Parallel Programming Laboratory
University of Illinois at Urbana-Champaign

CHARM+-+/CONVERSE
Installation and Usage

CONVERSE Parallel Programming Environment was developed as a group effort at Parallel Programming
Laboratory, University of Illinois at Urbana-Champaign. The team consisted of Attila Gursoy, Sanjeev
Krishnan, Joshua Yelon, Milind Bhandarkar, Narain Jagathesan, Robert Brunner and Laxmikant Kale. The
most recent version of CONVERSE has had inputs from Milind Bhandarkar, Laxmikant Kale, Robert Brunner,
Terry Wilmarth, Parthasarathy Ramachandran, Krishnan Varadarajan, and Jeffrey Wright.

Version 5.4 (Release 1)

University of Illinois
CHARM++/CONVERSE Parallel Programming System Software
Non-Exclusive, Non-Commercial Use License

Upon execution of this Agreement by the party identified below (“Licensee”), The Board of Trustees of the University of Illinois (“Illinois”), on behalf of
The Parallel Programming Laboratory (“PPL”) in the Department of Computer Science, will provide the CHARM-+/CONVERSE Parallel Programming System
software (“CHARM++”) in Binary Code and/or Source Code form (“Software”) to Licensee, subject to the following terms and conditions. For purposes of this
Agreement, Binary Code is the compiled code, which is ready to run on Licensee’s computer. Source code consists of a set of files which contain the actual
program commands that are compiled to form the Binary Code.

o

The Software is intellectual property owned by Illinois, and all right, title and interest, including copyright, remain with Illinois. Illinois grants,
and Licensee hereby accepts, a restricted, non-exclusive, non-transferable license to use the Software for academic, research and internal business
purposes only, e.g. not for commercial use (see Clause 7 below), without a fee.

Licensee may, at its own expense, create and freely distribute complimentary works that interoperate with the Software, directing others to the PPL
server (http://charm.cs.uiuc.edu) to license and obtain the Software itself. Licensee may, at its own expense, modify the Software to make derivative
works. Except as explicitly provided below, this License shall apply to any derivative work as it does to the original Software distributed by Illinois.
Any derivative work should be clearly marked and renamed to notify users that it is a modified version and not the original Software distributed by
Illinois. Licensee agrees to reproduce the copyright notice and other proprietary markings on any derivative work and to include in the documentation
of such work the acknowledgement:

“This software includes code developed by the Parallel Programming Laboratory in the Department of Computer Science at the
University of Illinois at Urbana-Champaign.”

Licensee may redistribute without restriction works with up to 1/2 of their non-comment source code derived from at most 1/10 of the non-comment
source code developed by Illinois and contained in the Software, provided that the above directions for notice and acknowledgement are observed.
Any other distribution of the Software or any derivative work requires a separate license with Illinois. Licensee may contact Illinois (kale@cs.uiuc.edu)
to negotiate an appropriate license for such distribution.

Except as expressly set forth in this Agreement, THIS SOFTWARE IS PROVIDED “AS IS” AND ILLINOIS MAKES NO REPRESENTATIONS
AND EXTENDS NO WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO WARRANTIES OR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, OR THAT THE USE OF THE SOFTWARE WILL NOT INFRINGE ANY
PATENT, TRADEMARK, OR OTHER RIGHTS. LICENSEE ASSUMES THE ENTIRE RISK AS TO THE RESULTS AND PERFORMANCE OF
THE SOFTWARE AND/OR ASSOCIATED MATERIALS. LICENSEE AGREES THAT UNIVERSITY SHALL NOT BE HELD LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, OR INCIDENTAL DAMAGES WITH RESPECT TO ANY CLAIM BY LICENSEE OR ANY THIRD
PARTY ON ACCOUNT OF OR ARISING FROM THIS AGREEMENT OR USE OF THE SOFTWARE AND/OR ASSOCIATED MATERIALS.

Licensee understands the Software is proprietary to Illinois. Licensee agrees to take all reasonable steps to insure that the Software is protected and
secured from unauthorized disclosure, use, or release and will treat it with at least the same level of care as Licensee would use to protect and secure
its own proprietary computer programs and/or information, but using no less than a reasonable standard of care. Licensee agrees to provide the
Software only to any other person or entity who has registered with Illinois. If licensee is not registering as an individual but as an institution or
corporation each member of the institution or corporation who has access to or uses Software must agree to and abide by the terms of this license.
If Licensee becomes aware of any unauthorized licensing, copying or use of the Software, Licensee shall promptly notify Illinois in writing. Licensee
expressly agrees to use the Software only in the manner and for the specific uses authorized in this Agreement.

