
On Minimizing Startup Latency in Scalable Continuous Media Servers�Shahram Ghandeharizadeh, Seon Ho Kim, Weifeng Shi, Roger ZimmermannDepartment of Computer Science, University of Southern California, Los Angeles, CA 90089ABSTRACTIn a scalable server that supports the retrieval and display of continuous media (audio and video clips),both the number of simultaneous displays and the expected startup latency of a display increases as a functionof additional disk bandwidth. Based on a striping technique and a round-robin placement of data, this paperdescribes object replication and request migration as two alternative techniques to minimize startup latency. Inaddition to developing analytical models for these two techniques, we report on their implementation using ascalable server. The results obtained from both the analytical models and the experimental system demonstratethe e�ectiveness of the proposed techniques.Keywords: striping, video server, startup latency, throughput, replication, request migration.1 INTRODUCTIONDuring the past decade, the information technology has evolved to where it is economically viable to storeand retrieve continuous media such as audio and video clips. Continuous media servers are expected to supporthundreds of simultaneous displays and play a major role in diverse applications such as those envisioned bythe entertainment industry, educational applications, library and health care information systems, to name afew. The novelty of these systems is attributed to two requirements of continuous media that are di�erent fromtraditional textual and record-based data. First, the retrieval and display of continuous media are subject toreal-time constraints that impact both (a) the storage, scheduling, and delivery of data, and (b) the manner inwhich multiple users may share resources. If the real-time constraints are not satis�ed then a display might su�erfrom disruptions and delays that result in jitter with video and random noises with audio. These disruptionsand delays are termed hiccups. Second, objects of these media types are typically large in size. For example,a two hour MPEG-2 encoded video requiring 4 Megabits per second (Mbps) for its display is 3.6 Gigabytes insize. Three minutes of uncompressed CD quality audio with a 1.4 Mbps bandwidth requirement is 31.5 Megabyte(MByte) in size. Magnetic disks have established themselves as the mass storage of choice for these media typesdue to their high transfer rate, large storage capacity, and low cost.A number of multi-disk platforms have been studied in support of large servers.7,8,19,20,23 The scalability ofperformance is one of the most important issues in designing these systems. Striping2,8,12,19 is a technique toachieve a scalable server. In striping, the number of simultaneous displays (throughput) supported by the systemincreases as a function of available disk bandwidth (desirable). However, the expected startup latency observedby the users increases as well (undesirable). This is due to the constrained placement (i.e., round-robin) of dataacross the disks. In this study, we develop techniques to minimize the expected startup latency of a scalableserver. Minimizing the average startup latency is desirable for several reasons. One obvious reason is to meet thewaiting tolerance of clients. While some applications such as video-on-demand might tolerate a longer startuplatency (minutes), others such as news-on-demand would require a short startup latency (seconds) because ofthe relatively short length of news clips. For such applications, it is critical to reduce the startup latency whilemaintaining a high throughput. A less obvious reason is to implement complex features. As an example, considerthe fast-forward (or fast-rewind) VCR functionality. Several studies have proposed to implement this functionalityby maintaining a fast-forward (fast-rewind) version of a clip2,18 (Hewlett-Packard employs this technique in its�This research was supported in part by the National Science Foundation under grants IRI-9203389, IRI-9258362 (NYI award),and ERC grant EEC-9529152, and a Hewlett-Packard unrestricted cash/equipment gift.



