplished in a wide spectrum of platforms ranging from tightly-

coupled MPPs to loosely-coupled network of autonomous workstations. Designing an

algorithm for such diverse platforms makes the scheduling problem even more complex and

challenging. In summary, in the design of scheduling algorithms for efficient parallel

processing, we have to address four fundamental aspects: performance, time-complexity,

scalability, and applicability. These aspects are elaborated below.

Performance: A scheduling algorithm must exhibit high performance and be robust. By

high performance we mean the scheduling algorithm should produce high quality solutions.

A robust algorithm is one which can be used under a wide range of input parameters (e.g.,

arbitrary number of available processors and diverse task graph structures). 

Time-complexity: The time-complexity of an algorithm is an important factor insofar as the

quality of solution is not compromised. As real workload is typically of a large size [9], a fast

algorithm is necessary for finding good solutions efficiently.

Scalability: A scheduling algorithms must possess problem-size scalability, that is, the

algorithm has to consistently give good performance even for large input. On the other hand,

a scheduling algorithm must also possess processing-power scalability, that is, given more

processors for a problem, the algorithm should produce solutions with comparable quality in

a shorter period of time. 

Applicability: A scheduling algorithm must be applicable in practical environments. To

achieve this goal, it must take into account realistic assumptions about the program and

multiprocessor models such as arbitrary computation and communication weights, link

contention, and processor network topology. 

It is clear that the above mentioned goals are conflicting and thus pose a number of

challenges to researchers. To combat these challenges, several new ideas have been suggested

recently. These new ideas, which include genetic algorithms, randomization approaches, and

parallelization techniques, are employed to enhance the solution quality, or to lower the time-

complexity, or both. In the following, we briefly outline some of these recent advancements.

At the end of this section, we also indicate some current research trends in scheduling.
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8.1  Scheduling using Genetic Algorithms

Genetic algorithms (GAs) [42], [56], [58], [68], [78], [157] have recently found many

applications in optimization problems including scheduling [11], [19], [27], [44], [80], [147].

GAs use global search techniques to explore different regions of the search space

simultaneously by keeping track of a set of potential solutions of diverse characteristics,

called a population. As such, GAs are widely reckoned as effective techniques in solving

numerous optimization problems because they can potentially locate better solutions at the

expense of longer running time. Another merit of a genetic search is that its inherent

parallelism can be exploited to further reduce its running time. Thus, a parallel genetic search

technique in scheduling is a viable approach in producing high quality solutions using short

running times. 

Ali, Sait, and Benten [11] proposed a genetic algorithm for scheduling a DAG to a limited

number of fully-connected processors with a contention-free communication network. In

their scheme, each solution or schedule is encoded as a chromosome containing v alleles,

each of which is an ordered pair of task index and its assigned processor index. With such

encoding the design of genetic operators is straightforward. Standard crossover is used

because it always produces valid schedules as offsprings and is computationally efficient.

Mutation is simply a swapping of the assigned processors between two randomly chosen

alleles. For generating an initial population, Ali et al. use a technique called “pre-scheduling”

in which  random permutations of numbers from 1 to v are generated. The number in each

random permutation represents the task index of the task graph. The tasks are then assigned

to the PEs uniformly: the first  tasks in a permutation are assigned to PE 0, the next  tasks

to PE 1, and so on. In their simulation study using randomly generated task graphs with a

few tenths of nodes, their algorithm was shown to outperform the ETF algorithm proposed

by Hwang et al. [83].

Hou, Ansari, and Ren [80] also proposed a scheduling algorithm using genetic search in

which each chromosome is a collection of lists, and each list represents the schedule on a

distinct processor. Thus, each chromosome is not a linear structure but a two-dimensional

structure instead. One dimension is a particular processor index and the other is the ordering

of tasks scheduled on the processor. Using such an encoding scheme poses a restriction on

the schedules being represented: the list of tasks within each processor in a schedule is

ordered in ascending order of their topological height, which is defined as the largest number

of edges from an entry node to the node itself. This restriction also facilitates the design of the

crossover operator. In a crossover, two processors are selected from each of two
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chromosomes. The list of tasks on each processor is cut into two parts and then the two

chromosomes exchange the two lower parts of their task lists correspondingly. It is shown

that this crossover mechanism always produces valid offsprings. However, the height

restriction in the encoding may cause the search to be incapable of obtaining the optimal

solution because the optimal solution may not obey the height ordering restriction at all. 