By using or copying this Software, Licensee agrees to abide by the copyright law and all other applicable laws of the U.S. including, but not limited
to, export control laws and the terms of this license. Illinois shall have the right to terminate this license immediately by written notice upon
Licensee’s breach of, or non-compliance with, any terms of the license. Licensee may be held legally responsible for any copyright infringement that
is caused or encouraged by its failure to abide by the terms of this license. Upon termination, Licensee agrees to destroy all copies of the Software
in its possession and to verify such destruction in writing.

The user agrees that any reports or published results obtained with the Software will acknowledge its use by the appropriate citation as follows:

“HARM++/CONVERSE was developed by the Parallel Programming Laboratory in the Department of Computer Science at the University
of Illinois at Urbana-Champaign.”

Any published work which utilizes CuarRM++ shall include the following reference:

“L. V. Kale and S. Krishnan. CHARM++: Parallel Programming with Message-Driven Objects. In 'Parallel Programming using C++’
(Eds. Gregory V. Wilson and Paul Lu), pp 175-213, MIT Press, 1996.”

Any published work which utilizes CONVERSE shall include the following reference:

“L. V. Kale, Milind Bhandarkar, Narain Jagathesan, Sanjeev Krishnan and Joshua Yelon. CONVERsE: An Interoperable Framework for
Parallel Programming. Proceedings of the 10th International Parallel Processing Symposium, pp 212-217, April 1996.”

Electronic documents will include a direct link to the official CHARM++ page at http://charm.cs.uiuc.edu/

Commercial use of the Software, or derivative works based thereon, REQUIRES A COMMERCIAL LICENSE. Should Licensee wish to make com-
mercial use of the Software, Licensee will contact Illinois (kale@cs.uiuc.edu) to negotiate an appropriate license for such use. Commercial use
includes:

(a) integration of all or part of the Software into a product for sale, lease or license by or on behalf of Licensee to third parties, or

(b) distribution of the Software to third parties that need it to commercialize product sold or licensed by or on behalf of Licensee.

Government Rights. Because substantial governmental funds have been used in the development of CHARM++/CONVE
of the Software by or to the United States government shall be subject to such required restrictions.

, any possession, use or sublicense

CHARM++ /CONVERSE is being distributed as a research and teaching tool and as such, PPL encourages contributions from users of the code that might,
at Illinois’ sole discretion, be used or incorporated to make the basic operating framework of the Software a more stable, flexible, and/or useful
product. Licensees who contribute their code to become an internal portion of the Software agree that such code may be distributed by Illinois under
the terms of this License and may be required to sign an “Agreement Regarding Contributory Code for CHARM++/CONVERSE Software” before Illinois
can accept it (contact kaleQcs.uiuc.edu for a copy).

UNDERSTOOD AND AGREED.
Contact Information:
The best contact path for licensing issues is by e-mail to kale@cs.uiuc.edu or send correspondence to:

Prof. L. V. Kale

Dept. of Computer Science
University of Illinois

201 N. Goodwin Ave
Urbana, Illinois 61801 USA
FAX: (217) 333-3501

Contents

1 Introductionl 3

[2 Installing Charm-+-| 4

2.1 Security Issues| 4

2.2 Reducing disk usage| 5

3 Compiling Charm++4 Programs| 6
I piling g

4 Executing Charm++4 Programs| 8

4.1 Command Line Options| o o 8

[4.1.1 Additional Network Options|. 8

4.1.2° Multicore Options|« . e 10

B2 Nodelist fild o o 10

4.2.1 10 buffering options| e 11

1 Introduction

In this manual, we describe how to download and install the CHARM++ parallel language and runtime
system. We also describe how to compile and run CHARM—++ programs.

2 Installing Charm++

You can install CHARM++ as either source code or a precompiled binary package. Downloading source code
is more flexible, since you can choose the options you want; but a precompiled binary is slightly easier to
get running.

You begin by downloading CHARM++ from our web site: http://charm.cs.uiuc.edu/download.html

Unpack CHARM++ using a tool capable of extracting gzip’d tar files, such as tar (on Unix) or WinZIP
(under Windows). CHARM++ will be extracted to a directory called “charm”. If you choose the source
distribution, read the included “charm/README? file for detailed instructions on building CHARM~++ from
source.

