DSC: Scheduling Parallel Tasks on an Unbounded Number of
Processors

Tao Yang and Apostolos Gerasoulis
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903
Email: {tyang, gerasoulis}@cs.rutgers.edu

August 1992, Revised February 1993

Abstract

We present a low complexity heuristic named the Dominant Sequence Clustering algorithm (DSC) for scheduling parallel tasks on an unbounded number of completely connected processors. The performance of DSC is comparable or even better on average than many other higher complexity algorithms. We assume no task duplication and nonzero communication overhead between processors. Finding the optimum solution for arbitrary directed acyclic task graphs (DAGs) is NP-complete. DSC finds optimal schedules for special classes of DAGs such as fork, join, coarse grain trees and some fine grain trees. It guarantees a performance within a factor of two of the optimum for general coarse grain DAGs. We compare DSC with three higher complexity general scheduling algorithms, the MD by Wu and Gajski [19], the ETF by Hwang, Chow, Anger and Lee [12] and Sarkar’s clustering algorithm [17]. We also give a sample of important practical applications where DSC has been found useful.

Index Terms – Clustering, directed acyclic graph, heuristic algorithm, optimality, parallel processing, scheduling, task precedence.

1 Introduction

We study the scheduling problem of directed acyclic weighted task graphs (DAGs) on unlimited processor resources and a completely connected interconnection network. The task and edge weights are deterministic. This problem is important in the development of parallel programming tools and compilers for scalable MIMD architectures [17, 19, 21, 23]. Sarkar [17] has proposed a two step method for scheduling with communication. (1) Schedule on unbounded number of a completely connected architecture. The result of this step will be clusters of tasks, with the constraint that all tasks in a cluster must execute in the same processor. (2) If the number of clusters is larger than the number of processors then merge

*Supported by a Grant No. DMS-8706122 from NSF. A preliminary report on this work has appeared in Proceedings of Supercomputing 91 [23].
the clusters further to the number of physical processors and also incorporate the network topology in the merging step.

In this paper, we present an efficient algorithm for the first step of Sarkar's approach. Algorithms for the second step are discussed elsewhere [23]. The objective of scheduling is to allocate tasks onto the processors and then order their execution so that task dependence is satisfied and the length of the schedule, known as the parallel time, is minimized. In the presence of communication, the complexity of the above scheduling problem has been found to be much more difficult than the classical scheduling problem where communication is ignored. The general problem is NP-complete and even for simple graphs such as fine grain trees or the the concatenation of a fork and a join together the complexity is still NP-complete, Chretienne [3], Papadimitriou and Yannakakis [15] and Sarkar [17]. Only for special classes of DAGs, such as join, fork, and coarse grain tree, special polynomial algorithms are known, Chretienne [4], Anger, Hwang and Chow [2].

There have been two approaches in the literature addressing the general scheduling problem. The first approach considers heuristics for arbitrary DAGs and the second studies optimal algorithms for special classes of DAGs. When task duplication is allowed, Papadimitriou and Yannakakis [15] have proposed an approximate algorithm for a DAG with equal task weights and equal edge weights, which guarantees a performance within 50% of the optimum. This algorithm has a complexity of \(O(v^3(v \log v + e)) \) where \(v \) is the number of tasks and \(e \) is the number of edges. Kruatrachue and Lewis [14] have also given an \(O(v^3) \) algorithm for a general DAG based on task duplication. One difficulty with allowing task duplication is that duplicated tasks may require duplicated data among processors and thus the space complexity could increase when executing parallel programs on real machines.

Without task duplication, many heuristic scheduling algorithms for arbitrary DAGs have been proposed in the literature, e.g. Kim and Browne [13], Sarkar [17], Wu and Gajski [19]. A detailed comparison of four heuristic algorithms is given in Gerasoulis and Yang [10]. One difficulty with most existing algorithms for general DAGs is their high complexity. As far as we know no scheduling algorithm exists that works well for arbitrary graphs, finds optimal schedules for special DAGs and also has a low complexity. We present one such algorithm in this paper with a complexity of \(O((v + e) \log v) \), called the Dominant Sequence Clustering (DSC) algorithm. We compare DSC with ETF algorithm by Hwang, Chow, Anger, and Lee [12] and discuss the similarities and differences with the MD algorithm proposed by Wu and Gajski [19].

The organization is as follows: Section 2 introduces the basic concepts. Section 3 describes an initial design of the DSC algorithm and analyzes its weaknesses. Section 4 presents an improved version of DSC that takes care of the initial weaknesses and analyzes how DSC achieves both low complexity and good performance. Section 5 gives a performance bound for a general DAG. It shows that the performance of DSC is within 50% of the optimum for coarse grain DAGs, and it is optimal for join, fork, coarse grain trees and a class of fine grain trees. Section 6 discusses the related work, presents experimental results and compares the performance of DSC with Sarkar’s, ETF and MD algorithms.
2 Preliminaries

A directed acyclic task graph (DAG) is defined by a tuple $G = (V, E, C, T)$ where V is the set of task nodes and $v = |V|$ is the number of nodes, E is the set of communication edges and $e = |E|$ is the number of edges, C is the set of edge communication costs and T is the set of node computation costs. The value $c_{i,j} \in C$ is the communication cost incurred along the edge $e_{i,j} = (n_{i}, n_{j}) \in E$, which is zero if both nodes are mapped in the same processor. The value $\tau_{i} \in T$ is the execution time of node $n_{i} \in V$. $PRED(n_{x})$ is the set of immediate predecessors of n_{x} and $SUCC(n_{x})$ is the set of immediate successors of n_{x}. An example of DAG is shown Fig. 1(a) with 7 tasks $n_{1}, n_{2}, \cdots, n_{7}$. Their execution times are on the right side of the bullets and edge weights are written on the edges. Two tasks are called independent if there are no dependence paths between them.

The task execution model is the compile time macro-dataflow model. A task receives all input before starting execution in parallel, executes to completion without interruption, and immediately sends the output to all successor tasks in parallel, see Wu and Gajski [19], Sarkar [17]. Duplication of the same task in separate processors is not allowed.

![Diagram](image_url)

Figure 1: (a) A weighted DAG. (b) A Gantt chart for a schedule. (c) A scheduled DAG.

Given a DAG and an unbounded number of completely connected processors, the scheduling problem consists of two parts: The task to processor assignment, called clustering in this paper and the task execution ordering for each processor. A DAG with a given clustering but without the task execution ordering is called a clustered graph. A communication edge weight in a clustered graph becomes zero if the start and end nodes of this edge are in the same cluster. Fig. 1(c) shows a clustering of the DAG in (a) excluding the dashed edges. The tasks n_{1} and n_{2} constitute one cluster and the rest of the tasks another. Fig. 1(b) shows a Gantt chart of a scheduling in which the processor assignment for each task and the starting and completion times are defined. An equivalent way of representing a schedule is shown in Fig. 1(c), called a scheduled DAG. A scheduled DAG contains both clustering and task execution ordering information. The dashed pseudo edges between n_{3} and n_{4} in Fig. 1(c) represent the execution ordering imposed by the schedule. The task starting times are not explicitly given in a scheduled DAG but can be computed by traversing this DAG.
$CLUST(n_x)$ stands for the cluster of node n_x. If a cluster contains only one task, it is called a unit cluster. We distinguish between two types of clusters, the linear and the nonlinear. A cluster is called nonlinear if there are two independent tasks in the same cluster, otherwise it is called linear. In Fig. 1(c), there are two clusters, the cluster that contains n_1 and n_2 is linear and the other cluster is nonlinear because n_3 and n_4 are independent tasks in Fig. 1(a). A schedule imposes an ordering of tasks in nonlinear clusters. Thus the nonlinear clusters of a DAG can be thought of as linear clusters in the scheduled DAG if the execution orders between independent tasks are counted as edges. A linear clustering preserves the parallelism present in a DAG while nonlinear clustering reduces parallelism by sequentializing parallel tasks. A further discussion of this issue can be found in Gerasoulis and Yang [9].

The critical path of a clustered graph is the longest path in that graph including both nonzero communication edge cost and task weights in that path. The parallel time in executing a clustered DAG is determined by the critical path of the scheduled DAG and not by the critical path of the clustered DAG. We call the critical path of a scheduled DAG the dominant sequence, DS for short, to distinguish it from the critical path of the clustered DAG. For Fig. 1(c), the critical path of the clustered graph is $< n_1, n_2, n_7 >$ and the DS is still that path. If the weight of n_5 is changed from 2 to 6, then the critical path of the clustered graph remains the same $< n_1, n_2, n_7 >$, but the DS changes to $< n_5, n_3, n_4, n_6, n_7 >$. A path that is not a DS is called a SubDS.

Let $tlevel(n_x)$ be the length of the longest path from an entry (top) node to n_x excluding the weight of n_x in a DAG. Symmetrically, let $blevel(n_x)$ be the length of the longest path from n_x to an exit (bottom) node. For example, in Fig. 1(c), $tlevel(n_1) = 0$, $blevel(n_1) = 10$, $tlevel(n_3) = 2, blevel(n_3) = 4$. The following formula can be used to determine the parallel time from a scheduled graph:

$$PT = \max_{n_x \in V} \{tlevel(n_x) + blevel(n_x)\}. \quad (1)$$

2.1 Scheduling as successive clustering refinements

Our approach for solving the scheduling problem with unlimited resources is to consider the scheduling algorithms as performing a sequence of clustering refinement steps. As a matter of fact most of the existing algorithms can be characterized by using such a framework [10]. The initial step assumes that each node is mapped in a unit cluster. In other steps the algorithm tries to improve the previous clustering by merging appropriate clusters. A merging operation is performed by zeroing an edge cost connecting two clusters.\(^1\)

Sarkar’s algorithm

We consider Sarkar’s algorithm [17], pp. 123-131, as an example of an edge-zeroing clustering refinement algorithm. This algorithm first sorts the ϵ edges of the DAG in a decreasing order of edge weights and then performs ϵ clustering steps by examining edges from left to right in the sorted list. At each step, it examines one edge and zeroes this edge if the parallel time does not increase. Sarkar’s algorithm requires

\(^1\)Two clusters will not be merged if there is no edge connecting them since this cannot decrease the parallel time.
the computation of the parallel time at each step and this problem is also NP-complete. Sarkar uses
the following strategy: Order independent tasks in a cluster by using the highest blevel first priority
heuristic, where blevel is the value computed in the previous step. The new parallel time is then computed
by traversing the scheduled DAG in O(v + e) time. Since there are e steps the overall complexity is
O(e(e + v)).

Figure 2: Clustering steps by Sarkar’s algorithm for Fig. 1(a).

<table>
<thead>
<tr>
<th>step i</th>
<th>edge examined</th>
<th>PT if zeroed</th>
<th>zeroing</th>
<th>PTi</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>(n4, n6)</td>
<td>13</td>
<td>yes</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>(n1, n2)</td>
<td>10</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>(n3, n6)</td>
<td>10</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>(n6, n7)</td>
<td>10</td>
<td>yes</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>(n2, n7)</td>
<td>11</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>(n1, n3)</td>
<td>11</td>
<td>no</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>(n5, n6)</td>
<td>10</td>
<td>yes</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 1: Clustering steps of Sarkar’s algorithm corresponding to Fig. 2.