Term De�nitionTW Seek Worst seek time with maximum rotational latencym Maximum number of simultaneous displays in a systemRC Display bandwidth requirement (Display rate)RD Transfer rate of a single disk driveB Size of a blockGi Group iTp Time to display a blockN Maximum number of simultaneous displays in a clusterL LatencyD Total number of disk drives in a systemd Number of disk drives in a clusterC Number of clusters in a systemk Number of active requests (busy servers) in a systemi Number of failures that a request might observe before a success� Average arrival rate (requests per second)s Average service time of a request (seconds)Table 1: List of terms used repeatedly in this paper and their respective de�nitionscommercial product1). An index maintains the relationship between the di�erent portions of a clip X (Xdisplay)and its corresponding fast-forward version (Xff ). When the user references a video clip X , the system retrievesXdisplay with the bandwidth pre-speci�ed by its media type. When the user requests a fast-forward display, thesystem indexes to the appropriate location in Xff and initiates the retrieval and display of data from this �le.This switch is identical to terminating the current request for Xdisplay and issuing a new one for Xff . When theuser switches back to normal display, the system once again is forced to terminate the current retrieval of datafrom Xff and issue a new request to the appropriate location in Xdisplay . By minimizing the expected startuplatency, the system minimizes the average delay observed by users prior to both the requesting fast-forward andresuming to normal play.This study presents two alternative techniques to minimize the expected startup latency of the system: requestmigration and data replication. We develop analytical models to quantify the tradeo�s associated with thesetwo techniques. Recent studies3,10 identi�ed the importance of reducing the startup latency in a single-diskmultimedia storage manager that maximizes throughput by assuming a constrained placement of data. Whilethose studies3 investigate a single disk read/write device and the contention for this device, our study focuseson multiple disk read/write devices and how to distribute the load such that a single device does not becomea bottleneck. This di�erence is signi�cant because it renders some of the developed methods (e.g., requestmigration) as inappropriate for a single disk system. While some other studies have investigated replication ofdata, their focus was on improving the availability of data in the presence of disk failures (not on minimizingstartup latency).4{6,19 Our analytic models also di�er from those proposed for either parallel �le systems ordatabase management systems17,21 in that: (1) we assume a deterministic usage of disk bandwidth for a displayusing constrained placement of data, and (2) a display might be active for a long time (potentially for two hoursfor a movie). In addition, we describe and evaluate an implementation of the proposed techniques using a scalablesystem, Mitra.14 The analytical and experimental results demonstrate that these techniques signi�cantly reducethe average startup latency. In addition, they show that replication is superior to request migration.The rest of this paper is organized as follows. Section 2 describes a paradigm for continuous display of audioand video objects. It separates the bandwidth of disks from their storage capacity by introducing the conceptof groups. Using this abstraction, Section 3 describes analytical models based on queuing theory to estimatethe expected startup latency observed by a request. Subsequently, Section 4 describes request migration andreplication as two di�erent techniques that minimize the expected startup latency. We quantify the tradeo�sassociated with these two alternatives in Section 5. Brief conclusions are o�ered in Section 6.
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Figure 1: Simple Striping2 CONTINUOUS DISPLAYTo support continuous display of an object X , it is partitioned into n equi-sized blocks: X0, X1, ..., Xn�1,where n is a function of the block size (B) and the size of X . A time period (Tp) is de�ned as the time required todisplay a block, Tp = BRC . With a multi-disk platform consisting of D disks, the workload of a display should beevenly distributed across the D disks in order to avoid the formation of bottlenecks. Striping2,12,19 is a techniqueto accomplish this objective. This technique partitions the D disks into C clusters of disks with each clusterconsisting of d disks: C = bDd c. Next, it assigns the blocks of object X to the clusters in a round-robin manner.The �rst block of X is assigned to an arbitrarily chosen disk cluster. Each block of an object is declustered13across the d disks that constitute a cluster. For example, in Figure 1, a system consisting of six disks is partitionedinto three clusters, each consisting of two disk drives. The assignment of the blocks of X starts with cluster 0.This block is declustered into two fragments: X0:0 and X0:1.When a request references object X , the system stages X0 from cluster Ci in memory and initiates its display.Prior to completion of a time period, it initiates the retrieval of X1 from cluster C(i+1) mod C into memory inorder to ensure a continuous display. This process is repeated until all blocks of an object have been displayed.To support simultaneous display of several objects (RC < RD), a time period is partitioned into �x-sized slots,with each slot corresponding to the retrieval time of a block from a cluster. The number of slots (N ) in a timeperiod de�nes the maximum number of simultaneous displays supported by a cluster. With C clusters, because acluster supports N simultaneous displays in a time period and the system accesses C clusters concurrently in thesame time period, the system maintains N � C time slots in a time period. (It is trivial to compute N , B, andTp, see [10] for details.) We conceptualize a set of slots supported by a cluster in a time period as a group. Eachgroup has a unique identi�er. To support a continuous display in a multi-cluster system, a request maps ontoone group and the individual groups visit the clusters in a round-robin manner (Figure 2). If group G5 accessescluster C2 during a time period, G5 would access C3 during the next time period. During a given time period,the requests occupying the slots of a group retrieve blocks that reside in the cluster that is being visited by thatgroup.Therefore, if there are C clusters (or groups) in the system and each cluster (or group) can support Nsimultaneous displays then the maximum throughput of the system is m = N � C simultaneous displays. Themaximum startup latency is Tp � C because: 1) groups are rotating (i.e., playing musical chairs) with the Cclusters using each for a Tp interval of time, and 2) at most C � 1 failures might occur before a request canbe activated (when the number of active displays is fewer than N � C). Thus, both the system throughputand the maximum startup latency scale linearly. Note that system parameters such as blocks size, time period,throughput, etc., for a cluster can be computed using display techniques such as REBECA,10 GSS.22 Thesedisplay techniques are local optimizations that are orthogonal to the optimization techniques proposed by thisstudy.