Hou et al. incorporated a heuristic technique to lower the likelihood of such pathological

situation. Mutation is simpler in design. In a mutation, two randomly chosen tasks with the

same height are swapped in the schedule. As to the generation of the initial population, 

randomly permuted schedules obeying the height ordering restriction are generated. In their

simulation study using randomly generated task graphs with a few tenths of nodes, their

algorithm was shown to produce schedules within 20 percent degradation from optimal

solutions.

Ahmad and Dhodhi [2] proposed a scheduling algorithm using a variant of genetic

algorithm called simulated evolution. They employ a problem-space neighborhood

formulation in that a chromosome represents a list of task priorities. Since task priorities are

dependent on the input DAG, different set of task priorities represent different problem

instances. First, a list of priorities is obtained from the input DAG. Then the initial population

of chromosomes are generated by randomly perturbing this original list. Standard genetic

operators are applied to these chromosomes to determine the fittest chromosome which is the

one giving the shortest schedule length for the original problem. The genetic search, therefore,

operates on the problem-space instead of the solution-space as is commonly done. The

rationale of this approach is that good solutions of the problem instances in the problem-

space neighborhood are expected to be good solutions for the original problem as well [160].

Recently, we have proposed a parallel genetic algorithm for scheduling [104], called the

Parallel Genetic Scheduling (PGS) algorithm, using a novel encoding scheme, an effective initial

population generation strategy, and computationally efficient genetic search operators. The

major motivation of using a genetic search approach is that the recombinative nature of a

genetic algorithm can potentially determine an optimal scheduling list leading to an optimal

schedule. As such, a scheduling list (i.e., a topological ordering of the input DAG) is encoded

as a genetic string. Instead of generating the initial population totally randomly, Kwok and

Ahmad generate the initial set of strings based on a number of effective scheduling lists such

as ALAP list, b-level list, t-level list, etc. They use a novel crossover operator, which is a variant

of the order crossover operator, in the scheduling context. The proposed crossover operator

has the potential to effectively combine the good characteristics of two parent strings in order

Np
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to generate a scheduling string leading to a schedule with shorter schedule length. The

crossover operator is easy to implement and is computationally efficient. 

In our experimental studies [104], we have found that the PGS algorithm generates

optimal solutions for more than half of all the cases in which random task graphs were used.

In addition, the PGS algorithm demonstrates an almost linear speedup and is therefore

scalable. While the DCP algorithm [103] has already been shown to outperform many leading

algorithms, the PGS algorithm is even better since it generates solutions with comparable

quality while using significantly less time due to its effective parallelization. The PGS

algorithm outperforms the well-known DSC algorithm in terms of both the solution quality

and running time. An extra advantage of the PGS algorithm is scalability, that is by using

more parallel processors, the algorithm can be used for scheduling larger task graphs. 

8.2  Randomization Techniques

The time-complexity of an algorithm and its solution quality are in general conflicting

goals in the design of efficient scheduling algorithms. Our previous study [106] indicates that

not only does the quality of existing algorithms differ considerably but their running times

can vary by large margins. Indeed, designing an algorithm which is fast and can produce

high quality solutions requires some low-complexity algorithmic techniques. One promising

approach is to employ randomization. As indicated by Karp [89], Motwani and Raghavan

[128], and other researchers, an optimization algorithm which makes random choices can be

very fast and simple to implement. However, there has been very little work done in this

direction.

Recently, Kwok et al. [101], [105], [107] proposed a BNP scheduling algorithm based on a

random neighborhood search technique [88], [133]. The algorithm is called the Parallel Fast

Assignment with Search Technique (PFAST) algorithm which has time-complexity of only 

where e is the number of edges in the DAG [105]. The PFAST algorithm first constructs an

initial schedule quickly in linear-time and then refines it by using multiple physical

processors, each of which operates on a disjoint subset of blocking-nodes as a search

neighborhood. The physical processors communicate periodically to exchange the best

solution found thus far. As the number of search steps required is a small constant which is

independent of the size of the input DAG, the algorithm effectively takes linear-time to

determine the final schedule. 

In their performance study, Kwok et al. [101], [105] have compared the PFAST algorithm

with a number of well-known efficient scheduling algorithms. The PFAST algorithm has been

O e( )
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shown to be better than the other algorithms in terms of both solution quality and running

time. Since the algorithm takes linear-time, it is the fastest algorithm to our knowledge. In

experiments using random task graphs for which optimal solutions are known, the PFAST

algorithm generates optimal solutions for a significant portion of all the test cases, and close-

to-optimal solutions for the remaining cases. The PFAST algorithm also exhibits good

scalability in that it gives a consistent performance when applied to large task graphs. An

interesting finding of the PFAST algorithm is that parallelization can sometimes improve its

solution quality. This is due to the partitioning of the blocking-nodes set, which implies a

partitioning of the search neighborhood. The partitioning allows the algorithm to explore the

search space simultaneously, thereby enhancing the likelihood of getting better solutions.