Fig. 2 shows the clustering steps of Sarkar’s algorithm for the DAG in Fig. 1(a). The sorted edge list with
respect to edge weights is \{(n4, n6), (n1, n2), (n3, n6), (n6, n7), (n2, n7), (n1, n3), (n5, n6)\}. Table 1 traces the
execution of this algorithm where PT stands for the parallel time and PTi is the parallel time for executing
the clustered graph at the completion of step i. Initially each task is in a separate cluster as shown in
Fig. 2(0) and the thick path indicates the DS whose length is PT0 = 13. At step 1, edge (n4, n6) is
examined and PT remains 13 if this edge is zeroed. Thus this zeroing is accepted. In step 2, 3 and 4,
shown in Fig. 2(2), (3) and (4), all examined edges are zeroed since each zeroing does not increase PT.
At step 5, edge \((n_2, n_7)\) is examined and by zeroing it the parallel time increases from 10 to 11. Thus this zeroing is rejected. Similarly, at step 6 zeroing \((n_4, n_3)\) is rejected. At step 7 \((n_5, n_6)\) is zeroed, a pseudo edge from \(n_5\) to \(n_6\) is added because after step 6 \(blevel(n_3) = 3\) and \(blevel(n_5) = 5\). Finally two clusters are produced with \(PT = 10\).

3 An Initial Design of the DSC Algorithm

3.1 Design considerations for the DSC algorithm

As we saw in the previous section, Sarkar’s algorithm zeroes the highest communication edge. This edge, however, might not be in a DS that determines the parallel time and as a result the parallel time might not be reduced at all, (see the zeroing of edge \((n_4, n_6)\) in step 1 Fig. 2). In order to reduce the parallel time, we must examine the schedule of a clustered graph to identify a DS and then try to reduce its length. The main idea behind the DSC algorithm is to perform a sequence of edge zeroing steps with the goal of reducing a DS at each step. The challenge is to implement this idea with low complexity so that it can be used for large task graphs. Thus we would like to develop an algorithm having the following goals:

G1: The complexity should be low, say, \(O((v + e) \log v)\).

G2: The parallel time should be minimized.

G3: The efficiency should be maximized.

There are several difficulties in the implementation of algorithms that satisfy the above goals:

1. The goals G1, G2 and G3 could conflict with each other. For example the maximization of the efficiency conflicts with the minimization in the parallel time. When such conflicts arise, then G1 is given priority over G2 and G3, and G2 over G3. In other words, we are interested in algorithms with low complexity that attains the minimum possible parallel time and the maximum possible efficiency.

2. Let us assume that the DS has been determined. Then there is a decision to be made for selecting edges to be examined\(^2\) and zeroed. Consider the example in Fig. 2(0). Initially the DS is \(< n_1, n_2, n_7 >\). To reduce the length of that DS, we need to zero at least one edge in DS. Hence we need to decide which edges should be zeroed. We could zero either one or both edges. If the edge \((n_1, n_2)\) is zeroed, then the parallel time reduces from 13 to 10. If \((n_2, n_7)\) is zeroed the parallel time reduces to 11. If both edges are zeroed the parallel time reduces to 9.5. Therefore there are many possible ways of edge zeroing and we discuss three approaches:

- **AP1: Multiple DS edge zeroing with maximum PT reduction:** This is a greedy approach that will try to get the maximum reduction of the parallel time at each clustering step. However, it is not always true that multiple DS edge zeroing could lead to the maximum PT reduction since

\(^2\)Backtracking is not used to avoid high complexity.
after zeroing one DS edge of a path, the other edges in that path may not be in the DS of the new graph.

- **AP2: One DS zeroing of maximum weight edge:** Considering a DS could become a SubDS by zeroing only one edge of this DS, we do not need to zero multiple edges at one step. We could instead make smaller reductions in the parallel time at each step and perform more steps. For example, we could chose one edge to zero at each step, say the largest weight edge in DS. In Fig. 2(0), the length of current DS < \(n_1, n_2, n_7 \) could be reduced more by zeroing edge \((n_1, n_2) \) instead of \((n_2, n_7) \). Zeroing the largest weighted edge, however, may not necessarily lead to a better solution.

- **AP3: One DS edge zeroing with low complexity:** Instead of zeroing the highest edge weight we could allow for more flexibility and chose to zero the one DS edge that leads to a low complexity algorithm.

Determining a DS for a clustered DAG could take at least \(O(v + e) \) time if the computation is not done incrementally. Repeating this computation for all steps will result in at least \(O(v^2) \) complexity. Thus it is necessary to use an incremental computation of DS from one step to the next to avoid the traversal of the entire DAG at each step. The proper DS edge selection for zeroing should assist in the incremental computation of the DS in the next step.

It is not clear how to implement AP1 or AP2 with a low complexity and also there is no guarantee that AP1 or AP2 will be better than AP3. We will use AP3 to develop our algorithm.

3. Since one of the goals is G3, i.e. reducing the number of unnecessary clusters and increase the efficiency, we also need to allow for zeroing non-DS edges. The question is when to do SubDS zeroing. One approach is to always zero DS edges until the algorithm stops and then follow up with non-DS zeroing. Another approach followed in this paper is to interleave the non-DS zeroing with that of DS zeroing. Interleaving SubDS and DS zeroing provides for more flexibility which allows to reduce the complexity.

4. Since we do not allow backtracking the only zeroing steps that we should allow are the ones that do not increase the parallel time from one step to the next: \(PT_{i-1} \geq PT_i \). Sarkar imposes this constraint explicitly in his edge zeroing process, by comparing the parallel time at each step. Here, we will use an implicit constraint to avoid the explicit computation of parallel time in order to reduce the complexity.

In the next subsection, we present an initial version of DSC algorithm and then identify its weaknesses so that we can improve its performance.

3.2 DSC-I: An initial version of DSC

An algorithmic description of DSC-I is given in Fig. 3. An unexamined node is called *free* if all of its predecessors have been examined.

Fig. 4 shows the initial status (step 0) and step \(i \) of DSC-I, corresponding to the While loop iteration \(i \)
1. \(EG = \emptyset. \) \(UEG = V. \)
2. Compute \(blevel \) for each node and set \(tlevel = 0 \) for each entry node.
3. Every task is marked \textit{unexamined} and assumed to constitute one unit cluster.
4. \textbf{While} there is an unexamined node \textbf{Do}
5. \hspace{1em} Find a free node \(n_f \) with highest priority from \(UEG. \)
6. \hspace{1em} Merge \(n_f \) with the cluster of one of its predecessors such that \(tlevel(n_f) \) decreases in a maximum degree. If all zeroings increase \(tlevel(n_f) \), \(n_f \) remains in a unit cluster.
7. \hspace{1em} Update the priority values of \(n_f \)'s successors.
8. \hspace{1em} \(UEG = UEG - \{n_f\}; \) \(EG = EG + \{n_f\}. \)
9. \textbf{EndWhile}

Figure 3: The DSC-I algorithm.

at Fig. 3, \(1 \leq i \leq 5 \), in scheduling a DAG with 5 tasks. The thick paths of each step represent DSs and dashed edges pseudo execution edges. We provide an explanation of the DSC-I algorithm in Fig. 3:

\textbf{Priority definition and DS identification: (Line 5 in Fig. 3)} Based on Equation (1), we define the priority for each task at each step

\[
PRIO(n_f) = tlevel(n_f) + blevel(n_f).
\]

Thus we can identify a DS node as the one with the highest priority. In Fig. 4(0), the DS nodes are \(n_1, n_2 \) and \(n_5 \) and they have the highest priority value 14.5.

\textbf{The topological order for task and edge examination: (Line 5 in Fig. 3)} During the execution of DSC-I the graph consists of two parts, the examined part \(EG \) and the unexamined part \(UEG. \) Initially all nodes are marked \textit{unexamined}, see Fig. 4(0). DSC-I selects only an unexamined free task \(n_f \) with the highest priority. Then it examines an incoming edge of this task for zeroing or not zeroing. In Fig. 4, tasks selected at step 1, 2, 3, 4, and 5 are \(n_1, n_2, n_4, n_3 \) and \(n_5 \) respectively. Notice that the selected task \(n_f \) is in a DS if there are free DS nodes, otherwise it is in a SubDS. In Fig. 4, step 1 selects task \(n_1 \) which is in the DS but step 3 selects task \(n_4 \) which is not in the DS. The order of such selection is equivalent to \textit{topologically} traversing the graph.

The reason for following a topological order of task examination and zeroing one DS edge incident to it is that we can localize the effect of edge zeroing on the priority values of the rest of the unexamined tasks. In this way, even though zeroing changes the priorities of many nodes, DSC-I only needs to compute the changes for nodes which are immediate successors of the currently examined task \(n_f \), see Line 7 of Fig. 3. For Fig. 4(1), after \(n_1 \) is examined, the priority of \(n_5 \) does not need to be updated until one of its predecessors is examined at step 2. More explanations are given in Property 3.2.

\textbf{Edge zeroing criterion: (Line 6 in Fig. 3)} The criterion for accepting a zeroing is that the value of \(tlevel(n_f) \) of the highest priority free node \textit{does not increase} by such a zeroing. If it does then such zeroing is not accepted and \(n_f \) becomes a new cluster in \(EG. \) Notice that by reducing \(tlevel(n_f) \) all paths
going through n_f could be compressed and as a result the DS length could be reduced. In Fig. 4(2), n_2 is selected and (n_1, n_2) is zeroed. The zeroing is accepted since $tlevel(n_2)$ reduces from 6 to 1.

Task placement in EG: (Line 6 in Fig. 3) When an edge is zeroed then a free task n_f is merged to the cluster where one of its predecessors resides. Our scheduling heuristic adds a pseudo edge from the last task of this cluster to n_f if they are independent. In Fig. 4(3), n_4 is selected and the zeroing of (n_1, n_4) is accepted since $tlevel(n_4)$ reduces from 3 to 2.5. A pseudo edge (n_2, n_4) is added in EG.

The DSC-I satisfies the following properties:

Property 3.1 $PT_{i-1} \geq PT_i$.

Equation (1) implies that reducing the priority value of tasks would lead to the reduction of the parallel time. Thus the constraint that $tlevel$ values do not increase implies this property. A formal proof will be given in Section 4.5.

In DSC-I, $tlevel$ and $blevel$ values are re-used after each step so that the complexity in determining DS nodes is reduced. The following property explains how the topological traversal and the cluster merging rule defined in the DSC-I description make the complexity reduction possible.

Property 3.2 *For the DSC-I algorithm, $tlevel(n_x)$ remains constant if $n_x \in EG$ and $blevel(n_x)$ remains constant if $n_x \in UEG$.***

Proof: If $n_x \in UEG$, then the topological traversal implies that all descendant of n_x are in UEG. Since n_x and its descendants are in separate unit clusters, $blevel(n_x)$ remains unchanged before it is examined. Also for nodes in EG, all clusters in EG can be considered “linear” by counting the pseudo execution
edges. When a free node is merged to a “linear” cluster it is always attached to the last node of that “linear” cluster. Thus $tlevel(n_x)$ remains unchanged after n_x has been examined.

\[\square\]

Property 3.3 The time complexity of DSC-I algorithm is $O(e + v \log v)$.

Proof: From Property 3.2, the priority of a free node n_f can be easily determined by using

$$tlevel(n_f) = \max_{n_j \in PRED(n_f)} \{ tlevel(n_j) + \tau_j + c_{j,f} \}.$$

Once $tlevel(n_j)$ is computed after its examination at some step, where n_j is the predecessor of n_f, this value is propagated to $tlevel(n_f)$. Afterwards $tlevel(n_j)$ remains unchanged and will not affect the value of $tlevel(n_f)$ anymore.