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Figure 2: Rotating groups3 THROUGHPUT AND LATENCYOur approach in the previous section demonstrates the scalability of a system in terms of both its throughputand maximum latency. However, it might be pessimistic to consider the maximum latency as the latency thata request experiences before being serviced. This section quanti�es the characteristics of latency and develops aprobabilistic approach to determine the expected latency of a request.In general, a multi-disk platform cannot be modeled as a m server queuing system because not all servers areidentical: Upon the arrival of a request, it should be assigned to the group accessing the cluster that contains its�rst block (and not an arbitrarily chosen cluster). However, due to a random distribution of the �rst blocks ofobjects across disks and a round-robin access pattern, a request can be assigned to a time slot of any group. Wecan conceptualize our striping system as a queuing system with m identical servers where a server correspondsto a time slot (and not a cluster). Hence, we can compute the probability (p(k)) that there are k busy servers inthe system at a given point in time by applying a queuing model. For example, with a Poisson arrival patternand an exponential service time, the probability of k busy servers in an m server loss system is16:p(k) = Probfk busy servers in the systemg = (�=�)k=k!Pmk=0(�=�)k=k! (1)where � and � are the arrival rate of requests and the service rate of the server (1/average service time) respectively.Note that the Equation 1 could be di�erent for a di�erent queueing model and our approach is independent to it.When a request for an object X arrives at time t, the system determines the cluster containing the �rst blockof X (say Cx0) and the group currently accessing this cluster (say Gx0). If Gx0 has at least one available slot,the request is assigned to Gx0 and its display is initiated. If the time slots of Gx0 are exhausted (occupied byother requests), the request cannot be served by this group (failure). Next, the system checks the availabilityof cluster (Gx0 + 1) mod C. (Note that in contrast to how the clusters are numbered, the numbering of thegroups is descending, see Figure 2.) If the time slots of this group are also fully exhausted, the system checksthe availability of cluster (Gx0 + 2) mod C. This procedure is repeated until a group with an idle slot is found(success). Hence, a request might have several failures before being assigned to a speci�c group in the system1.This results in a longer latency for the requests because several time periods might pass before the assigned groupreaches cluster Cx0 . If a request experiences i failures before a success, the latency for the request is:L = � 0:5 � Tp (i = 0)i � Tp (i 6= 0) (2)1Assuming a �rst-come-�rst-serve policy for activating requests.