The main directories in a CHARM++ installation are:

charm/bin Executables, such as charmc and charmrun, used by CHARM++.

charm/doc Documentation for CHARM++, such as this document. Distributed as LaTeX source code;
HTML and PDF versions can be built or downloaded from our web site.

charm/include The CHARM++ C++ and Fortran user include files (.h).
charm/lib The libraries (.a) that comprise CHARM++.

charm/pgms Example CHARM++ programs.

charm/src Source code for CHARM++ itself.

charm/tmp Directory where CHARM++ is built.

charm/tools Visualization tools for CHARM++ programs.

2.1 Security Issues

On most computers, CHARM-++ programs are simple binaries, and they pose no more security issues than
any other program would. The only exception is the network version net-*, which has the following issues.

The network versions utilize many unix processes communicating with each other via UDP. Only a simple
attempt is currently made to filter out unauthorized packets. Therefore, it is theoretically possible to mount
a security attack by sending UDP packets to an executing CONVERSE or CHARM++ program’s sockets.

The second security issue associated with networked programs is associated with the fact that we, the
CHARM++ developers, need evidence that our tools are being used. (Such evidence is useful in convincing
funding agencies to continue to support our work.) To this end, we have inserted code in the network
charmrun program (described later) to notify us that our software is being used. This notification is a single
UDP packet sent by charmrun to charm.cs.uiuc.edu. This data is put to one use only: it is gathered into
tables recording the internet domains in which our software is being used, the number of individuals at each
internet domain, and the frequency with which it is used.

We recognize that some users may have objections to our notification code. Therefore, we have provided
a second copy of the charmrun program with the notification code removed. If you look within the charm
bin directory, you will find these programs:

% cd charm/bin
% ls charmrunx
charmrun

charmrun-notify
charmrun-silent

The program charmrun.silent has the notification code removed. To permanently deactivate notifica-
tion, you may use the version without the notification code:

% cd charm/bin
% cp charmrun.silent charmrun

The only versions of CHARM-++ that ever notify us are the network versions.

2.2 Reducing disk usage

This section describes how you may delete parts of the distribution to save disk space.
The charm directory contains a collection of example-programs and test-programs. These may be deleted
with no other effects:

% rm -r charm/pgms

You may also strip all the binaries in charm/bin.

3 Compiling Charm++ Programs

The charmc program, located in “charm/bin”, standardizes compiling and linking procedures among various
machines and operating systems. “charmc” is a general-purpose tool for compiling and linking, not only
restricted to CHARM++ programs.

Charmc can perform the following tasks. The (simplified) syntax for each of these modes is shown.
Caution: in reality, one almost always has to add some command-line options in addition to the simplified
syntax shown below. The options are described next.

* Compile C charmc -o pgm.o pgm.c

* Compile C++ charmc -o pgm.o pgm.C

* Link charmc -o pgm objl.o obj2.0 obj3.0...
* Compile + Link charmc -o pgm srcl.c src2.ci src3.C
* Create Library charmc -o lib.a objl.o obj2.0 obj3.o0...
* CPM preprocessing charmc -gen-cpm file.c

* Translate Charm++ Interface File charmc file.ci

Charmc automatically figures out where the charm lib and include directories are — at no point do
you have to configure this information. However, the code that finds the lib and include directories can be
confused if you remove charmec from its normal directory, or rearrange the directory tree. Thus, the files in
the charm/bin, charm/include, and charm/lib directories must be left where they are relative to each other.

The following command-line options are available to users of charmec:

-o output-file: Output file name. Note: charmc only ever produces one output file at a time. Because
of this, you cannot compile multiple source files at once, unless you then link or archive them into a
single output-file. If exactly one source-file is specified, then an output file will be selected by default
using the obvious rule (eg, if the input file if pgm.c, the output file is pgm.o). If multiple input files are
specified, you must manually specify the name of the output file, which must be a library or executable.

-c: Ignored. There for compatibility with cc.

-Dsymbol[=value]: Defines preprocessor variables from the command line at compile time.
-I: Add a directory to the search path for preprocessor include files.

-g: Causes compiled files to include debugging information.

-L*: Add a directory to the search path for libraries selected by the -1 command.

-1*: Specifies libraries to link in.

-module mi[,m2[,...]] Specifies additional CHARM++ modules to link in. Similar to -1, but also registers
CHARM++ parallel objects. See the library’s documentation for whether to use -1 or -module.

