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Abstract—The advantages of pay-as-you-go model, elasticity,
and the flexibility and customization offered by virtualization
make cloud computing an attractive option for meeting the needs
of some High Performance Computing (HPC) users. However,
there is a mismatch between cloud environments and HPC re-
quirements. The poor interconnect and I/O performance in cloud,
HPC-agnostic cloud schedulers, and the inherent heterogeneity
and multi-tenancy in cloud are some bottlenecks for effective
HPC in cloud.

Our primary thesis is that cloud is suitable for some HPC
applications not all applications, and for those applications,
cloud can be more cost-effective compared to typical dedicated
HPC platforms using intelligent application-to-platform mapping,
HPC-aware cloud schedulers, and cloud-aware HPC execution
and parallel runtime system. To address the challenges, and to
exploit the opportunities offered by HPC-clouds, we make Open-
Stack Nova scheduler HPC-aware and Charm++ parallel runtime
system cloud-aware. We demonstrate that our techniques result
in significant improvement in cost (up to 60%), performance (up
to 45%), and throughput (up to 32%) for HPC in cloud; helping
cloud users gain confidence in the capabilities of cloud for HPC,
and cloud providers run a more profitable business.
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I. INTRODUCTION AND RELATED WORK

Cloud computing has recently emerged as a cost effective
alternative to dedicated infrastructure for HPC applications.
Running an application in cloud avoids the long lead time,
high capital expenditure, and large operational costs associated
with a dedicated HPC infrastructure [1]. In addition, the ability
to provision HPC resources on-demand with high elasticity,
reduces the risks caused by under-provisioning, and reduces
the underutilization of resources caused by over-provisioning.
Finally, the built-in virtualization support in the cloud offers an
alternative way to support flexibility, customization, security,
and resource control to the HPC community.

However, despite these benefits, there is a mismatch be-
tween the requirements of HPC and the characteristics of
current cloud environments [1–4]. Most HPC applications
consist of tightly-coupled parallel processes which perform
frequent communication and synchronizations. Dominant chal-
lenges for HPC in cloud are shown in Figure 1, and include
the following: the absence of low-latency and high-bandwidth

interconnect in clouds, network and I/O virtualization over-
head, hardware heterogeneity, cross-application interference
arising from multi-tenancy, and the HPC-agnostic cloud sched-
ulers [1–4].

While the outcome of these studies paints a rather pes-
simistic view of HPC clouds, recently there have been efforts
towards HPC-optimized clouds (such as Amazon Cluster Com-
pute [5] and DoE Magellan project [1,3,6]), HPC-aware cloud
schedulers [7, 8] and topology-aware mapping of application
virtual machines (VMs) to physical topology [9]. These efforts
point to a promising direction to overcome some of the
fundamental inhibitors. However, much work remains to be
done, and today only embarrassingly parallel or small scale
HPC applications can be efficiently run in cloud [1–4].

In this thesis, outlined in Figure 1, we take a more holistic
approach unlike past research: First, besides addressing the
challenges of running HPC applications in cloud, we also
explore the opportunities offered by cloud for HPC. Secondly,
our research is aimed at improving HPC performance, resource
utilization, and cost when running in cloud and hence it is
beneficial to both – users and cloud providers. Finally, with
the objective of providing a set of techniques to bridge the gap
between HPC and clouds, we adopt a threefold complementary
approach:

• Mapping applications to platforms in cloud intelli-
gently: Through comprehensive performance evaluation
and analysis, we identify what application and platform
characteristics are crucial for the selection of a platform
for a particular application. We conclude that a hybrid
supercomputer-cloud approach can be more cost-effective
compared to running all applications on a dedicated
supercomputer or all in cloud [4, 10]. (§II)

• Making cloud schedulers and VM placement HPC-aware:
We propose and demonstrate techniques for application-
aware consolidation and placement of VMs on physical
machines. Through topology-awareness, heterogeneity-
awareness, cross-VM interference accounting, and careful
co-location of application VMs of complementary ex-
ecution profiles, we achieve significant improvement in
performance and resource utilization [11, 12]. (§III)

• Making HPC execution and runtime cloud-aware: We
address the challenges of heterogeneity and multi-tenancy