We maintain a priority list FL that contains all free tasks in UEG at each step of DSC-I. This list can be implemented using a balanced search tree data structure [7]. At the beginning, FL is empty and there is no initial overhead in setting up this data structure. The overhead occurs to maintain the proper order among tasks when a task is inserted or deleted from this list. This operation costs $O(\log |FL|)$ [7] where $|FL| \leq v$. Since each task in a DAG is inserted to FL once and is deleted once during the entire execution of DSC-I, the total complexity for maintaining FL is at most $2v \log v$.

The main computational cost of DSC-I algorithm is spent in the While loop (Line 4 in Fig. 3). The number of steps (iterations) is v. For Line 5, each step costs $O(\log v)$ for finding the head of FL and v steps cost $O(v \log v)$. For Line 6, each step costs $O(|\text{PRED}(n_f)|)$ in examining the immediate predecessors of task n_f. For the v steps the cost is $\sum_{n_f \in V} O(|\text{PRED}(n_f)|) = O(e)$. For line 7, each step costs $O(|\text{SUCC}(n_f)|)$ to update the priority values of the immediate successors of n_f, and similarly the cost for v steps is $O(e)$. When a successor of n_f is found free at Line 7, it is added to FL, and the overall cost has been estimated above to be $O(v \log v)$. Thus the total cost for DSC-I is $O(e + v \log v)$. \[\square\]

3.3 An Evaluation of DSC-I

In this subsection, we study the performance of DSC-I for some DAGs and propose modifications to improve its performance. Because a DAG is composed of a set of join and fork components, we consider the strengths and weaknesses of DSC-I in scheduling fork and join DAGs. Then we discuss a problem arising when zeroing non-DS edges due to the topological ordering of the traversal.

DSC-I for fork DAGs

Fig. 5 shows the clustering steps of DSC-I for a fork DAG. Without loss of generality, assume that the leaf nodes in (a) are sorted such that $\tau_j + \beta_j \geq \tau_{j+1} + \beta_{j+1}, \ j = 1 : m - 1$. The steps are described below.

Fig. 5(b) shows the initial clustering where each node is in a unit cluster. $EG = \{\}$, n_x is the only free task in UEG and $PRIO(n_x) = \tau_x + \beta_1 + \tau_1$. At step 1, n_x is selected and it has no incoming edges. It
remains in a unit cluster and $EG = \{n_x\}$. After that, n_1, n_2, \ldots, n_m become free and n_1 has the highest priority, $PRIO(n_1) = \tau_x + \beta_1 + \tau_1$, and $tlevel(n_1) = \tau_x + \beta_1$. At step 2 shown in 5(c), n_1 is selected and merged to the cluster of n_x and $tlevel(n_1)$ is reduced in a maximum degree to τ_x. At step $k + 1$, n_k is selected. The original leftmost scheduled cluster in 5(d) is a “linear” chain $n_x, n_1, \ldots, n_{k-1}$. If attaching n_k to the end of this chain does not increase $tlevel(n_k) = \tau_x + \beta_k$, the zeroing of edge (n_x, n_k) is accepted and the new $tlevel(n_k) = \tau_x + \sum_{j=1}^{k-1} \tau_j$. Thus the condition for accepting or not accepting a zeroing can be expressed as: $\sum_{j=1}^{k-1} \tau_j \leq \beta_k$.

It is easy to verify that DSC-I always zeroes DS edges at each step for a fork DAG and the parallel time strictly decreases monotonically. It turns out the DSC-I algorithm is optimal for this case and a proof will be given in section 5.

DSC-I for join DAGs

Let us consider the DSC-I algorithm for join DAGs.

Fig. 6 shows a join DAG, the final clustering and the optimum clustering. Again we assume that $\tau_j + \beta_j \geq \tau_{j+1} + \beta_{j+1}$, $j = 1 : m - 1$. The steps of DSC-I are described below.

Fig. 6(a) shows the initial clustering. Nodes n_1, n_2, \ldots, n_m are free. One DS is $< n_1, n_x >$. Step 1 selects n_1 which is in DS. No incoming edge exists for n_1 and no zeroing is performed. The DS is still $< n_1, n_x >$ after step 1. Now n_x becomes partially free. A node is partial free if it is in UEG and at least one of its predecessors has been examined but not all of its predecessors have been examined. Step 2 selects n_2 which is not in DS. No incoming edge exists and n_2 remains in a unit cluster in EG. Step $m + 1$ selects n_x which is now in the DS and then (n_1, n_x) is zeroed. The final result of DSC-I is shown in Fig. 6(b) which may not be optimal. The optimal result for a join DAG shown in Fig. 6(c) is symmetric to the previous optimal solution for a fork.
The join example shows that zeroing only one incoming edge of n_x is not sufficient to attain the optimum. In general, when a free node is examined, zeroing multiple incoming edges of this free node instead of zeroing one edge could result in a reduction of t_{level} in a maximum degree. As a consequence, the length of DS or SubDS going through this node could be reduced even more substantially. To achieve such a greedy goal, a low minimization procedure that zeroes multiple incoming edges of the selected free node is needed to be introduced in the DSC algorithm.

Chretienne [3] has proposed an optimal algorithm for a fork and join, which zeroes multiple edges. The complexity of his algorithm is $O(m \log B)$ where $B = \min\{\sum_{i=1}^{n} \tau_i, \beta_1 + \tau _1\} + \tau_x$. Al-Mouhamed [1] has also used the idea of zeroing multiple incoming edges of a task to compute a lower bound for scheduling a DAG, using an $O(m^2)$ algorithm, but no feasible schedules that reach the bound are produced by his algorithm. Since we are interested in lower complexity algorithms we will use a new optimum algorithm with an $O(m \log m)$ complexity.

Dominant Sequence Length Reduction Warranty (DSRW)

We describe another problem with DSC-I. When a DS node n_y is partial free, DSC-I suspends the zeroing of its incoming edges and examines the current non-DS free nodes according to the topological order. Assume that $t_{level}(n_y)$ could be reduced by δ if such a zeroing was not suspended. We should be able to get at least the same reduction for $t_{level}(n_y)$ when DSC-I examines the free node n_y at some future step. Then the length of DS going through n_y will also be reduced. However, this is not the case with DSC-I.

Fig. 4(2) shows the result of step 2 of DSC-I after n_2 is merged to $CLUST(n_1)$. The new DS depicted with the thick arrow is $<n_1, n_2, n_5>$ and it goes through partial free node n_5. If (n_2, n_5) was zeroed at step 3, $t_{level}(n_5)$ would have been decreased by $\delta = 5$. Then the length of the current DS $<n_1, n_2, n_5>$
would also have been reduced by 5. But due to the topological traversal rule, a free task \(n_4 \) is selected at step 3 because \(PRIO(n_4) = 9 \geq PRIO(n_3) = 4.5 \). Then \(n_4 \) is merged to \(CLUST(n_1) \) since \(tlevel(n_4) \) can be reduced from 3 to \(\tau_1 + \tau_2 = 2.5 \). Such process affects the future compression of \(DS < n_1, n_2, n_5 > \). When \(n_6 \) is free at step 5, \(tlevel(n_6) = \tau_1 + \tau_2 - c_{2.5} = 7.5 \) and it is impossible to reduce \(tlevel(n_6) \) further by moving it to \(CLUST(n_2) \). This is because \(n_5 \) will have to be linked after \(n_4 \), which makes \(tlevel(n_5) = \tau_1 + \tau_2 + \tau_4 = 8.5 \).

4 The Final Form of the DSC Algorithm

The main improvements to DSC-I are the minimization procedure for \(tlevel(n_f) \), maintaining a partial free list (PFL) and imposing the constraint DSRW.

4.1 Priority Lists

At each clustering step, we maintain two node priority lists, a partial free list \(PFL \) and a free list \(FL \) both sorted in a descending order of their task priorities. When two tasks have the same priority we choose the one with the most immediate successors. If there is still a tie, we break it randomly. Function \(head(L) \) returns the first node in the sorted list \(L \), which is the task with the highest priority. If \(L = \{ \} \), \(head(L) = NULL \) and the priority value is set to 0.

The \(tlevel \) value of a node is propagated to its successors only after this node has been examined. Thus the priority value of a partial free node can be updated using only the \(tlevel \) from its examined immediate predecessors. Because only part of predecessors are considered, we define the priority of a partial free task:

\[
pPRIO(n_y) = ptlevel(n_y) + blevel(n_y), \quad ptlevel(n_y) = \max_{n_j \in PRED(n_y)} \{ tlevel(n_j) + \tau_j + c_{j,y} \}.
\]

In general, \(pPRIO(n_y) \leq PRIO(n_y) \) and if a DS goes through an edge \((n_j, n_y)\) where \(n_j \) is an examined predecessor of \(n_y \), then we have \(pPRIO(n_y) = PRIO(n_j) = PRIO(n_y) \). By maintaining \(pPRIO \) instead of \(PRIO \) the complexity is reduced considerably. As we will prove later maintaining \(pPRIO \) does not adversely affect the performance of DSC since it can still correctly identify the DS at each step. The DSC algorithm is described in Fig. 7.

4.2 The minimization procedure for zeroing multiple incoming edges

To reduce \(tlevel(n_x) \) in DSC a minimization procedure that zeroes multiple incoming edges of free task \(n_x \) is needed. An optimal algorithm for a join DAG has been described in [9] and an optimal solution is shown in Fig. 6(c). The basic procedure is to first sort the nodes such that \(\tau_j + \beta_j \geq \tau_{j+1} + \beta_{j+1}, \quad j = 1 : m - 1 \), and then zeroes edges from left to right as long as the parallel time reduces after each zeroing, i.e. linear searching of the optimal point. This is equivalent to satisfying the condition \((\sum_{j=1}^{k-1} \tau_j \leq \beta_k)\) for each
1. \(EG = \emptyset \). \(U \overline{EG} = V \). Add all free entry nodes to \(FL \).
2. Compute \(blevel \) for each node and set \(tlevel = 0 \) for each free node.
3. \textbf{WHILE} \(U \overline{EG} \neq \emptyset \) \textbf{DO}
4. \(n_x = \text{head}(FL); /* \text{the free task with the highest priority} \text{PRIO}. */ \\
5. \(n_y = \text{head}(PFL); /* \text{the partial free task with the highest priority} \text{pPRIO}. */ \\
6. \text{IF} \ (\text{PRIO}(n_x) \geq \text{pPRIO}(n_y)) \text{ THEN}
7. \text{Call the minimization procedure to reduce} \ tlevel(n_x). \\
8. \text{IF no zeroing is accepted,} \ n_x \text{ remains in a unit cluster.}
9. \text{ELSE}
10. \text{Call the minimization procedure to reduce} \ tlevel(n_x) \text{ under constraint DSRW.}
11. \text{IF no zeroing is accepted,} \ n_x \text{ remains in a unit cluster.}
12. \text{ENDIF}
13. Update the priorities of \(n_x \)'s successors and put \(n_x \) into \(EG \).
14. \textbf{ENDWHILE}

Figure 7: The DSC Algorithm.

accepted zeroing. Another optimum algorithm for join is to determine the optimum point \(k \) first by using a binary search between 1 and \(m \) such that \((\sum_{j=1}^{k-1} \tau_j \leq \beta_k) \) and then zero all edges to the left of \(k \).

We modify the optimum binary search join algorithm to minimize \(tlevel(n_x) \) when \(n_x \) is free. The procedure is shown in Fig. 8. Assume that \(\text{PRED}(n_x) = \{n_1, n_2, \ldots, n_m\} \). Notice that all predecessors are in \(EG \) but now \(CLUST(n_1), \ldots, CLUST(n_m) \) may not be unit clusters. We sort the predecessors of \(n_x \) such that \(tlevel(n_j) + \tau_j + c_{j,x} \geq tlevel(n_{j+1}) + \tau_{j+1} + c_{j+1,x} \). To reduce \(tlevel(n_x) \) we must zero the edge \((n_1, n_x)\).