8.3  Parallelizing a Scheduling Algorithm

Parallelizing a scheduling algorithm is a novel as well as natural way to reduce the time-

complexity. This approach is novel in that no previous work has been done in the

parallelization of a scheduling algorithm. Indeed, as indicated by Norman and Thanisch

[129], it is strange that there has been hardly any attempt to parallelize a scheduling and

mapping process itself. Parallelization is natural in that parallel processing is realized only

when a parallel processing platform is available. Furthermore, parallelization can be utilized

not only to speed up the scheduling process further but also to improve the solution quality.

Recently there have been a few parallel algorithms proposed for DAG scheduling [5], [101],

[104]. 

In a recent study [7], we have proposed two parallel state-space search algorithms for

finding optimal or bounded solutions. The first algorithm which is based on the A* search

technique uses a computationally efficient cost function for quickly guiding the search. The

A* algorithm is also parallelized using static and dynamic load-balancing schemes to evenly

distribute the search states to the processors. A number of effective state-pruning techniques

are also incorporated to further enhance the efficiency of the algorithm. The proposed

algorithm outperforms a previously reported branch-and-bound algorithm by using

considerable less computation time. The second algorithm is an approximate algorithm that

guarantees a bounded deviation from the optimal solution but executes in a considerably

shorter turnaround time. Based on both theoretical analysis and experimental evaluation [7]

using randomly generated task graphs, we have found that the approximate algorithm is

highly scalable and is an attractive choice if slightly degraded solutions are acceptable.

We have also proposed [5], [101] a parallel APN scheduling algorithm called the Parallel
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Bubble Scheduling and Allocation (PBSA) algorithm. The proposed PBSA algorithm is based on

considerations such as a limited number of processors, link contention, heterogeneity of

processors, and processor network topology. As a result, the algorithm is useful for

distributed systems including clusters of workstations. The major strength of the PBSA

algorithm lies in its incremental strategy of scheduling nodes and messages together. It first

uses the CPN-Dominant sequence to serialize the task graph to one PE, and then allows the

nodes to migrate to other PEs for improving their start-times. In this manner, the start-times

of the nodes, and hence, the schedule length, are optimized incrementally. Furthermore, in

the course of migration, the routing and scheduling of communication messages between

tasks are also optimized. The PBSA algorithm first partitions the input DAG into a number of

disjoint subgraphs. The subgraphs are then scheduled independently in multiple physical

processors, each of which runs a sequential BSA algorithm. The final schedule is constructed

by concatenating the subschedules produced. The proposed algorithm is, therefore, the first

attempt of its kind in that it is a parallel algorithm and it also solves the scheduling problem

by considering all the important scheduling parameters. 

We have evaluated the PBSA algorithm [5], [101] by testing it in experiments using

extensive variations of input parameters including graph types, graph sizes, CCRs, and

target network topologies. Comparisons with three other APN scheduling algorithms have

also been made. Based on the experimental results, we find that the PBSA algorithm can

provide a scalable schedule, and can be useful for scheduling large task graphs which are

virtually impossible to schedule using sequential algorithms. Furthermore, the PBSA

algorithm exhibits superlinear speedup in that given q physical processors, the algorithm can

produce solutions with comparable quality with a speedup of roughly  over the

sequential case. 

Other researchers have also suggested techniques for some restricted forms of the

scheduling problem. Recently, Pramanick and Kuhl [138] proposed a paradigm, called

Parallel Dynamic Interaction (PDI), for developing parallel search algorithms for many NP-

hard optimization problems. The PDI method is applied to the job-shop scheduling problem

in which a set of independent jobs are scheduled to homogeneous machines. De Falco et al.

[43] have suggested to use parallel simulated annealing and parallel tabu search algorithms

for the task allocation problem, in which a Task Interaction Graph (TIG), representing

communicating processes in a distributed systems, is to be mapped to homogeneous

processors. As mentioned earlier, a TIG is different from a DAG in that the former is an

undirected graph with no precedence constraints among the tasks. Parallel branch-and-

O q2( )
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bound techniques [55] have also been used to tackle some simplified scheduling problems. 

8.4  Future Research Directions

Research in DAG scheduling can be extended in several directions. One of the most

challenging direction is to extend DAG scheduling to heterogeneous computing platforms.