-optimize: Causes files to be compiled with maximum optimization.

-no-optimize: If this follows -O on the command line, it turns optimization back off. This is just a
convenience for simple-minded makefiles.

-production: Enable architecture-specific production-mode features. For instance, use available hardware
features more aggressively. It’s probably a bad idea to build some objects with this, and others without.

-s: Strip the executable of debugging symbols. Only meaningful when producing an executable.
-verbose: All commands executed by charmc are echoed to stdout.

-seq: Indicates that we’re compiling sequential code. On parallel machines with front ends, this option also
means that the code is for the front end. This option is only valid with C and C++ files.

-use-fastest-cc: Some environments provide more than one C compiler (cc and gec, for example). Usually,
charmc prefers the less buggy of the two. This option causes charmc to switch to the most aggressive
compiler, regardless of whether it’s buggy or not.

-use-reliable-cc: Some environments provide more than one C compiler (cc and gee, for example). Usu-
ally, charmc prefers the less buggy of the two, but not always. This option causes charmc to switch to
the most reliable compiler, regardless of whether it produces slow code or not.

-language {converse|charm++|sdag|ampil|fem|f90charm}: When linking with charmc, one must specify
the “language”. This is just a way to help charmc include the right libraries. Pick the “language”
according to this table:

Charm++ if your program includes CHARM~+-+, C++, and C.
e Converse if your program includes C or C++.

e sdag if your program includes structured dagger.

e f90charm if your program includes f90 Charm interface.

-balance seed load-balance-strategy: When linking any CONVERSE program (including any CHARM++
or sdag program), one must include a seed load-balancing library. There are currently three to choose
from: rand, test, and neighbor are supported. Default is ~-balance rand.

When linking with neighbor seed load balancer, one can also specify a virtual tolpogy for constructing
neighbors during run-time using +LBTopo topo, where topo can be one of (a) ring, (b) mesh2d, (c)
mesh3d and (d) graph. The default is mesh2d.

-tracemode tracing-mode: Selects the desired degree of tracing for CHARM++ programs. See the CHARM 4+
manual and the PROJECTIONS manuals for more information. Currently supported modes are none,
summary, and projections. Default is ~tracemode none.

-memory memory-mode: Selects the implementation of malloc and free to use. Select a memory mode from
the table below.

e 0s Use the operating system’s standard memory routines.
e gnu Use a set of GNU memory routines.

e paranoid Use an error-checking set of routines. These routines will detect common mistakes such
as buffer overruns, underruns, double-deletes, and use-after-delete. The extra checks slow down
programs, so this version should not be used in production code.

e verbose Use a tracing set of memory routines. Every memory-related call results in a line printed
to standard out. This version is useful for detecting memory leaks.

e default Use the default, which depends on the version of CHARM++.
-c++ C++ compiler: Forces the specified C++ compiler to be used.
-cc C-compiler: Forces the specified C compiler to be used.
-cp copy-file: Creates a copy of the output file in copy-file.
-cpp-option options: Options passed to the C pre-processor.

-1d linker: Use this option only when compiling programs that do not include C++4 modules. Forces
charmc to use the specified linker.

-1d++ linker: Use this option only when compiling programs that include C++ modules. Forces charmc to
use the specified linker.

-1d++-option options: Options passed to the linker for ~-language charm++.
-1ld-option options: Options passed to the linker for ~language converse.

-ldro-option options: Options passes to the linker when linking .o files.

4 Executing Charm++ Programs

When compiling CHARM++ programs, the charmc linker produces both an executable file and a program
called charmrun, which is used to load the executable onto the parallel machine.
To run a CHARM-++ program named “pgm” on four processors, type:

charmrun pgm +p4

Programs built using the network version of CHARM++ can be run alone, without charmrun. This
restricts you to using the processors on the local machine, but it is convenient and often useful for debugging.
For example, a CHARM++ program can be run on one processor in the debugger using;:

gdb pgm

If the program needs some environment variables to be set for its execution on compute nodes (such as
library paths), they can be set in .charmrunrc under home directory. charmrun will run that shell script
before running the executable.

4.1 Command Line Options
A CHARM++ program accepts the following command line options:
+pN Run the program with N processors. The default is 1.

+ss Print summary statistics about chare creation. This option prints the total number of chare creation
requests, and the total number of chare creation requests processed across all processors.