A problem arises when the algorithm zeroes an edge of a predecessor \(n_p \), which has other children than \(n_x \). When task \(n_p \) is moved from \(CLUST(n_p) \) to \(CLUST(n_1) \), the \(tlevel \) of the children of \(n_p \) will be affected. As a result, the length of paths going through those children will most likely increase. The constraint \(PT_{i-1} \geq PT_i \) may no longer hold and maintaining task priorities becomes complicated. To avoid such cases, we will exclude from the minimization procedure predecessors which have children other than \(n_x \) unless they are already in \(CLUST(n_1) \).

1. Sort the predecessors of \(n_x \) such that
\[
tlevel(n_j) + \tau_j + c_{j,x} \geq tlevel(n_{j+1}) + \tau_{j+1} + c_{j+1,x}, \quad j = 1 : m - 1.
\]
2. Let \(h \) be the maximum integer from 2 to \(m \) such that for \(2 \leq t \leq h \) node \(n_t \) satisfies the following constraint:
\[
\text{If} \ n_t \text{ is not in} \ CLUST(n_1), \text{then} \ n_t \text{ does not have any children other than} \ n_x.
\]
3. Find the optimum point \(k \) between 1 and \(h \) using the binary search algorithm. Zero \((n_1, n_x)\) up to \((n_k, n_x)\) so that \(tlevel(n_x) \) is minimum.

Figure 8: The minimization procedure for DSC.

The binary search algorithm in Fig. 8 finds the best stopping point \(k \) and those predecessors of \(n_x \) that
are not in $CLUST(n_1)$ must be extracted from their corresponding clusters and attached to $CLUST(n_1)$.
Those attached predecessors are ordered for execution in an increasing order of their $tlevel$ values.

We determine the complexity of this procedure. The $tlevel$ ordering of all predecessors is done once at a
cost of $O(m \log m)$. The binary search computes the effect of the ordered predecessors to $tlevel(n_i)$ at a
cost of $O(m)$ for $O(\log m)$ steps. The total cost of the above algorithm is $O(m \log m)$. If linear search was
used instead the total cost would increase to $O(m^2)$.

4.3 Imposing constraint DSRW

As we saw previously when there is no DS going through any free task and there is one DS passing through
a partial free node n_y, then zeroing non-DS incoming edges of free nodes could affect the reduction of
$tlevel(n_y)$ in the future steps. We impose the following constraint on DSC to avoid such side-effects:

DSRW: Zeroing incoming edges of a free node should not affect the reduction of $ptlevel(n_y)$ if it is reducible
by zeroing an incoming DS edge of n_y.

There are two problems that we must address in the implementation of DSRW. First we must detect if
$ptlevel(n_y)$ is reducible and second we must make sure that DSRW is satisfied.

1. To detect the reducibility of $ptlevel(n_y)$ we must examine the result of the zeroing of an incoming DS
edge of n_y. To find such an incoming DS edge we only examine the result of the zeroing each incoming
edge (n_j, n_y) where n_j is a predecessor of n_y and $n_j \in EG$. As we will prove in section 4.5 $ptlevel(n_y) =
tlevel(n_y)$. This implies that such partial reducibility suffices to guarantee that if the parallel time was
reducible by zeroing the DS incoming edges of a partial free DS node n_y, then $tlevel(n_y)$ is reducible when
n_y becomes free. Hence the DS can be compressed at that time.

2. After detecting the partial reducibility at step i for node n_y, we implement the constraint DSRW as
follows: Assume that n_p is one examined predecessor of n_y and zeroing (n_p, n_y) would reduce $ptlevel(n_y)$,
then no other nodes are allowed to move to $CLUST(n_p)$ until n_y becomes free.

For the example in Fig. 4(2), $n_y = n_5$, $ptlevel(n_5) = \tau_1 + \tau_2 + e_{2,5} = 7.5$, $pPRIO(n_5) = 9.5$, $PRIO(n_3) = 4.5$
and $PRIO(n_4) = 9$. We have that $pPRIO(n_5) > PRIO(n_4)$, which implies DS goes through partial free
node n_5 by Theorem 4.1 in section 4.5. And $ptlevel(n_5)$ could be reduced if (n_2, n_5) was zeroed. Then
$CLUST(n_2)$ cannot be touched before n_5 becomes free. Thus n_3 and n_4 cannot be moved to $CLUST(n_2)$
and they remain in the unit clusters in EG. When finally n_5 becomes free, (n_2, n_5) is zeroed and PT is
reduced from 9.5 to 9.

4.4 A running trace of DSC

15
Figure 9: The result of DSC after each step in scheduling the DAG shown in Fig. 1(a).

We demonstrate the DSC steps by using a DAG example shown in Fig. 1(a). The steps 0, 1, 2, 5, 6 and 7 are shown in Fig. 9. The thick paths are the DSs and dashed pseudo edges are the execution order within a cluster. We provide an explanation for each step below. The superscript of a task node in FL or PFL indicates its priority value.

(0) Initially

$U_{EG} = \{n_1, n_2, n_3, n_4, n_5, n_6, n_7\}$ \quad $PT_0 = 13$ \quad $FL = \{n_1^{0+13}, n_4^{0+9.5}, n_6^{0+7.5}\}$ \quad $PFL = \{\}$

(1) n_1 is selected, $tlevel(n_1) = 0$, it cannot be reduced so $CLUST(n_1)$ remains a unit cluster. Then

$U_{EG} = \{n_2, n_3, n_4, n_5, n_6, n_7\}$ \quad $PT_1 = 13$ \quad $FL = \{n_2^{4+9}, n_3^{1.5+8}, n_4^{0+9.5}, n_6^{0+7.5}\}$ \quad $PFL = \{\}$

(2) n_2 is selected, $n_x = n_2$, $n_y = NULL$, and $tlevel(n_2) = 4$. By zeroing the incoming edge (n_1, n_2) of n_2, $tlevel(n_2)$ reduces to 1. Thus this zeroing is accepted and after that step,

$U_{EG} = \{n_3, n_4, n_5, n_6, n_7\}$ \quad $PT_2 = 10$ \quad $FL = \{n_3^{1.5+8}, n_4^{0+9.5}, n_6^{0+7.5}\}$ \quad $PFL = \{n_7^{0+1}\}$

(3) n_3 is selected, $n_x = n_3$ with $PRIO(n_3) = 1.5 + 8 = 9.5$ and $n_y = n_7$ with $pPRIO(n_7) = 10$. Notice that by zeroing (n_2, n_7) the $tlevel(n_7)$ reduces to 8.5. Thus we impose the DSRW constraint. Since zeroing (n_1, n_3) affects $tlevel(n_3)$ this zeroing is not accepted because of DSRW. The $tlevel(n_3)$ remains the same and $CLUST(n_3)$ remains a unit cluster in EG.

(4), (5) n_4 and n_6 are selected respectively and their clusters again remain unit clusters. After that,

$U_{EG} = \{n_5, n_7\}$ \quad $PT_5 = 10$ \quad $FL = \{n_5^{5+4.5}\}$ \quad $PFL = \{n_7^{0+1}\}$

(6) n_5 is selected and its incoming edges (n_3, n_6) and (n_4, n_6) are zeroed by the minimization procedure. Node n_4 is ordered for execution first because $tlevel(n_4) = 0$, which is smaller than $tlevel(n_3) = 1.5$. Then
$tlevel(n_6)$ is reduced to 2.5 and

$$UEG = \{n_7\} \quad PT_6 = 10 \quad FL = \{n_7^{9+1}\} \quad PFL = \{\}$$

(7), n_7 is selected and (n_2, n_7) is zereed so that $tlevel(n_7)$ is reduced from 9 to 7.

$$UEG = \{\} \quad PT_7 = 8 \quad FL = \{\} \quad PFL = \{\}$$

Finally three clusters are generated with $PT = 8$.

4.5 DSC Properties

In this section, we study several properties of DSC related to the identification of DS, the reduction of the parallel time and the computational complexity. Theorem 4.1 indicates that DSC (Line 6 and 9 in Fig. 7) correctly locates DS nodes at each step even if we use the partial priority $pPRIO$. Theorems 4.2 and 4.3 show how DSC warranties in the reduction of the parallel time. Theorem 4.4 derives the complexity.

The correctness in locating DS nodes

The goal of DSC is to reduce the DS in a sequence of steps. To do that it must correctly identify unexamined DS nodes. In this subsection, we assume that a DS goes through UEG, since it is only then that DSC needs to identify and compress DS. If DS does not go through UEG but only through EG, then all DS nodes have been examined and the DS can no longer be compressed because backtracking is not allowed.

Since the DSC algorithm examines the nodes topologically the free list FL is always non-empty. By definition all tasks in FL and PFL are in UEG. It is obvious that a DS must go through tasks in either FL or PFL, when it goes through UEG. The interesting question is if a DS also goes through the heads of the priority lists of FL and PFL, since then the priority lists will correctly identify DS nodes to be examined. The answer is given in the following two Lemmas and Theorem.

Lemma 4.1 Assume that $n_x = head(FL)$ after step i. If there are DSs going through free nodes in FL, then one DS must go through n_x.

Proof: At the completion of step i the parallel time is $PT_i = PRIO(n_x)$, where n_x is a DS node. Assume that no DS goes through n_x. Then one DS must go through another non-head free node n_f. This implies that $PRIO(n_f) = PT_i > PRIO(n_x)$, which is a contradiction because n_x has the highest priority in FL. □

Lemma 4.2 Assume that $n_y = head(PFL)$ after step i. If DSs only go through partial free nodes in PFL, then one DS must go through n_y. Moreover, $pPRIO(n_y) = PRIO(n_y)$.

Proof: First observe that the starting node of a DS must be an entry node of this DAG. If this node
is in \(UEG \), then it must be free which is impossible since the assumption says that DSs only go through partial free nodes in \(UEG \). Thus the starting node must be in \(EG \). As a result a DS must start from a node in \(EG \) and go through an examined node \(n_j \) to its unexamined partial free successor \(n_y \). Then because they are in the same DS we have that \(PRIO(n_y) = PRIO(n_j) = pPRIO(n_y) \). The proof now becomes similar to the previous Lemma. Suppose that no DS goes through \(n_y \). We have that \(pPRIO(n_y) \leq PRIO(n_y) < PT = PRIO(n_y) = pPRIO(n_y) \) which contradicts the assumption that \(n_y \) is the head of \(PFL \).

Next we prove that \(pPRIO(n_y) = PRIO(n_y) \). Suppose \(pPRIO(n_y) < PRIO(n_y) \). This implies that the DS, where \(n_y \) belongs to, does not pass through any examined immediate predecessor of \(n_y \). As a result DS must go through some other nodes in \(UEG \). Thus, there exists an ancestor node \(n_a \) of \(n_y \), such that the DS passes through an edge \((n_q, n_a) \) where \(n_q \) is the examined predecessor of \(n_a \) and \(n_a \) is partial free since it is impossible to be free by the assumptions of this Lemma. We have that \(pPRIO(n_a) = PRIO(n_a) = PRIO(n_y) > pPRIO(n_y) \) which shows \(n_y \) is not the head of \(PFL \). This a contradiction.

The following theorem shows that the condition \(PRIO(n_x) \geq pPRIO(n_y) \) used by DSC algorithm in Line 6 of Fig. 7), correctly identifies DS nodes.