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Z0 Z1 ...Figure 3: Load balancingLet pf (i; k) be the probability that a request has i failures before a success when there are k busy servers inthe system. For a given k, the probability that a request experiences i failures before a success is:pf (i; k) = � m� i � Nk � i � N ��� m� (i+ 1) � Nk � (i+ 1) � N �� mk � (3)where 0 � k < m and 0 � i � b kN c. (see [11] for details)Let a random variable L de�ne the latency for a request with i failures. The probability that a request hasa latency of L is the summation of the probability of i failures conditioned by all k values. Hence, the expectedlatency is: E[L] = m�1Xk=0 p(k) � pf (0; k) � 0:5 � Tp + m�1Xk=0 b kN cXi=1 p(k) � pf (i; k) � i � Tp (4)4 TWO ALTERNATIVE TECHNIQUES TO MINIMIZE STARTUP LATENCYEven though the work load of a display is distributed across the clusters with a round-robin assignment ofblocks, a group might experience a higher work load as compared to other groups. For example, in Figure 3, ifthe system services a new request for object X using group G4 then all servers in G4 become busy while severalother groups have two idle servers. This imbalance might result in a higher startup latency for future requests.For example, if another request for Z arrives in the next time period (when G4 accesses C3) then it would incura two time period startup latency because it must be assigned to G5 because G4 is already full. This sectiondescribes request migration and replication as two alternative techniques to minimize startup latency. These twotechniques are orthogonal to one another, enabling a system to employ both at the same time.4.1 Request MigrationBy migrating one or more requests from a group with zero idle slots to a group with many idle slots, thesystem can minimize the possible latency incurred by a future request. For example, in Figure 3, if the systemmigrates a request for X from G4 to G2 then a request for Z is guaranteed to incur a maximum latency of onetime period. Migrating a request from one group to another increases the memory requirements of a displaybecause the retrieval of data falls ahead of its display. Migrating a request from G4 to G2 increases the memoryrequirement of this display by three bu�ers. This is because when a request migrates from G4 to G2 (see Figure 3),G4 reads X0 and sends it to the display. During the same time period, G3 reads X1 into a bu�er (say, B0) and



G2 reads X2 into a bu�er (B1). During the next time period, G2 reads X3 into a bu�er (B2) and X1 is displayedfrom memory bu�er B0. (G2 reads X3 because the groups move one cluster to the right at the end of each timeperiod to read the next block of active displays occupying its servers.) During the next time period, G2 reads X4into a memory bu�er (B3) while X2 is displayed from memory bu�er B1. This round-robin retrieval of data fromclusters by G2 continues until all blocks of X have been retrieved and displayed.With this technique, if the distance from the original group to the destination group is B then the systemrequires B + 1 bu�ers. However, because a request can migrate back to its original group once a request in theoriginal group terminates and relinquishes its slot (i.e., a time slot becomes idle), the increase in total memoryrequirement could be reduced and become negligible.When k � C � (N � 1) (with the probability of PC�(N�1)k=0 p(k)), request migration can be applied due to theavailability of idle slots. This means that Probfa group is fullg = 0. Hence, pf (0; k) = 1. If k > C � (N � 1) (withthe probability of Pm�1k=C�(N�1)+1 p(k)), no request migration can be applied because: (1) no idle slot is availablein some groups and (2) the load is already evenly distributed. Hence, the probability of failures is:pf (i; k0) = � C � ik0 � i ��� C � (i+ 1)k0 � (i+ 1) �� Ck0 � (5)where k0 = k � C � (N � 1). The expected latency with request migration is:E[L] = C�(N�1)Xk=0 p(k) � 0:5 � Tp + m�1Xk=C�(N�1)+1 p(k) � pf (0; k0) � 0:5 � Tp + m�1Xk=C�(N�1)+1 k0Xi=1 p(k) � pf (i; k0) � i � Tp (6)4.2 Object ReplicationTo reduce the startup latency of the system, one may replicate objects. We term the original copy of anobject X as its primary copy. All other copies of X are termed its secondary copies. The system may construct rsecondary copies for object X . Each of its copies is denoted as RX;i where 1 � i � r. The number of instances ofX is the number of copies of X , r + 1 (r secondary plus one primary). Assuming two instances of an object, bystarting the assignment of RX;1 with a cluster di�erent than the one containing the �rst block of its primary copy(X), the maximum startup latency incurred by a display referencing X can be reduced by one half. This alsoreduces the expected startup latency. The assignment of the �rst block of each copy of X should be separatedby a �xed number of clusters in order to maximize the bene�ts of replication. Assuming that the primary copyof X is assigned