HPC in Cloud 

Performance Evaluation Cost Evaluation 

Opportunities Challenges/Bottlenecks 

Poor Network 
Performance 

Commodity 
Interconnect 

Virtualization 
overhead 

Heterogeneity Multi-
tenancy 

VM 
consolidation 

Elasticity 
Virtualization - 
customization 

Pay-as-you-go/ 
rent vs. own 

Mapping 
 Applications to Platforms 

Application-Aware 
Cloud Schedulers 

Cloud Aware 
HPC Load Balancer 

Malleable Parallel Jobs 
(Runtime Shrink/Expand) 

Thin VMs/Containers 

Security 

MAPPING SCHEDULING/PLACEMENT 
HPC Aware Clouds 

EXECUTION 
Cloud Aware HPC 

Noise 

Fig. 1: Thesis overview

in cloud through dynamic redistribution of parallel tasks
(Charm++ [13, 14] objects or AMPI [14] threads) to
VMs [15,16]. We also explore the use of malleable jobs
to benefit from the inherent elasticity in cloud. (§IV)
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The contributions of this thesis are summarized as follows.
These have been taken verbatim from above publications.
Evaluation and Mapping

• We analyze the performance of HPC applications on
a range of platforms varying from supercomputer to
cloud, study performance bottlenecks and identify what
applications are suitable for cloud.

• We analyze the impact of virtualization on HPC applica-
tions and propose techniques, specifically thin hypervi-
sors, OS-level containers, and hypervisor and application-
level CPU affinity, to mitigate performance overhead and
noise, addressing – how to use cloud for HPC.

• We investigate the economic aspects of running in cloud
vs. supercomputer and discuss why it is challenging to
make a profitable business for cloud providers for HPC
compared to traditional cloud applications. We also show
that small/medium-scale HPC users are the most likely
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candidates who can benefit from an HPC-cloud.
• We demonstrate that rather than running all the applica-

tions on a single platform (in-house or cloud), a more
cost-effective approach is to leverage multiple platforms
(dedicated and in the cloud) and use a smart application-
aware mapping of applications to platforms, addressing
– how to use cloud for HPC.

HPC-Aware Clouds
• We identify the opportunities and challenges of VM

consolidation for HPC in cloud. In addition, we develop
scheduling algorithms which optimize resource allocation
while being HPC-aware. We achieve this by applying
Multi-dimensional Online Bin Packing (MDOBP) heuris-
tics while ensuring that cross-application interference is
kept within bounds.

• We optimize the performance for HPC in cloud through
intelligent HPC-aware VM placement – specifically
topology awareness and homogeneity, showing perfor-
mance gains up to 25% compared to HPC-agnostic
scheduling.

• We implement the proposed algorithm in OpenStack
Nova scheduler to enable intelligent application-aware
VM scheduling. Through experimental measurements, we
show that compared to dedicated execution, our tech-
niques can result in up to 45% better performance while
limiting jitter to 8%.

• We modify CloudSim [19] to make it suitable for simu-
lation of HPC in cloud. To our knowledge, our work is
the first effort towards simulation of HPC job scheduling
algorithms in cloud. Simulation results show that our
techniques can result in up to 32% increased throughput
compared to default scheduling algorithms.

Cloud-Aware HPC
• We propose dynamic load balancing for efficient exe-

cution of tightly-coupled iterative HPC applications in
heterogeneous and dynamic cloud environment. The main
idea is periodic refinement of task distribution using
measured CPU loads, task loads and idle times.

• We implement these techniques in Charm++ and evaluate
their performance and scalability on a real cloud setup on
Open Cirrus testbed [20]. We achieve 45% reduction in

execution time compared to no load balancing.
• We analyze the impact of load balancing frequency, grain

size, and problem size on achieved performance.

II. PERFORMANCE AND MAPPING OF HPC IN CLOUD

The primary research challenge that we address here is that
rather than running all the applications on a single platform
(in-house or cloud), will it be more cost-effective approach
to leverage multiple platforms (dedicated and in the cloud)
and if so, how? To answer this question, we evaluated the
performance and cost of running a set of HPC benchmarks
(NPB benchmarks [21]) and some real world applications,
such as NAMD [22], ChaNGa [23], and Sweep3D [24],
on a range of platforms – supercomputer, HPC-optimized
cluster, private cloud, and public cloud. These platforms have
different interconnects, operating systems, and virtualization.
Our results, presented in [4], show that cloud can be cost-
effective compared to supercomputers at small scale or for
applications which are less communication-intensive.