Theorem 4.1 Assume that \(n_x = head(FL) \) and \(n_y = head(PFL) \) after step \(i \) and that there is a DS going through \(UEG \). If \(PRIO(n_x) \geq pPRIO(n_y) \) then a DS goes through \(n_x \). If \(PRIO(n_x) < pPRIO(n_y) \), then the DS it goes through \(n_y \) and also does not go through any free node in \(FL \).

Proof: If \(PRIO(n_x) \geq pPRIO(n_y) \), then we will show that DS goes through \(n_x \). First assume DS goes through \(FL \) or both \(FL \) and \(PFL \). Then according to Lemma 4.1 it must go through \(n_x \). Next assume that DS goes through \(PFL \) only. Then from Lemma 4.2 it must go through \(n_y \), implying that \(pPRIO(n_y) = PRIO(n_y) = PT_i > PRIO(n_x) \) which is a contradiction since \(PRIO(n_x) \geq pPRIO(n_y) \).

If \(PRIO(n_x) < pPRIO(n_y) \), suppose that a DS passes a free node. Then according to Lemma 4.1, \(PRIO(n_x) = PT_i \geq PRIO(n_y) \geq pPRIO(n_y) \) which is a contradiction again. Thus the DSs must go through partial free nodes and one of them must go through \(n_y \) by Lemma 4.2.

The warranty in reducing parallel time

In this subsection, we show that if the parallel time could be reduced at some clustering step then the DSC algorithm makes sure that the parallel time will be reduced before the algorithm terminates. The first Lemma gives an expression for the parallel time in terms of the priorities. The second Lemma shows that the parallel time cannot increase from one step to the next. The Theorem proves that the parallel time will be reduced if it is known that it is reducible. A Corollary of the Theorem gives an even stronger result for the reduction of the parallel time. If it can be detected that the parallel time is reducible by a certain amount at some step, the DSC guarantees that the reduction of the parallel time will be at least as much as this amount.
Lemma 4.3 Assume that \(n_x = \text{head}(FL) \) and \(n_y = \text{head}(PFL) \) after step \(i \). The parallel time for executing the clustered graph after step \(i \) of DSC is:

\[
PT_i = \max\{PRIO(n_x), pPRIO(n_y), \max_{n_e \in EG} \{PRIO(n_e)\}\}.
\]

Proof: There are three cases in the proof. (1) If DS nodes are only within \(EG \), then by definition \(PT_i = \max_{n_e \in EG} \{PRIO(n_e)\} \). (2) If a DS goes through a free node, then \(PT_i = PRIO(n_x) \) by Lemma 4.1. (3) If there is a DS passing through \(UEG \) but this DS only passes through partial free nodes, then \(PT_i = PRIO(n_y) = pPRIO(n_y) \) by Lemma 4.2.

Theorem 4.2 For each step \(i \) of DSC, \(PT_{i-1} \geq PT_i \).

Proof: For this proof we rename the priority values of \(n_x = \text{head}(FL) \), and \(n_y = \text{head}(PFL) \) after step \(i-1 \) as \(PRIO(n_x, i-1) \) and \(pPRIO(n_y, i-1) \) respectively. We need to prove, that \(PT_{i-1} \geq PT_i \), where

\[
PT_{i-1} = \max\{PRIO(n_x, i-1), pPRIO(n_y, i-1), \max_{n_e \in EG} \{PRIO(n_e, i-1)\}\}
\]

\[
PT_i = \max\{PRIO(n^*_x, i), pPRIO(n^*_y, i), \max_{n_e \in EG \cup \{n_x\}} \{PRIO(n_e, i)\}\}
\]

and \(n^*_x \) and \(n^*_y \) are the new heads of FL and PFL after step \(i \).

We prove first that \(PRIO(n^*_x, i) \leq PT_{i-1} \)

Since \(n^*_x \) is in the free list after step \(i-1 \), it must be in \(UEG \) and also it must be either the successor of \(n_x \) or it is independent to \(n_x \). At step \(i \), DSC picks up task \(n_x \) to examine its incoming edges for zeroing. We consider the effect of such zeroing on the priority value of \(n^*_x \). Since the minimization procedure does not increase \(\text{level}(n_x) \), the length of the paths going through \(n_x \) decreases or remains unchanged. Thus the priority values of the descendants of \(n_x \) could decrease but not increase. The priority values of other nodes in \(EG \) remain the same since the minimization procedure excludes those predecessors of \(n_x \) that have children other than \(n_x \). Thus if \(n^*_x \) is the successor of \(n_x \), then \(PRIO(n^*_x, i) \leq PRIO(n^*_x, i-1) \), otherwise \(PRIO(n^*_x, i) = PRIO(n^*_x, i-1) \). Since \(PRIO(n^*_x, i-1) \leq PT_{i-1} \), then \(PRIO(n^*_x, i) \leq PT_{i-1} \).

Similarly we can prove that \(PRIO(n^*_y, i) \leq PT_{i-1} \).

Next we prove that \(\max_{n_e \in EG \cup \{n_x\}} \{PRIO(n_e, i)\} \leq PT_{i-1} \). We have \(PRIO(n_x, i) \leq PRIO(n_x, i-1) \) from the minimization procedure. We only need to examine the effect of zeroing for \(n_x \) on the priorities of nodes in \(EG \). The minimization procedure may increase the \(\text{level} \) values of some predecessors of \(n_x \), say \(n_p \), but it guarantees that the length of the paths going through \(n_p \) and \(n_x \) do not increase. Thus the new value of \(PRIO(n_p) \) satisfies \(PRIO(n_p, i) \leq PRIO(n_p, i-1) \). Since \(PRIO(n_x, i-1) \leq PT_{i-1} \), then \(PRIO(n_p, i) \leq PT_{i-1} \).

The minimization procedure may also increase the \(\text{level} \) values of some nodes in the cluster in \(EG \) to which \(n_x \) is attached. A pseudo edge is added from the last node of that cluster, say \(n_c \), to \(n_x \) if \(n_c \)
and \(n_x \) are independent. If there is an increase in the priority value of \(n_c \), then the reason must be that adding this pseudo edge introduces a new path going through \(n_x \) with longer length compared with the other existing paths for \(n_c \). Since the minimization procedure has considered the effect of attaching \(n_x \) after \(n_c \) on \(tlevel(n_x) \), the length of paths will be less than or equal to \(PRIO(n_x, i - 1) \leq PT_{i-1} \). Thus \(PRIO(n_x, i) \leq PT_{i-1} \). Similarly we can prove that other nodes in \(CLUST(n_c) \) satisfy this inequality. Since the priority values of nodes, say \(n_o \), that are not the predecessors of \(n_x \) or not in \(CLUST(n_c) \) will not be affected by the minimization procedure, we have \(PRIO(n_o, i - 1) = PRIO(n_o, i) \). Thus \(\max_{n_c \in E\{n_c\}} \{PRIO(n_c, i)\} \leq PT_{i-1} \).

Theorem 4.3 After step \(i \) of DSC, if the current parallel time is reducible by zeroing one incoming edge of a node in \(UEG \), then DSC guarantees that the parallel time will be reduced at some step greater or equal to \(i + 1 \).

Proof: The assumption that the parallel time reduces by zeroing one edge \((n_r, n_s)\), implies that a DS must go through \(UEG \). This implies that the edge \((n_r, n_s)\) belongs to all DSs that go through \(UEG \), otherwise the parallel time is not reducible. There are three cases:

1. \(n_r \in E\{n_c\} \) and \(n_s \) is free.
 We prove that the node \(n_s \) must be the head of \(FL \). If it is not, then another free node in \(UEG \), \(n_f \), must have the same priority and thus belong to a DS. Because all DSs go through \((n_r, n_s)\), \(n_f \) must be a predecessor of \(n_s \) implying that \(n_s \) is partial free which is a contradiction.

 Also since \(PT_i = blevel(n_s) + tlevel(n_s) \) is reducible by zeroing \((n_r, n_s)\), and \(blevel(n_s) \) does not change by such a zeroing, then \(tlevel(n_s) \) is reducible. Thus during the DSC execution, \(n_s = head(FL) \) will be picked up at step \(i + 1 \), and since \(tlevel(n_s) \) is reducible the minimization procedure will accept the zeroing of \((n_r, n_s)\) and the parallel time will reduce at that step.

2. \(n_r \in E\{n_c\} \) and \(n_s \) is partial free.
 Since all DSs go through \((n_r, n_s)\), no free nodes are in DSs and other partial free nodes, \(n_f \) in the DSs must be successors of \(n_s \). Thus \(pPRIO(n_s) = PRIO(n_s) \) but \(pPRIO(n_f) < PRIO(n_f) \). Since \(PRIO(n_f) = PRIO(n_s) \) then \(pPRIO(n_f) < pPRIO(n_s) \) and \(n_s \) must be the head of \(PFL \).

 Assume that \(PT_i = blevel(n_s) + plevel(n_s) \) is reducible by \(\delta > 0 \) when zeroing \((n_r, n_s)\), and \(blevel(n_s) \) does not change by such a zeroing. Then \(plevel(n_s) \) is reducible by at least \(\delta \). Thus, during the execution of DSC, the reducibility of \(plevel(n_s) \) will be detected at step \(i + 1 \). Afterwards non-DS edges are zeroed until \(n_s \) becomes free. However, the reducibility of \(plevel(n_s) \) is not affected by such zeroings because of DSRW. A non-DS node remains a non-DS node and no other nodes are moved to \(CLUST(n_r) \). When \(n_s \) becomes free, \(plevel(n_s) \) is still reducible by at least \(\delta \), and since other SubDS either decrease or remain unchanged, then the parallel time is also reducible by at least \(\delta \). The rest of the proof becomes the same as in the previous case.

3. \(n_r \in UEG \).

20
Assume that \(n_r \) becomes examined at step \(j \geq i + 1 \). At step \(i + 1 \) all DSs must go through \((n_r, n_s)\). If from \(i + 1 \) to step \(j \) the parallel time has been reduced then the theorem is true. If the parallel time has not been reduced then at least one DS has not been compressed and all DSs still go through \((n_r, n_s)\) because the minimization procedure guarantees that no other DSs will be created. Thus the parallel time will be reducible at step \(j \) and the proof becomes the same as in the above cases.

The following corollary is the direct result of Case 2 in the above Theorem.

Corollary 4.3 Assume that \(n_y \in PFL, n_y \in DS \) at step \(i \) and that zeroing of an incoming edge of \(n_y \) from a scheduled predecessor would have reduced \(PT \) by \(\delta \). Then DSC guarantees that when \(n_y \) becomes free at step \(j \) \((j > i)\), \(PT \) can be reduced by at least \(\delta \).

The complexity

Lemma 4.4 For any node \(n_s \) in \(FL \) or \(PFL \), \(tlevel(n_j) \) for \(n_j \in PRED(n_s) \cap \nabla EG \) remains constant after \(n_j \) is examined, and \(blevel(n_s) \) remains constant until it is examined.

Proof: Referring to Property 3.2 of DSC-I, DSC is the same as DSC-I except that the minimization procedure changes \(tlevel \) values of some examined predecessors, say \(n_h \), of the currently-selected free task, say \(n_x \). But such change does not affect any node in \(FL \) or \(PFL \) since \(n_h \) does not have children other than \(n_x \). □

Theorem 4.4 The time complexity of DSC is \(O((v + e) \log v) \) and the space complexity is \(O(v + e) \).

Proof: The difference in the complexity between DSC-I and DSC results from the minimization procedure within the While loop in Fig. 7. In DSC we also maintain PFL but the cost for the \(v \) steps is the same \(O(v \log v) \) when we use the balanced search trees. Therefore, for Line 4 and 5 in Fig. 7, \(v \) steps cost \(O(v \log v) \). For Line 7 and 8 (or Line 9 and 10), the minimization procedure costs \(O(|PRED(n_x)| \log |PRED(n_x)|) \) at each step. Since \(\sum_{n_x \in V} |PRED(n_x)| = e \) and \(|PRED(n_x)| < v \), \(v \) steps cost \(O(e \log v) \).