Heterogeneous computing (HC) using physically distributed diverse machines connected via

a high-speed network for solving complex applications is likely to dominate the next era of

high-performance computing. One class of a HC environment is a suite of sequential

machines known as a network of workstations (NOWs). Another class, known as the

distributed heterogeneous supercomputing system (DHSS), is a suite of machines comprising

a variety of sequential and parallel computers—providing an even higher level of

parallelism. In general, it is impossible for a single machine architecture with its associated

compiler, operating system, and programming tools to satisfy all the computational

requirements in an application equally well. However, a heterogeneous computing

environment that consists of a heterogeneous suite of machines, high-speed interconnections,

interfaces, operating systems, communication protocols and programming environments

provides a variety of architectural capabilities, which can be orchestrated to perform an

application that has diverse execution requirements. Due to the latest advances in

networking technologies, HC is likely to flourish in the near future.

The goal of HC using a NOW or a DHSS is to achieve the minimum completion time for

an application. A challenging future research problem is to design efficient algorithms for

scheduling and mapping of applications to the machines in a HC environment. Task-to-

machine mapping in a HC environment is beyond doubt more complicated than in a

homogeneous environment. In a HC environment, a computation can be decomposed into

tasks, each of which may have substantially different processing requirements. For example a

signal processing task may strictly require a machine possessing DSP processing capability.

While the PBSA algorithm proposed in [5] is a first step toward this direction, more work is

needed. One possible research direction is to first devise a new model of heterogeneous

parallel applications as well as new models of HC environments. Based on these new models,

more optimized algorithms can be designed.

Another avenue of further research is to extend the applicability of the existing

randomization and evolutionary scheduling algorithms [11], [80], [101]. While they are

targeted to be used in BNP scheduling, the algorithms may be extended to handle APN

scheduling as well. However, some novel efficient algorithmic techniques for scheduling
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messages to links need to be sought lest the time-complexity of the randomization algorithms

increase. Further improvements in the genetic and evolutionary algorithms may be possible

if we can determine an optimal set of control parameters, including crossover rate, mutation

rate, population size, number of generations, and number of parallel processors used.

However, finding an optimal parameters set for a particular genetic algorithm is hitherto an

open research problem. 

9  Summary and Concluding Remarks

In this paper we have presented an extensive survey of algorithms for the static

scheduling problem. Processors and communication links are in general the most important

resources in parallel and distributed systems, and their efficient management through proper

scheduling is essential for obtaining high performance. We first introduced the DAG model

and the multiprocessor model, followed by the problem statement of scheduling. In the DAG

model, a node denotes an atomic program task and an edge denotes the communication and

data dependency between two program tasks. Each node is labeled a weight denoting the

amount of computational time required by the task. Each edge is also labeled a weight

denoting the amount of communication time required. The target multiprocessor systems is

modeled as a network of processing elements (PEs), each of which comprises a processor and

a local memory unit, so that communication is achieved solely by message-passing. The

objective of scheduling is to minimize the schedule length by properly allocating the nodes to

the PEs and sequencing their start-times so that the precedence constraints are preserved. 

We have also presented a scrutiny of the NP-completeness results of various simplified

variants of the problem, thereby illustrating that static scheduling is a hard optimization

problem. As the problem is intractable even for moderately general cases, heuristic

approaches are commonly sought. 

To better understand the design of the heuristic scheduling schemes, we have also

described and explained a set of basic techniques used in most algorithms. With these

techniques the task graph structure is carefully exploited to determine the relative

importance of the nodes in the graph. More important nodes get a higher consideration

priority for scheduling first. An important structure in a task graph is the critical path (CP).

The nodes of the CP can be identified by the nodes’ b-level and t-level. In order to put the

representative work with different assumptions reported in the literature in a unified

framework, we described a taxonomy of scheduling algorithms which classifies the

algorithms into four categories: the UNC (unbounded number of clusters) scheduling, the
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BNP (bounded number of processors) scheduling, the TDB (task duplication based)

scheduling, and APN (arbitrary processor network) scheduling. Analytical results as well as

scheduling examples have been shown to illustrate the functionality and characteristics of the

surveyed algorithms. Tasks scheduling for heterogeneous systems, which are widely

considered as promising platforms for high-performance computing, is briefly discussed. As

a post-processing step of some scheduling algorithms, the mapping process is also examined.

Various experimental software tools for scheduling and mapping are also described. 

Finally, we have surveyed a number of new techniques which are recently proposed for

achieving these goals. These techniques include genetic and evolutionary algorithms,

randomization techniques, and parallelized scheduling approaches. 
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