+cs Print statistics about the number of create chare messages requested and processed, the number of
messages for chares requested and processed, and the number of messages for branch office chares
requested and processed, on a per processor basis. Note that the number of messages created and
processed for a particular type of message on a given node may not be the same, since a message may
be processed by a different processor from the one originating the request.

user_options Options that are be interpreted by the user program may be included mixed with the system
options. However, user_options cannot start with +. The user_options will be passed as arguments
to the user program via the usual argc/argv construct to the main entry point of the main chare.
CHARM++ system options will not appear in argc/argv.

4.1.1 Additional Network Options

The following ++ command line options are available in the network version:

++local Run charm program only on local machines. No remote shell invocation is needed in this case. It
starts node programs right on your local machine. This could be useful if you just want to run small
program on only one machine, for example, your laptop.

++mpiexec Use the cluster’s mpiexec job launcher instead of the built in rsh/ssh method.

This will pass -n $P to indicate how many processes to launch. An executable named something
other than mpiexec can be used with the additional argument ++remote-shell runmpi, with ‘runmpi’
replaced by the necessary name.

Use of this option can potentially provide a few benefits:

e Faster startup compared to the SSH/RSH approach charmrun would otherwise use
e No need to generate a nodelist file

e Multi-node job startup on clusters that do not allow connections from the head/login nodes to
the compute nodes

At present, this option depends on the environment variables for some common MPI implementa-
tions. It supports OpenMPI (OMPI_COMM_WORLD_RANK and OMPI_COMM_WORLD_SIZE) and M(VA)PICH
(MPIRUNB.ANK and MPIRUN_NPROCS or PMI_RANK and PMI,SIZE).

++debug Run each node under gdb in an xterm window, prompting the user to begin execution.

++debug-no-pause Run each node under gdb in an xterm window immediately (i.e. without prompting the
user to begin execution).

If using one of the ++debug or ++debug-no-pause options, the user must ensure the following;:

1. The DISPLAY environment variable points to your terminal. SSH’s X11 forwarding does not work
properly with CHARM++.

2. The nodes must be authorized to create windows on the host machine (see man pages for xhost
and xauth).

3. xterm, xdpyinfo, and gdb must be in the user’s path.

4. The path must be set in the . cshrec file, not the .1login file, because rsh does not run the .login
file.

++maxrsh Maximum number of rsh’s to run at a time.
++nodelist File containing list of nodes.

++ppn number of pes per node

++help print help messages

++runscript script to run node-program with
++xterm which xterm to use

++in-xterm Run each node in an xterm window
++display X Display for xterm

++debugger which debugger to use

++remote-shell which remote shell to use

++useip Use IP address provided for charmrun IP
++usehostname Send nodes our symbolic hostname instead of IP address
++server-auth CCS Authentication file
++server-port Port to listen for CCS requests
++server Enable client-server (CCS) mode
++nodegroup which group of nodes to use

++verbose Print diagnostic messages

++timeout seconds to wait per host connection

++p number of processes to create

4.1.2 Multicore Options

On multicore platforms, operating systems (by default) are free to move processes and threads among cores
to balance load. This however sometimes can degrade the performance of Charm++ applications due to
the extra overhead of moving processes and threads, especailly when Charm++ applications has already
implemented its own dynamic load balancing.

Charm++ provides the following runtime options to set the processor affinity automatically so that
processes or threads no longer move. When cpu affinity is supported by an operating system (tested at
Charm++ configuration time), same runtime options can be used for all flavors of Charm++ versions
including network and MPI versions, smp and non-smp versions.

+setcpuaffinity set cpu affinity automatically for processes (when Charm++ is based on non-smp ver-
sions) or threads (when smp)

+excludecore <core #> does not set cpu affinity for the given core number. One can use this option
multiple times to provide a list of core numbers to avoid.

+pemap L[-U[:S[.R]1J][,...] Bind the execution threads to the sequence of cores described by the argu-
ments using the operating system’s CPU affinity functions.
A single number identifies a particular core. Two numbers separated by a dash identify an inclusive
range (lower bound and upper bound). If they are followed by a colon and another number (a stride),
that range will be stepped through in increments of the additional number. Within each stride, a dot
followed by a run will indicate how many cores to use from that starting point.
For example, the sequence 0-8:2,16,20-24 includes cores 0, 2, 4, 6, 8, 16, 20, 21, 22, 23, 24. On
a 4-way quad-core system, if one wanted to use 3 cores from each socket, one could write this as
0-15:4.3.