starting with an arbitrary clusters (say Ci contains X0), the assignment of secondary copies ofX is as follows. The assignment of the �rst block of copy RX;j should starts with cluster (Ci + jCr+1 ) mod C. Forexample, if there are two secondary copies of object Y (RY;1, RY;2) assuming its primary copy is assigned startingwith cluster C0. RY;1 is assigned starting with cluster C2 while RY;2 is assigned starting with cluster C4.With two instances of an object, the expected startup latency for a request referencing this object can becomputed as follows. To �nd an available server, the system simultaneously checks two groups correspondingto the two di�erent clusters that contain the �rst blocks of these two instances. A failure happens only if bothgroups are full, reducing the number of failures for a request. The maximum number of failures before a success isreduced to b k2�N c due to two simultaneous searching of groups in parallel. Therefore, the probability of i failuresin a system with each object having two instances is identical to that of a system consisting of C2 clusters with2N servers per cluster. A request would experience a lower number of failures with more instances of objects.For an arbitrary number of instances (say j) for an object in the system, the probability of a request referencing



Step 0: Let Qj = Fj � S andRj = Max[lj ; bQjc] for j = 1; 2; :::; n(lj is a lower bound of object j)Step 1: Find index j0 having the greatestremainder Qj � bQjc among thosesatisfying Rj = bQjc.Let Rj0 = Rj0 + 1.Step 2: IfPnj=1 Rj = S, output R and stop.Otherwise return to step 1
Step 0: Let Rj = lj for j = 1; 2; :::; n andminsize = Min[Sj ], maxsize = Max[Sj ],(lj is a lower bound of object j)Step 1: Compute Fjd(Rj) for all j.Find index j0 having Max[ Fjd(Rj) ]Step 2: Let rem = S �Pnj=1 Sj � RjIf rem < minsize, Then output R and stop.If rem � Sj0 , Then Rj0 = Rj0 + 1Else �nd index j00 which has Max[ Fjd(Rj) ]among those satisfying Sj � rem andlet Rj00 = Rj00 + 1Return to step 1(a) Hamilton method (b) Divisor method for variable object sizeFigure 4: Two techniques to compute the number of replicas per objectthis object to observe i failures is:pfj (i; k) = � m� j � i � Nk � j � i � N ��� m� j � (i+ 1) � Nk � j � (i+ 1) � N �� mk � (7)where 0 � i � b kj�N c. Hence, the expected startup latency is:E[L] = m�1Xk=0 p(k) � pfj (0; k) � 0:5 � Tp + m�1Xk=0 b kj�N cXi=1 p(k) � pfj (i; k) � i � Tp (8)Object replication increases the storage requirement of an application. One important observation in realapplications is that objects may have di�erent access frequencies. For example, in a Video-On-Demand system,more than half of the active requests might reference only a handful of recently released movies. Selectivereplication for frequently referenced (i.e., hot) objects could signi�cantly reduce the latency without a dramaticincrease in storage space requirement of an application. The optimal number of secondary copies per objectis based on its access frequency and the available storage capacity. The formal statement of the problem is asfollows. Assuming n objects in the system, let S be the total amount of disk space for these objects and theirreplicas. Let Rj be the optimal number of instances for object j, Sj to denote the size of object j and Fj torepresent the access frequency (%) of object j. The problem is to determine Rj for each object j (1 � j � n)while satisfying Pnj=1 Rj � Sj � S.There exist several algorithms to solve this problem.15 A simple one known as Hamilton method computes thenumber of instances per object j based on its frequency (i.e., Qj = Fj �S in Figure 4a). It rounds the remainderof the quota (Qj �bQjc) to compute Rj (Figure 4.a). However, this method su�ers from two paradoxes, namely,Alabama and Population paradoxes.15 Generally speaking, with these paradoxes, the Hamilton method mayreduce the value of Rj when either S or Fj increases in value. The divisor methods provide a solution free ofthese paradoxes (see Figure 4.b). For further details and proofs of this method, see [15]. Using a divisor methodnamed Webster (d(Rj) = Rj + 0:5), we classify objects based on their instances. Therefore, objects in a classhave the same instances. An example of classi�cation is shown in Table 7. The expected startup latency in thissystem with n objects is: E[L] = nXi=1 Fi �E[LRi ] (9)