Based on this observation, we proposed a tool for mapping
application to platforms in cloud using application character-
istics such as communication intensiveness and sensitivity to
noise. Instead of considering cloud as a substitute for super-
computer, we investigated the co-existence of supercomputer
and cloud (See Figure 2a). We follow a two step methodology
– 1) Characterize an application using theoretical models,
previous instrumentation, or simulation to generate an ap-
plication signature that captures application’s communication
profile, grain size, and problem size and 2) use heuristics to
select a suitable platform from a given set for an application
based on application signature, platform characteristics, and
user preferences. In [10], we provided a proof-of-concept
of this approach, and evaluated the associated benefits of a
smart mapping tool. Through simulation using simple regular
applications, we showed that in a concrete scenario with a
supercomputer (Ranger [25]) and a Eucalyptus based cloud as
two available platforms, our scheme reduces the cost by 60%
while limiting the performance penalty to 10-15% vs. a non
optimized configuration.

Characterizing an HPC application and predicting its
performance is challenging and has been extensively re-
searched. Run-time instrumentation, event-tracing and curve-



TABLE I: Summary of planned work

Project Area Duration Description
Mapping strategies Mapping 2 months Design and evaluation using simulation

(CloudSim) of strategies for mapping
application from an incoming stream
to a set of platforms

Mix-match HPC,non-HPC HPC-Aware Cloud 2 months Evaluation of co-execution of
web and HPC workloads ??

Malleable Jobs Cloud-Aware HPC 4 months Design and implementation of parallel
runtime support for malleable jobs in
Charm++, Evaluation using job simulation

Load Balancer Cloud-Aware HPC 1 months Extend load balancer to meta-balancer
instead of periodic load balancing

Performance Simulation/Emulation Cloud-Aware HPC 2 months Larger scale results using simulation
or emulation of cloud environment

Thesis Writing Dissertation 2 months Completing the dissertation document for
final defense

fitting based performance-modeling approaches have been
explored [26–28]. Our objective in this thesis is not to perform
extensive applications characterization but to discover the most
important dimensions for the purpose of mapping applications
to platforms. Through our research, we have demonstrated that
there are significant benefits which can be achieved by using
an intelligent tool and a combination of multiple platform,
compared to a single platform or naive mapping. We believe
that our approach can be extended to complex applications
such as those with irregular communication patterns and
multiple phases.

III. HPC-AWARE CLOUD SCHEDULER

The second method which we adopt to bridge the gap
between HPC and cloud is to focus on cloud schedulers
and explore opportunities to a) improve HPC performance
in cloud and b) reduce HPC cost when running in cloud.
Current strategies for placement of VMs to physical machines
are mostly HPC-agnostics, that is they do not consider the
intrinsic nature of HPC applications. An HPC application
consists of n processes which communicate and synchronize
frequently with each other during the execution. However, in
cloud physical machines can be heterogeneous, and achieved
network performance between two physical nodes (also re-
ferred to as hosts) can vary significantly depending on the
physical position of nodes in the network topology. Hence,
to obtain better performance, we modified OpenStack [29]
Nova scheduler to make at HPC-aware. OpenStack is a pop-
ular cloud management system. We evaluated the modified
OpenStack Nova scheduler by setting up a cloud on Open
Cirrus test-bed [20] using KVM [30] as hypervisor. In [11], we
demonstrated performance improvement up to 20% through
topology- and hardware-awareness.

We extended this HPC-aware scheduler to accomplish the
second goal – to make HPC execution more economical

in cloud. To this end, we explored the opportunities and
challenges of VM consolidation for HPC. Figure 2b illustrates
this with a simple experiment, where we use two multi-core
physical nodes (4-core, 8GB, 3 GHz each) of Open Cirrus
testbed at HP Labs site. We use VMs with 1-vcpu, 2GB
memory, and KVM as hypervisor. The applications used in
this experiment are NPB [21] (EP = Embarrisingly Parallel,
LU = LU factorization, IS = Integer Sort) problem size
class B and ChaNGa [23] = Cosmology. We first ran each
application using all 4 cores of a node (dedicated mode), and
then ran them in shared mode, where each node is shared
by the two applications – 2 VMs of each application run
on a node, 4 VMs total per application. Figure 2b shows
the performance for both applications in shared execution
normalized with respect to the dedicated execution for dif-
ferent application combinations. Here, the x-label represent
the application combination and the first (similarly second)
bar corresponds to the first (second) application in x-label. It
is clear from Figure 2b that some application combinations
achieve normalized performance close to one (EP-ChaNGa),
some co-locations results in significant detrimental impact
on performance of one application (e.g. ChaNGa-IS because
IS is communication-intensive, hence locating all 4 VMs on
same node reduces communication time), whereas in case of
LU-ChaNGa, the interference actually results in performance
improvement. Investigation revealed that this is due to the large
working set size of LU and small working set size of EP, which
means that the shared last level cache is better utilized when
the applications are run in the shared mode [12].