+comma; sy ... 1Ina communication reads to € listed cores, one per process.
p pl.,q 1 Bind ication threads to the listed

4.2 Nodelist file

For network of workstations, the list of machines to run the program can be specified in a file. Without a
nodelist file, CHARM+-+ runs the program only on the local machine.

The format of this file allows you to define groups of machines, giving each group a name. Each line of
the nodes file is a command. The most important command is:

host <hostname> <qualifiers>

which specifies a host. The other commands are qualifiers: they modify the properties of all hosts that
follow them. The qualifiers are:

group <groupname> - subsequent hosts are members of specified group

login <login> - subsequent hosts use the specified login

shell <shell> - subsequent hosts use the specified remote shell

setup <cmd> - subsequent hosts should execute cmd

pathfix <dirl> <dir2zubsequent hosts should replace dirl with dir2 in the program path
cpus <n> - subsequent hosts should use N light-weight processes

speed <s> - subsequent hosts have relative speed rating

ext <extn> - subsequent hosts should append extn to the pgm name

Note: By default, charmrun uses a remote shell “rsh” to spawn node processes on the remote hosts. The
shell qualifier can be used to override it with say, “ssh”. One can set the CONV_RSH environment variable
or use charmrun option ++remote-shell to override the default remote shell for all hosts with unspecified
shell qualifier.

All qualifiers accept “*” as an argument, this resets the modifier to its default value. Note that currently,
the passwd, cpus, and speed factors are ignored. Inline qualifiers are also allowed:

10

host beauty ++cpus 2 ++shell ssh

Except for “group”, every other qualifier can be inlined, with the restriction that if the “setup” qualifier
is inlined, it should be the last qualifier on the “host” or “group” statement line.
Here is a simple nodes file:

group kale-sun ++cpus 1
host charm.cs.uiuc.edu ++shell ssh
host dp.cs.uiuc.edu
host grace.cs.uiuc.edu
host dagger.cs.uiuc.edu
group kale-sol
host beauty.cs.uiuc.edu ++cpus 2
group main
host localhost

This defines three groups of machines: group kale-sun, group kale-sol, and group main. The ++nodegroup
option is used to specify which group of machines to use. Note that there is wraparound: if you specify more
nodes than there are hosts in the group, it will reuse hosts. Thus,

charmrun pgm ++nodegroup kale-sun +p6

uses hosts (charm, dp, grace, dagger, charm, dp) respectively as nodes (0, 1, 2, 3, 4, 5).
If you don’t specify a ++nodegroup, the default is ++nodegroup main. Thus, if one specifies

charmrun pgm +p4

it will use “localhost” four times. “localhost” is a Unix trick; it always find a name for whatever machine
you're on.

The user is required to set up remote login permissions on all nodes using the “.rhosts” file in the home
directory if “rsh” is used for remote login into the hosts. If “ssh” is used, the user will have to setup
password-less login to remote hosts using RSA authentication based on a key-pair and adding public keys
to “.ssh/authorized keys” file. See “ssh” documentation for more information.

In a network environment, charmrun must be able to locate the directory of the executable. If all
workstations share a common file name space this is trivial. If they don’t, charmrun will attempt to find the
executable in a directory with the same path from the $HHOME directory. Pathname resolution is performed
as follows:

1. The system computes the absolute path of pgm.

2. If the absolute path starts with the equivalent of $SHOME or the current working directory, the
beginning part of the path is replaced with the environment variable $HOME or the current working
directory. However, if ++pathfix dirl dir2 is specified in the nodes file (see above), the part of the
path matching dir1l is replaced with dir2.

3. The system tries to locate this program (with modified pathname and appended extension if specified)
on all nodes.
4.2.1 IO buffering options

There may be circumstances where a CHARM++ application may want to take or relinquish control of
stdout buffer flushing. Most systems default to giving the CHARM-++ runtime control over stdout but a few
default to giving the application that control. The user can override these system defaults with the following
runtime options:

+io_flush user User (application) controls stdout flushing

+io_flush system The CHARM++ runtime controls flushing

11

	Introduction
	Installing Charm++
	Security Issues
	Reducing disk usage

	Compiling Charm++ Programs
	Executing Charm++ Programs
	Command Line Options
	Additional Network Options
	Multicore Options

	Nodelist file
	IO buffering options