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Figure 5: Hardware and software organization of Mitrawhere E[LRi ] is the expected startup latency for object having Ri instances (computed using Equation 8).5 A COMPARISONWe conducted several experiments to: (1) compare request migration with object replication, and (2) evaluatethe analytical expectations with observations from an implementation of these techniques using Mitra.14 Weobserved the following from these experiments. A system that employs either request migration or replicationincurs a lower average startup latency than a system without them. When compared with one another, replicationis superior to request migration. The impact of these techniques were more obvious with a high system load thanwith a low system load. This is because the number of requests which experience a large startup latency increasesas a function of the system load. In the next section, we provide an overview of the system used for this evaluation.Next, we detail our experimental design and the obtained results.5.1 An Overview of MitraMitra is a scalable client-server solution that supports the display of continuous media data types. It isa software based system that employs `o� the shelf' hardware components. Mitra consists of two softwarecomponents:1. Presentation Manager (PM): This component provides a panel that enables a user to display either a videoor an audio clip.2. Storage Manager (SM): Provides two functionalities: (1) storage and retrieval of data in a hierarchicalstorage structure and (2) scheduling the retrieval of the blocks of a referenced object in support of a hiccup-free display at a Presentation Manager.The Storage Manager is implemented on a scalable, distributed platform. It is currently operational on a clusterof three HP 9000/735 workstations (see Figure 5). Each workstation consists of a 125 MHz PA-RISC CPU, 80MByte of memory, and four Seagate ST31200W magnetic disk drives connected through a SCSI-2 fast & wideinterface bus. In addition to providing the data storage, the SM manages the disk bandwidth and performs ad-mission control. Currently, it includes an implementation of the EVEREST �le system9 and staggered striping.2A relational storage manager maintains the name of audio and video stored in the system along with a variety ofhouse keeping information. The SM software is composed of several processes that are active on di�erent work-
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(a) Length [in seconds] (b) Votes per clip (c) Synthetic exponentialof each clip during January 1995 distributionFigure 6: Characteristics of the CD audio clipsstations and communicate via message-passing. It implements the request-migration and intelligently schedulesrequests in the presence of multiple replicas of an object.A PM might run on a number of di�erent hardware platforms. It can optionally interface with hardwareaccelerators to minimize the CPU load of the display station. For example, to display an MPEG-1 clip, the PMmight employ either a software- or a hardware-based decoder.5.2 Experimental DesignIn these experiments, we assumed that the entire database was disk resident. Mitra was con�gured withtwelve disks, one disk per cluster. The selection of objects and their access frequencies were based on a WWWpage maintained by Daniel Tobias, http://www.softdisk.com/comp/hits/, that ranks the top �fty songs everyweek. We assumed that each audio clip is CD quality and requires 1.346 Mbps for its display (16 bit, stereo).Figures 6.a and 6.b show the frequency of access to the clips and the size of each clip in seconds, respectively. Wealso analyzed a skewed distribution (exponential) of access based on that of Figure 6.c as a simpli�ed model ofreal access frequencies. The bandwidth of each cluster can support twelve simultaneous displays (N=12). Hence,the maximum throughput of this con�guration (12 clusters) is 144 simultaneous displays. We assume two Poissonarrival rates (� = 0:5319/sec for a 97.6% system utilization and � = 0:4363/sec for an 80% system utilization)for user requests. The number of requests for objects followed the distribution pattern of either Figure 6.b orFigure 6.c. Upon the arrival of a request, if the scheduler fails to �nd an idle server in the system then thisrequest is rejected.5.3 Experimental ResultsIn the �rst experiment, we assumed that two gigabytes of disk space were available for secondary copiesof objects in the replication technique. Tables 7.a and 7.b present the number of replicas (primary copy andsecondary copies) constructed per object by the divisor technique of Figure 4.b for WWW-Tobias access patternand exponential distribution, respectively.Figure 8 presents both the analytical and experimental results for each access pattern with 80% systemutilization (� = 0:4363/sec). It shows the results for three techniques: Standard (the technique of Section 2 withneither migration nor replication), Migration (described in Section 4.1), and Replication (described in Section 4.2).In these experiments, Mitra rejected 0% of requests (the analytical models predicted 0.12% of requests wouldbe rejected). While the assumed arrival rate caused some system resources to remain idle, the obtained resultsdemonstrate that a system con�gured with either Migration or Replication results in a lower average startuplatency. For example, with the exponential distribution, experimental result showed a 36.5 % reduction in theaverage startup latency with Replication as compared to Standard (a 25 % reduction with Migration as comparedto Standard).