We demonstrated that there are significant benefits of using
a common pool of resources for applications with different
characteristics (such as HPC vs. non-HPC, communication,
synchronization, cache intensiveness) but cross-application in-
terference is a major impediment to effective resource based
packing of HPC applications. To address this problem, we



adopt the following approach - 1) Characterize application
along two dimensions – tightly coupledness and use of shared
resources (such as cache) on a shared physical node and 2)
match applications whose execution profiles well complement
each other and place them on same node to improve resource
utilization. We implemented this approach on top of existing
OpenStack Nova scheduler and evaluated it in the same setup
and above. Our results in [12] show that our techniques achieve
45% better performance while limiting jitter to 8% through
cross-VM interference accounting. We also modified a popular
cloud simulator – CloudSim [19] to make it HPC-aware. Sim-
ulation results using CloudSim showed that our application-
aware consolidation technique can result in 32% increase in
throughput compared to default scheduling techniques.

IV. CLOUD-AWARE HPC RUNTIME

The final approach that we follow is to adapt HPC runtime
to meet the needs of cloud environments. Our hypothesis is
that the parallel runtime system should be able to adapt to the
the dynamic variations in the cloud execution environment,
resulting in improved performance. In addition, by providing
runtime support for dynamically expanding/shrinking parallel
jobs, significant gains in terms of higher resource utilization
and cost savings can be achieved by leveraging cloud features
such as variable pricing.

To validate our hypothesis, we investigate the adaptation
of Charm++ [13, 14] parallel runtime system to virtualized
environment. HPC applications and runtime are typically de-
signed to be run in a homogeneous and dedicated environment
whereas in case of cloud, there is inherent static hardware
heterogeneity, and multi-tenancy can result in dynamic het-
erogeneity (e.g. other application VMs entering and leaving
a physical node). Heterogeneity – both static and dynamic,
significantly degrades performance of parallel applications
especially those which are iterative and bulk synchronous. To
minimize the impact of these factors on application perfor-
mance, we designed and implemented a cloud-aware load bal-
ancer for HPC applications on top of existing Charm++ load
balancing framework. Our approach is based on decomposing
the workload into medium grained tasks called objects, which
can be easily migratable by the runtime across processors
(virtual cores in our case). The load balancing framework
instruments the application execution, and measures object
and processor loads. Idle times on VMs are also measured.
It is assumed that there is very small variation in object
loads across iterations – sometimes referred to as principle
of persistence. Hence, based on the measured statistics from
previous iterations, we migrate loads away from overloaded
VMs to underloaded VMs. Figure 2c illustrates a situation
with two physical hosts (nodes). There is a VM from another
application running on the first host. Without load balancing,
each host would be distributed equal number of objects. Since,
one of the HPC VM has to time-share the CPU with the
interfering VM, the load is imbalanced, and whole application
will slow down. Our load balancer detects this condition, and
migrates objects from overloaded to underloaded VMs based

on average load calculation. Details of the algorithm can be
found in [16]. We evaluated our techniques on a real cloud
setup up to 64 VMs. Our results shown in [15,16] demonstrate
performance benefits up to 45% for scientific benchmarks and
a real world molecular dynamics application.

In future, we plan to evaluate this load balancer on a
larger scale, and to explore runtime support for malleable jobs.
Adaptive MPI (AMPI) [14] can be used to obtain these benefits
of our dynamic runtime system for MPI [31] applications.

V. CONCLUSIONS

Since clouds have traditionally been designed for business
and web applications with the goal of increasing the utilization
of underutilized resources through consolidation and multi-
tenancy, there is a mismatch between current cloud offerings
and HPC requirements. This thesis aims to bridge that gap
through effective mapping, VM placement and scheduling,
and execution of HPC applications on a range of platforms
in cloud. Using a complementary approach of making clouds
HPC-aware and HPC cloud-aware, we have demonstrated that
HPC performance-cost tradeoffs in cloud can be significantly
improved.
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