For Line 13, the \(tlevel \) values of the successors of \(n_x \) are updated. Those successors could be in \(PFL \) and the list needs to be rearranged since their \(pPrio \) values could be changed. The cost of adjusting each successor in \(PFL \) is \(O(\log |PFL|) \) where \(|PFL| < v \). The step cost for Line 13 is \(O(|Succ(n_x)| \log v) \). Since \(\sum_{n_x \in V} |Succ(n_x)| = e \), the total cost for maintaining \(PFL \) during \(v \) steps is \(O(e \log v) \).

Also for Line 13 when one successor becomes free, it needs to be added to \(FL \) with cost \(O(\log |FL|) \) where \(|FL| \leq v \). Since there are total \(v \) task that could become free during \(v \) steps, the total cost in Line 13 spent for \(FL \) during \(v \) steps is \(O(v \log v) \).

Notice that according to Lemma 4.4, after \(n_x \) has been moved to \(EG \) at Line 13, its \(tlevel \) value will not affect the priority of tasks in \(PFL \) and \(FL \) in the rest of steps. Thus the updating of \(FL \) or \(PFL \) occurs only once with respect to each task. Thus the overall time complexity is \(O((e + v) \log v) \). The space needed for DSC is to store the DAG and \(FL/PFL \). The space complexity is \(O(v + e) \). □
5 Performance Bounds and Optimality of DSC

In this section we study the performance characteristics of DS. We give an upper bound for a general DAG and prove the optimality for forks, joins, coarse grain trees and a class of fine grain trees. Since this scheduling problem is NP-complete for a general fine grain tree and for a DAG which is a concatenation of a fork and a join (series parallel DAG) [3, 5], the analysis shows that DSC not only has a low complexity but also attains an optimality degree that a general polynomial algorithm could achieve.

5.1 Performance bounds for general DAGs

A DAG consists of fork (F_x) and/or join (J_x) structures such as the ones shown in Fig. 5(a) and 6(a). In [9], we define the grain of DAG as follows:

Let

$$g(F_x) = \min_{k=1,m} \{\tau_k\} / \max_{k=1,m} \{c_{x,k}\}, \quad g(J_x) = \min_{k=1,m} \{\tau_k\} / \max_{k=1,m} \{c_{k,x}\}.$$

Then the granularity of G is: $g(G) = \min_{x \in V} \{g_x\}$ where $g_x = \min\{g(F_x), g(J_x)\}$

We call a DAG coarse grain if $g(G) \geq 1$. For a coarse grain DAG, each task receives or sends a small amount of communication compared to the computation of its neighboring tasks. In [9], we prove the following two theorems:

Theorem 5.1 For a coarse grain DAG, there exists a linear clustering that attains the optimal solution.

Theorem 5.2 Let PT_{opt} be the optimum parallel time and PT_{lc} be the parallel time of a linear clustering, then $PT_{lc} \leq (1 + \frac{1}{g(G)}) PT_{opt}$. For a coarse grain DAG, $PT_{lc} \leq 2 \times PT_{opt}$.

The following theorem is a performance bound of DSC for a general DAG.

Theorem 5.3 Let PT_{desc} be the parallel time by DSC for a DAG G, then $PT_{desc} \leq (1 + \frac{1}{g(G)}) PT_{opt}$. For a coarse grain DAG, $PT_{desc} \leq 2 \times PT_{opt}$.

Proof: In the initial step of DSC, all nodes are in the separate clusters, which is a linear clustering. By Theorem 5.2 and Theorem 4.2 we have that

$$PT_{desc} \leq \ldots \leq PT_k \leq \ldots \leq PT_1 \leq PT_0 \leq (1 + \frac{1}{g(G)}) PT_{opt}.$$

For coarse grain DAGs the statement is obvious. □
5.2 Optimality for join and fork

Theorem 5.4 DSC derives optimal solutions for fork and join DAGs.

Proof: For a fork, DSC performs the exact same zeroing sequence as DSC-I. The clustering steps are shown in Fig. 5. After \(n_x \) is examined, DSC will examine free nodes \(n_1, n_2, \ldots, n_m \) in a decreasing order of their priorities. The priority value for each free node is the length of each path \(< n_x, n_1 >, \ldots, < n_x, n_m > \). If we assume that \(\beta_k + \tau_k \geq \beta_{k+1} + \tau_{k+1} \) for \(1 \leq k \leq m - 1 \), then the nodes are sorted as \(n_1, n_2, \ldots, n_m \) in the free list \(FL \).

We first determine the optimal time for the fork and then show that DSC achieves the optimum. Assume the optimal parallel time to be \(PT_{opt} \). If \(PRIO(n_h) = \tau_x + \tau_h + \beta_h > PT_{opt} \) for some \(h \), then \(\beta_i \) must have been zeroed for \(i = 1 : h \), otherwise we have a contradiction. All other edges \(i > h \) need not be zeroed because zeroing such edge does not decrease \(PT \) but could increase \(PT \). Let the optimal zeroing stopping point be \(h \) and assume \(\beta_{m+1} = \tau_{m+1} = 0 \). Then the optimal \(PT \) is: \(PT_{opt} = \tau_x + \max(\sum_{j=1}^{h} \tau_j, \beta_{h+1} + \tau_{h+1}) \).

DSC zeroes edges from left to right as many as possible up to the point \(k \) as shown in Fig. 5(d) such that: \(\sum_{j=1}^{k-1} \tau_j \leq \beta_k \) and \(\sum_{j=1}^{k} \tau_j > \beta_{k+1} \). We will prove that \(PT_{opt} = PT_{disc} \) by contradiction. Suppose that \(k \neq h \) and \(PT_{opt} < PT_{disc} \). There are two cases:

1. If \(h < k \), then \(\sum_{j=1}^{h} \tau_j < \sum_{j=1}^{k} \tau_j \leq \beta_k + \tau_k \leq \beta_{h+1} + \tau_{h+1} \). Thus \(PT_{opt} = \tau_x + \beta_{h+1} + \tau_{h+1} \geq \tau_x + \beta_k + \tau_k \geq \tau_x + \max(\sum_{j=1}^{k} \tau_j, \beta_{k+1} + \tau_{k+1}) = PT_{disc} \).

2. If \(h > k \), then since \(\sum_{j=1}^{h} \tau_j \geq \sum_{j=1}^{k+1} \tau_j \geq \beta_{k+1} + \tau_{k+1} \geq \beta_{h+1} + \tau_{h+1} \), we have that \(PT_{opt} = \tau_x + \sum_{j=1}^{h} \tau_j \geq \tau_x + \max(\sum_{j=1}^{k} \tau_j, \beta_{k+1} + \tau_{k+1}) = PT_{disc} \).

There is a contradiction in both cases.

For a join, the DSC uses the minimization procedure to minimize the \(tlevel \) value of the root and the solution is symmetrical to the optimal result for a fork.

\[\square \]

5.3 Optimality for in/out trees

An in-tree is a directed tree in which the root has outgoing degree zero and other nodes have the outgoing degree one. An out-tree is a directed tree in which the root has incoming degree zero and other nodes have the incoming degree one.

Scheduling in/out trees is still NP-hard in general as shown by Chretienne [5] and DSC will not give the optimal solution. However, DSC will yield optimal solutions for coarse grain trees and a class of fine grain trees.

Coarse grain trees
Theorem 5.5 DSC gives an optimal solution for a coarse grain in-tree.

Proof: Since all paths in an in-tree go through the tree root, say \(n_x \), \(PT = tlevel(n_x) + blevel(n_x) = tlevel(n_x) + \tau_x \). We claim \(tlevel(n_x) \) is minimized by DSC. We prove it by induction on the depth of the in-tree \((d)\). When \(d = 0 \), it is trivial. When \(d = 1 \), it is a join DAG and \(tlevel(n_x) \) is minimized. Assume it is true for \(d < k \).

When \(d = k \), let the predecessors of root \(n_x \) be \(n_1, \ldots, n_m \). Since each sub-tree rooted with \(n_i \) has depth \(< k \) and the disjoint subgraphs cannot be clustered together by DSC, DSC will obtain the minimum \(tlevel \) time for each \(n_j \) where \(1 \leq j \leq m \) according to the induction hypothesis.

When \(n_x \) becomes free, \(tlevel(n_x) = \max_{1 \leq j \leq m} \{ CT(n_j) + c_{j,x} \} \), \(CT(n_j) = tlevel(n_j) + \tau_j \). Without loss of generality, assume that \((n_1, n_x)\) is in a DS and \(tlevel(n_1) + \tau_1 + c_{1,x} \) has the highest value and \(tlevel(n_2) + \tau_2 + c_{2,x} \) has the second highest value. DSC will zero \((n_1, n_x)\), and \(tlevel(n_x) = \max(CI(n_1), \max_{2 \leq j \leq m} \{ CT(n_j) + c_{j,x} \}) \). (DSC will not zero anymore edges because of the coarse grain condition. DSC might zero \((n_2, n_x)\) when \(g(G) = 1 \), but \(tlevel(n_x) \) does not decrease.)

We need to prove that \(tlevel(n_x) \) is the smallest possible. Since the tree is coarse-grain, by Theorem 5.1, linear clustering can be used for deriving the optimal solution. Thus we can assume \(S^* \) is an optimal schedule that uses linear clustering. Let \(tlevel^*(n_j) \) be the \(tlevel \) value of \(n_j \) in schedule \(S^* \), and \(CT^*(n_j) = tlevel^*(n_j) + \tau_j \), \(CT^*(n_j) \geq CT(n_j) \) for \(1 \leq j \leq m \) from the assumption that \(CT(n_j) \) is minimum. Now we will show that \(tlevel^*(n_x) \geq tlevel(n_x) \). There are two cases:

(1) If in \(S^* \) the zeroed incoming edge of \(n_x \) is \((n_1, n_x)\), then

\[
tlevel^*(n_x) = \max(CT^*(n_1), \max_{2 \leq j \leq m} \{ CT^*(n_j) + c_{j,x} \}) \geq \max(CT(n_1), \max_{2 \leq j \leq m} \{ CT(n_j) + c_{j,x} \}) = tlevel(n_x)
\]

(2) If in \(S^* \) the zeroed incoming edge of \(n_x \) is not \((n_1, n_x)\), say it is \((n_m, n_x)\). Thus

\[
tlevel^*(n_x) = \max(CT^*(n_m), \max_{1 \leq j \leq m-1} \{ CT^*(n_j) + c_{j,x} \}) \geq \max(CT(n_m), \max_{1 \leq j \leq m-1} \{ CT(n_j) + c_{j,x} \}) \geq tlevel(n_x).
\]

Because of \(g(G) \geq 1 \), \(CT(n_1) + c_{1,x} \geq \max_{2 \leq j \leq m} \{ CT(n_j) + c_{j,x} \} \), then \(tlevel^*(n_x) \geq CT(n_1) + c_{1,x} \geq tlevel(n_x) \). \(\square \)

DSC solves an in-tree in time \(O(v \log v) \) where \(v \) is the number of nodes in this tree. Chretienne [4] developed an \(O(v^2) \) dynamic programming algorithm and Anger, Hwang and Chow [2] proposed an \(O(v) \) algorithm for tree DAGs with the condition that all communication edge weights are smaller than the task node execution weights, which are special cases of coarse grain tree DAGs. Both of these two algorithms are only specific to this kind of trees.