Instances # of Access TotalClass per object objects frequency storageper class(%) (MB)7 9 1 9.1 4106 6 1 5.8 2825 5 1 5.1 2664 4 1 3.7 1823 3 11 35.1 14032 2 8 15.9 6831 1 27 25.3 1239
Instances # of Access TotalClass per object objects frequency storageper class(%) (MB)9 9 1 11.3 4108 8 1 10.0 3777 7 1 8.9 3726 6 1 7.9 2735 5 2 13.2 4334 4 2 10.4 2983 3 3 11.6 3962 2 4 10.2 3491 1 35 16.5 1581(a) WWW distribution (b) exponential distributionFigure 7: Classi�ed replication of objects with 2 gigabyte storage for secondary copies
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(a) WWW-Tobias (b) ExponentialFigure 9: System utilization = 97.6%Figure 9 presents the results obtained with a high system utilization (97.6%). In all experiments, Mitrarejected approximately 5% of the requests (the analytical models predicted 5% as well). Hence, almost all thesystem resources are utilized while the system service quality is degraded to some extent. With an exponentialdistribution, when compared with Standard, the percentages reduction in startup latency of Mitra was 10.6 %
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Figure 10: Impact of available space in replication, 97.6% utilization, exponential distributionand 62.9 % with Migration and Replication, respectively. The impact of Migration on the startup latency (witha high system utilization) is no longer signi�cant because it competes with pending requests for the availableidle slots. However, the impact of Replication remains signi�cant. With Standard, the probability that a requestexperiences a higher latency (close to the maximum of 12 time periods) is greater. However, with Replication, themaximum startup latency is 6 time periods or less. Indeed, the startup latency with Replication is comparableto that of an under-utilized system with Standard (compare Standard of Figure 8 with Replication of Figure 9).In a �nal experiment, we analyzed the impact of the amount of space allocated for replication on the averagestartup latency of the system. This experiment was conducted using the developed analytical models in the samecon�guration as in the previous experiments. The obtained results are presented in Figure 10. In this �gure,the x-axis represents the amount of space allocated for replicating objects. The y-axis represents the averagestartup latency. With zero space, Replication is inferior to Migration because it is identical to Standard (nosecondary copies can be constructed). With additional space, the average startup latency with Replication startsto decrease. There is a crossover point, after which Replication becomes superior to Migration. This decreaselevels o� as the average startup latency approaches 0.743 seconds (i.e., one half of a time period) because this isthe theoretical minimum for the cycle-based approach to displaying objects.6 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONSThis study describes request migration and replication as two alternative techniques to minimize the averagestartup latency of the system. We developed analytical models to quantify the tradeo�s associated with thesetechniques. In addition, we presented experimental results based on an implementation of these techniques usingMitra. Both the analytical and experimental results demonstrate that the proposed techniques minimize theaverage startup latency. With the startup latency dropping below one second, a system can support complexVCR operations such as fast-forward and fast-rewind.Presently, we are pursuing two research directions. First, we intend to extend the replication technique witha methodology that incorporates the role of a tertiary storage device. This methodology should consider how theamount of space allocated for secondary copies would increase the number of references to the tertiary storagedevice to retrieve the primary copies of less frequently accessed objects. Second, we intend to develop on-linealgorithms that analyze the frequency of access to objects in order to: (1) delete secondary copies of those objectsthat have become cold, and (2) construct secondary copies of those objects that have become popular.7 ACKNOWLEDGEMENTSWe wish to thank Jaber Al-Marri for implementing portions of request migrations in Mitra.
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