For an out-tree, we can always inverse this DAG and use DSC to schedule the inverted graph. Then the optimal solution can be obtained. We call this approach the backward dominant sequence clustering \(^3\).

\(^3\)In the actual DSC program, both backward and forward clusterings are performed and the one with the better solution is chosen.
Fine grain trees

Finding optimal solutions for general fine grain trees is NP-complete. However, DSC is able to obtain optimum for a class of fine grain trees. A single-spawn out-tree is an out tree such that at most one successor of a non-leaf tree node, say n_x, can spawn successors. Other successors of n_x are leaf nodes. A single-merge in-tree is an inverse of a single-spawn out tree. Examples of such trees are shown in Fig. 10.

![Diagram of single-spawn out-tree and single-merge in-tree](image)

Figure 10: (a) A single-spawn out-tree. (b) A single-merge in-tree.

Theorem 5.6 Given a single-spawn out-tree or single-merge in-tree with an equal computation weight w for each task and an equal communication weight c for each edge, DSC is optimal for this tree.

Proof: We will present a proof for an out-tree by induction on the height (h) of this tree. The proof for an in-tree is similar. When $h = 2$, it is a fork and DSC is optimal. Assume DSC obtains the optimum when $h = k$.

![Diagram of subtree T^k](image)

Figure 11: A single-spawn out-tree named T^{k+1} with height $h = k + 1$.

When $h = k + 1$, we assume without loss of generality that the successors of root n_0 are n_1, n_2, \ldots, n_j and that n_1 spawns successors. First we assume n_0 has more than 1 successors, i.e. $j > 1$. Fig. 11 depicts this tree. We call the entire tree T^{k+1} and the subtree rooted in $n_1 T^k$. The height of T^k is k and it has q tasks where $q > 1$. We claim that DSC will examine all nodes in the subtree T^k first before examining other successors of n_0. At step 1, n_0 is examined and all successors of n_0 become free. Node n_1 has priority $PRIO(n_1) \geq 3w + 2c$ and other successors of n_0 have priority $2w + c$. Then n_1 is examined at step 2, (n_0, n_1) is zeroed and all successors of n_1 are added to the free list. The priority of n_1’s successors $\geq 3w + c$. Thus they will be examined before n_2, \ldots, n_j. Recursively, all n_1’s descendants will be freed
and have priority ≥ 3w + c. Thus from step 2 to step q + 1, all q nodes in T^k are examined one by one. After step q + 1, DSC looks at n_2, n_3,⋯, n_j.

Since from step 2 to q+1, DSC clusters T^k only, DSC obtains an optimal clustering solution for this subtree by the induction hypothesis. We call the parallel time for this subtree PT_{opt}(T^k). Then the parallel time after step q + 1 is: PT_{opt}^{q+1} = max(w + PT_{opt}(T^k), 2w + c).

Let PT_{desc} be the time after the final step of DSC for T^{k+1}. We study the following two cases:

(1) One edge in T^k is not zeroed by DSC. Then PT_{opt}(T^k) ≥ 2w + c implying PT_{desc}^{q+1} = w + PT_{opt}(T^k).

Let PT_{desc} be the time of the final step, since the stepwise parallel time of DSC monotonically decreases, PT_{desc}^{q+1} ≥ PT_{desc}. Also since the optimal parallel time for a graph should be no less than that for its subgraph, PT_{opt}(T^{k+1}) ≥ w + PT_{opt}(T^k). Thus PT_{desc} ≤ PT_{opt}(T^{k+1}) and DSC is optimal for this case.

(2) All edges in T^k are zeroed by DSC. Then PT_{opt}(T^k) = qw and PT_{desc}^{q+1} = max(w + qw, 2w + c). If w + qw ≥ 2w + c, i.e., c ≤ (q − 1)w then PT_{desc} ≤ PT_{desc}^{q+1} = w + PT_{opt}(T^k) ≤ PT_{opt}(T^{k+1}). Since otherwise c > (q − 1)w and PT_{desc}^{q+1} = 2w + c. We claim that all edges in T^k and edge (n_0, n_1) should be zeroed by any optimal clustering for T^{k+1}. If they are not, then PT_{opt}(T^{k+1}) ≥ 3w + c > PT_{desc}^{q+1} ≥ PT_{desc}, which is impossible. Since all nodes in T^k and n_0 are in the same cluster, the optimal clustering for the entire out-tree T^{k+1} can be considered as clustering a fork with “leaf-node” n_1 having a weight qw. Because DSC is optimal for a fork, DSC will get the optimum for T^{k+1}.

Finally we examine the case that n_0 only has one successor, i.e. j = 1. DSC first zeroes edge (n_0, n_1) then gets the optimum for T^k. Thus PT_{desc} = w + PT_{opt}(T^k) = PT_{opt}(T^{k+1}). □

We do not know of another proof of polynomiality of the above class of fine grain DAGs in the literature. An open question remains if there exist a larger class of fine grain trees which are tractable in polynomial time, say for example the weights are not uniform in the above trees.

6 A Comparison with Other Algorithms and Experimental Results

There are many clustering algorithms for general DAGs, e.g. Sarkar [17], Kim and Browne [13], and Wu and Gajski [19]. A comparison of these algorithms is given in Gerasoulis and Yang [10]. In this section, we compare DSC with the MD algorithm of Wu and Gajski [19] and the ETF by Hwang, Chow, Anger and Lee [12]. We also provide an experimental comparison for ETF, DSC and Sarkar’s algorithms.

6.1 The MD algorithm

Wu and Gajski’s [19] have proposed two algorithms the MCP and MD. We refer the reader to [19] for the description of both algorithms as well as the terms used in this paragraph. The authors use the notion of as-soon-as-possible (ASAP) starting time T_S(n_i) and the as-late-as-possible (ALAP) time T_L(n_i) and latest
finishing time, $T_F(n_i)$. The relative mobility of a node is defined by $(T_L(n_i) - T_S(n_i))/w(n_i)$ where $w(n_i)$ is the task weight.

The MCP algorithm uses $T_L(n_i)$ as a node priority. It then selects the free node with the smallest node priority, which is equivalent to selecting the node with the largest $blevel(n_i)$, and schedules it to a processor that allows its earliest starting time.

The MD algorithm uses the relative mobility as a node priority and at each step of scheduling, it identifies a task n_p using the smallest relative mobility. It then examines the available processors starting from PE_0 and it schedules n_p to the first processor that satisfies a condition called Fact 1 [19], pp. 336. An intuitive explanation for Fact 1 is that scheduling a task n_p to a processor m should not increase the length of the current critical path (DS).

The complexity of the original algorithm is $O(v^3)$ as shown in [19], pp. 337. The corrected version of MD has a better performance but slightly higher complexity. This is because of the recomputation of T_S and T_F for each scanned processor. For each scheduling step, the complexity of MD is $O(p(v + e))$ where p is the number of scanned processors and $O(v + e)$ for the mobility information and checking Fact 1 for each processor, and since there are v steps the total complexity for the revised MD is $O(pv(v + e))$.

The idea of identifying the important tasks in DSC is the same as in MD, i.e. the smallest relative mobility identifies DS nodes which have the maximum $tlevel + blevel$. However, the way to identify DS nodes is different. The DSC uses a priority function with an $O(\log v)$ computing scheme, while MD uses the relative mobility function with a computing cost of $O(v + e)$. Another difference is that when DSC picks a DS task n_p to schedule, it uses the minimization procedure to reduce the $tlevel$ of this task and thus decrease the length of DS going through this task. On the other hand, the MD scans the processors from the left to right to find the first processor satisfying Fact 1. Even though Fact 1 guarantees the non-increase of the current critical path, it does not necessarily make the path length shorter.

For a fork or join, MD picks up the DS node at each step and we can show that it produces an optimal solution. For a coarse grain tree, as we saw in our optimality proof, the $tlevel$ must be reduced at each step. Since the MD schedules a task to a processor which does not necessarily decrease the $tlevel$ at each step, the MD may not produce the optimum in general. A summary of this comparison is given in Table 2.

6.2 The ETF algorithm

ETF [12] is a scheduling algorithm for a bounded number of processors with arbitrary network topologies. At each scheduling step, ETF finds a free task whose starting time is the smallest and then assigns this task to a processor in which the task execution can be started as early-as-possible. If there is a tie then

4In a recent personal communication [20], the authors have made the following corrections to the MD algorithm presented in [19]: (1) For Fact 1 when considering processor m, the condition “for each k” should change to “there exists k”. [19], pp. 336. (2) The T_F and T_S computation [19], pp. 336, should assume that task n_p is scheduled on processor m. (3) When n_p is scheduled to processor m, n_p is inserted before the first task in the task sequence of processor m that satisfies the inequality listed in Fact 1.
the task with the highest blevel is scheduled and this heuristic is called the ETF/CP in [12].

ETF is designed for scheduling on a bounded number of processors. Thus to compare the performance of DSC and ETF we first apply DSC to determine the number of processors (clusters), which we then use as an input to the ETF algorithm.

We discuss the differences and similarities of DSC and ETF as follows. For a node priority DSC uses tlevel + blevel, and then selects the largest node priority. On the other hand, the ETF uses the earliest-task-first which is similar to using tlevel as node priority and then selecting the smallest node priority for scheduling. For the scheduling step DSC and ETF use the same idea, i.e. try to reduce tlevel by scheduling to a processor that can start a task as early as possible. However, the technique for choosing a processor is different. ETF places a task to the processor that allows the earliest starting time without re-scheduling its predecessors, while DSC uses the minimization procedure that could re-schedule some of the predecessors. It should be mentioned that the MCP [19] algorithm also schedules a task to a processor that allows its earliest starting time as in ETF. However, the node priority for MCP is blevel as opposed to tlevel used by ETF.

The complexity of ETF is higher than DSC. Since at each step ETF examines all free tasks on all possible processors to find the minimum starting time, the complexity of ETF is $O(pw)$ where p is the number of processors used, w is the maximum size of the free task list. For v tasks, the total complexity is $O(pwv)$. In our case, $p = O(v)$, $w = O(v)$, thus the worst complexity is $O(v^3)$. We have used the balanced searching tree structure for the ETF algorithm in finding the values of a clock variable, NM, [12], pp. 249-250. However, the complexity of ETF for finding the earliest task at each step cannot be reduced since the earliest starting time of a task depends on the location of processors to be assigned. In practice, the average complexity of ETF could be lower than $O(v^3)$. For the Choleski decomposition DAG described in section 6.3, $p = O(\sqrt{v})$ and $w = O(\sqrt{v})$, thus the actual complexity is $O(v^2)$. In section 6.3, we will compare the CPU time spent for DSC and ETF on a SUN 4 workstation.

For a join DAG, ETF does not use a minimization procedure such as DSC, and it may not be optimal. For a fork, ETF may pick up a task with the earliest starting time but this task may not be in a DS and thus ETF may not give the optimum. For a coarse grain in-tree, ETF places a task to the processor of its successor which allows the earliest starting time for this task. We can use a similar approach as in DSC to prove the optimality of ETF for coarse grain in-trees.

A summary of the comparison is described in Table 2. Notice the similarities and differences between MCP and ETF and between MD and DSC. For a detailed comparison of MCP and DSC, see [10].

6.3 Random DAGs

Due to the NP-completeness of this scheduling problem, heuristic ideas used in DSC cannot always lead to an optimal solution. Thus it is necessary to compare the average performance of different algorithms using randomly generated graphs. Since both the MD and DSC are using the DS to identify the important
<table>
<thead>
<tr>
<th>Task priority</th>
<th>MCP</th>
<th>ETF</th>
<th>MD</th>
<th>DSC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>blevel</td>
<td>earliest task first
(tlevel)</td>
<td>relative mobility</td>
<td>tlevel + blevel</td>
</tr>
<tr>
<td>DS task first</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Processor selection</td>
<td>processor for earliest starting</td>
<td>processor for earliest starting</td>
<td>first processor satisfying Fact 1</td>
<td>minimization procedure</td>
</tr>
<tr>
<td>Complexity</td>
<td>$O(v^2 \log v)$</td>
<td>$O(pv^d)$</td>
<td>$O(p(v + e))$</td>
<td>$O((v + e) \log v)$</td>
</tr>
<tr>
<td>Join/Fork</td>
<td>no</td>
<td>no</td>
<td>optimal</td>
<td>optimal</td>
</tr>
<tr>
<td>Coarse grain tree</td>
<td>optimal</td>
<td>optimal</td>
<td>no</td>
<td>optimal</td>
</tr>
</tbody>
</table>

Table 2: A comparison of MCP, ETF, MD, and DSC.

tasks, we expect a similar performance from both methods. On the other hand, ETF, DSC and Sarkar’s are based on different principles and it is of interest to conduct an experimental comparison of these three methods.

We have generated 180 random DAGs as follows: We first randomly generate the number of layers in each DAG. We then randomly place a number of independent tasks in each layer. Next we randomly link the edges between tasks at different layers. Finally, we assign random values to task and edge weights. The following statistic information is important for analyzing the performance of scheduling algorithms:

W: The range of independent tasks in each layer. It approximates the average degree of parallelism.
L: The number of layers.
R/C: The average ratio of task weights over edge weights. It approximates the graph granularity.

The 180 graphs are classified into three groups of 60 graphs each based on their R/C values.

M1: The R/C range is 0.8-1.2. The average weights of computation and communication are close.
M2: The R/C range is 3-10. The graphs are coarse grain.
M3: The R/C range is 0.1-0.3. The graphs are fine grain.

Each group is further classified into 6 subgroups with 10 graphs each, based on the values of W and L. The results of scheduling group M1, M2 and M3 are summarized in Table 3, 4 and 5. The fifth and sixth columns of the tables show the parallel time improvement ratio of DSC over ETF and Sarkar’s algorithm. The improvement ratio of DSC over algorithm A is defined as

$$DSC/A = 1 - \frac{PT_{dsc}}{PT_A}.$$

For group M1, DSC/ETF shows an improvement by 3% and DSC/Sarkar’s by 20%. For the coarse grain group M2, the performance differences are insignificant between ETF and DSC and small between Sarkar’s and DSC. For the fine grain group M3, the performance is similar to M1 except in the first subgroup where Sarkar’s performs the best. This is because for this group the degree of parallelism and the number of layers are small and the granularity is relatively fine. This implies that communication dominates the computation and since Sarkar’s algorithm reduces the communication volume by zeroing the largest
communication edge at each step, it can get the largest reduction sooner. This is not the case for the other subgroups since then the size of graphs is larger and DSC is given more opportunities (steps) to zero edges.

<table>
<thead>
<tr>
<th>Layer range</th>
<th>Width Avg/Max</th>
<th>#tasks range</th>
<th>#edge range</th>
<th>DSC/ETF avg</th>
<th>DSC/Sarkar avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-11</td>
<td>4/11</td>
<td>44-94</td>
<td>57-206</td>
<td>4.58%</td>
<td>15.73%</td>
</tr>
<tr>
<td>9-11</td>
<td>9/20</td>
<td>64-107</td>
<td>118-255</td>
<td>4.49%</td>
<td>17.49%</td>
</tr>
<tr>
<td>18-21</td>
<td>5/11</td>
<td>84-121</td>
<td>131-276</td>
<td>4.23%</td>
<td>18.59%</td>
</tr>
<tr>
<td>18-20</td>
<td>9/22</td>
<td>158-210</td>
<td>334-552</td>
<td>3.27%</td>
<td>23.28%</td>
</tr>
<tr>
<td>18-20</td>
<td>19/41</td>
<td>313-432</td>
<td>691-1249</td>
<td>1.95%</td>
<td>23.40%</td>
</tr>
<tr>
<td>36-40</td>
<td>11/22</td>
<td>357-618</td>
<td>900-2374</td>
<td>1.30%</td>
<td>25.93%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>3.30%</td>
<td>20.74%</td>
</tr>
</tbody>
</table>

Table 3: DSC vs. ETF and Sarkar’s for group M1. The R/C range is between 0.8 and 1.2.

<table>
<thead>
<tr>
<th>Layer range</th>
<th>Width Avg/Max</th>
<th>#tasks range</th>
<th>#edge range</th>
<th>DSC/ETF avg</th>
<th>DSC/Sarkar avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-11</td>
<td>4/11</td>
<td>26-76</td>
<td>40-149</td>
<td>0.26%</td>
<td>3.60%</td>
</tr>
<tr>
<td>9-11</td>
<td>8/21</td>
<td>69-101</td>
<td>115-228</td>
<td>0.07%</td>
<td>5.04%</td>
</tr>
<tr>
<td>18-21</td>
<td>5/10</td>
<td>93-115</td>
<td>201-331</td>
<td>0.02%</td>
<td>5.56%</td>
</tr>
<tr>
<td>19-21</td>
<td>10/22</td>
<td>172-247</td>
<td>383-833</td>
<td>0.04%</td>
<td>6.16%</td>
</tr>
<tr>
<td>18-20</td>
<td>20/41</td>
<td>255-441</td>
<td>571-1495</td>
<td>0.02%</td>
<td>6.36%</td>
</tr>
<tr>
<td>35-41</td>
<td>11/23</td>
<td>378-504</td>
<td>676-1452</td>
<td>-0.03%</td>
<td>6.67%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>0.06%</td>
<td>5.56%</td>
</tr>
</tbody>
</table>

Table 4: DSC vs. ETF and Sarkar’s for group M2. The R/C range between 3 and 10. Coarse grain DAGs

<table>
<thead>
<tr>
<th>Layer range</th>
<th>Width Avg/Max</th>
<th>#tasks range</th>
<th>#edge range</th>
<th>DSC/ETF avg</th>
<th>DSC/Sarkar avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-10</td>
<td>4/11</td>
<td>38-68</td>
<td>34-187</td>
<td>-2.90%</td>
<td>-5.16%</td>
</tr>
<tr>
<td>9-11</td>
<td>9/21</td>
<td>54-118</td>
<td>83-257</td>
<td>2.79%</td>
<td>10.58%</td>
</tr>
<tr>
<td>18-20</td>
<td>5/12</td>
<td>84-153</td>
<td>154-469</td>
<td>-0.13%</td>
<td>18.43%</td>
</tr>
<tr>
<td>19-21</td>
<td>10/22</td>
<td>181-277</td>
<td>441-924</td>
<td>3.00%</td>
<td>25.96%</td>
</tr>
<tr>
<td>18-20</td>
<td>20/41</td>
<td>346-546</td>
<td>843-1992</td>
<td>3.78%</td>
<td>33.04%</td>
</tr>
<tr>
<td>35-41</td>
<td>11/23</td>
<td>391-474</td>
<td>632-1459</td>
<td>7.62%</td>
<td>33.41%</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
<td>2.36%</td>
<td>19.39%</td>
</tr>
</tbody>
</table>

Table 5: DSC vs. ETF and Sarkar’s for group M2. The R/C range between 0.1 and 0.3. Fine grain DAGs

A summary of the experiments for the 180 random DAGs is given in Table 6. We list the percentage of cases when the performance of DSC is better, the same, and worse than that of the other two algorithms. This experiment shows that the average performance of DSC is better than that of Sarkar’s and is slightly better than that of ETF.

To see the differences in the complexity between DSC and ETF and demonstrate the practicality of DSC, we consider an important DAG in numerical computing, the Choleski decomposition (CD) DAG, Cosnard et al. [8]. For a matrix size n the degree of parallelism is n, the number of tasks v is about $n^2/2$ and the
number of edges e is about n^2. The average R/C is 2. The performance of the two algorithms is given in Table 7. We show the PT improvement as well as the the total CPU time spent in scheduling this DAG on a SUN4 workstation.

To explain why the values of CPU in Table 7 makes sense for different n, we examine the complexity of the algorithms for this DAG. The complexity of DSC is $O((v + e) \log v)$ which is $O(n^2 \log n)$ for this case. When n increases by 2, T_{desc} increases by about 4 times. For ETF, the complexity is $O(pvw)$, for this case $p = w = n$ and $v = n^2/2$, thus the complexity is $O(n^4)$. When n increases by 2, T_{ctf} increases by about 16.

<table>
<thead>
<tr>
<th>n</th>
<th>v</th>
<th>e</th>
<th>DSC/ETF</th>
<th>CPU_{desc}</th>
<th>CPU_{ctf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>55</td>
<td>90</td>
<td>5.00%</td>
<td>0.06 sec</td>
<td>0.05 sec</td>
</tr>
<tr>
<td>20</td>
<td>210</td>
<td>380</td>
<td>4.15%</td>
<td>0.18 sec</td>
<td>0.63 sec</td>
</tr>
<tr>
<td>40</td>
<td>820</td>
<td>1560</td>
<td>2.47%</td>
<td>0.70 sec</td>
<td>10.4 sec</td>
</tr>
<tr>
<td>80</td>
<td>3240</td>
<td>6320</td>
<td>1.33%</td>
<td>3.01 sec</td>
<td>171.0 sec</td>
</tr>
<tr>
<td>160</td>
<td>12880</td>
<td>25440</td>
<td>0.69%</td>
<td>13.1 sec</td>
<td>2879 sec</td>
</tr>
<tr>
<td>320</td>
<td>51360</td>
<td>102080</td>
<td>0.35%</td>
<td>56.8 sec</td>
<td>55794 sec (15 hrs)</td>
</tr>
</tbody>
</table>

Table 7: DSC vs. ETF for the CD DAG. CPU is the time spent for scheduling on a Sun4 workstation.

The DSC algorithm has also been found to perform much better in terms of parallel time improvement than Sarkar’s and MCP algorithms for the CD example, see [10]. Since the major differences between the MCP and ETF is the node priority, we suspect that the choice of a node priority plays a significant role in parallel time performance of heuristic algorithms. Excluding the complexity, the experiments show the DS nodes selected by the MD and DSC algorithms and nodes with the earliest time selected by ETF are good choices for node priorities.

7 Conclusions

We have presented a low complexity scheduling algorithm with performance comparable or even better on average to much higher complexity heuristics. The low complexity makes DSC very attractive in practice. DSC can be used in the first step of Sarkar’s [17] two step approach to scheduling on a bounded number of processors. We have already incorporated DSC in our programming environment PYRROS [23] that has produced very good results on real architectures such as nCUBE-II and INTEL/i860. DSC is also useful
for partitioning and clustering of parallel programs [17, 21]. A particular area that DSC could be useful is scheduling irregular task graphs. Pozo [16] has used DSC to investigate the performance of sparse matrix methods for distributed memory architectures. Wolski and Feo [18] have extended the applicability of DSC to program partitioning for NUMA architectures.

Acknowledgments

We are very grateful to Vivek Sarkar for providing us with the programs of his system in [17] and his comments and suggestions, to Min-You Wu for his help in clarifying the MD algorithm. We also thank referees for their useful suggestions in improving the presentation of this paper. We thank Weining Wang for programming the random graph generator, Richard Wolski and Alain Darte for their comments on this work. The analysis for a fine grain tree was inspired by a conversation with Theodora Varvarigou.

References

33