Published in the Proc. of the Fifth IEEE Parallel Processing Sympostum, Apr. 1993, pp.797-803.
Parallel A* Algorithms and their
Performance on Hypercube Multiprocessors”

Shantanu Dutt., MmEMBER IEEE and Nihar R. Mahapatra, STUDENT MEMBER IEEE
Department of Electrical Engineering, Uniwversity of Minnesota, Minneapolis, MN 55455

Abstract

In this paper we develop parallel A* algorithms suit-
able for distributed-memory machines. In parallel A* al-
gorithms, inefficiencies grow with the number of proces-
sors P used, causing performance to drop significantly at
lower and intermediate work densities (the ratio of the
problem size to P). To alleviate this effect, we propose
a novel parallel startup phase and efficient dynamic work
distribution strategies, and thus improve the scalability of
parallel A* search. We also tackle the problem of dupli-
cate searching by different processors, by using work trans-
fer as a means to partial duplicate pruning. The parallel
startup scheme proposed requires only O(logP) time com-
pared to O(P) time for sequential startup methods used in
the past. Using the Traveling Salesman Problem (TSP) as
our test case, we see that our work distribution strategies
vield speedup improvements of more than 30% and 15% at
lower and intermediate work densities, respectively, while
requiring 20% to 45% less memory, compared to previ-
ous approaches. Moreover, our simple duplicate pruning
scheme provides an average reduction of 20% in execution
time for up to 64 processors, compared to previous ap-
proaches that do not prune any duplicates.
Keywords: A* search, branch-and-bound search,
duplicate pruning, dynamic work distribution, par-
allel A*, scalability, startup work distribution.

1 Introduction

The A* algorithm [9] is a well-known, generalized
branch-and-bound search procedure, widely used in
the solution of many computationally demanding com-
binatorial optimization problems [1, 8]. Its opera-
tion, as detailed later, can be viewed essentially as
a best-first search of a state space graph. Paralleliza-
tion of branch-and-bound methods provides an effec-
tive means to meet the computational needs of many
practical search problems [3, 8, 10].

Many researchers in the past have adopted a tree
formulation of the search space in problems such as
the Traveling Salesman Problem (TSP) [3, 7]. the 15-
puzzle problem [3] and test pattern generation [1, 8],
where a graph formulation is applicable. A tree for-
mulation makes A* amenable to easy parallelization;
each processor explores a different part of the search

*This research was funded in part by a Grant-in-Aid and
in part by a Faculty Summer Research Fellowship both from
the University of Minnesota Graduate School. Sandia National
Labs provided access to their 1024-processor nCUBE2 parallel
computer.

space, that is disjoint from the search spaces of other
processors. However, for the above problems, using
a tree formulation implies that nodes that represent
identical subproblems are not considered duplicates
since their states are artificially defined to be differ-
ent. When such identical subproblems arise during A*
search, they will remain undetected, thus resulting in
a duplication of search effort. A graph formulation
on the other hand, will enable detection of such nodes
and hence duplicated search can be avoided. How-
ever, it is not easily amenable to parallelization on
distributed-memory machines, since duplicate nodes
may be generated in different processors.

In this paper we develop parallel A* algorithms for
searching arbitrary directed graphs and suitable for
distributed-memory machines, with TSP as our test
problem. In parallel A* algorithms, inefficiencies grow
with the number of processors P used, causing perfor-
mance to drop significantly at lower and intermediate
work densities (the ratio of the problem size to P).
To alleviate this effect, we propose a novel parallel
startup phase and efficient dynamic work distribution
strategies and thus improve the scalability of parallel
A* algorithms. Our new parallel startup scheme re-
quires only O(logP) time compared to O(P) time for
sequential startup methods used previously. To tackle
the problem of duplicate searching discussed earlier we
present an indirect but reasonably effective method of
pruning duplicates via work transfer. Explicit schemes
for inter-processor duplicate pruning are currently be-
ing investigated. We also present a O(logP) termina-
tion detection scheme for our parallel A* algorithms.

2 The A* Algorithm

In this section we briefly describe the sequential
A* algorithm [9]. Given a combinatorial optimization
problem P, we are interested in finding a least cost so-
lution to P. The A* algorithm operates by performing
a best-first search for an optimal solution node from
a root node in a state space graph G. The root node
corresponds to the original problem P, while all other
nodes represent subproblems derived from P. Associ-
ated with each node u is a cost ¢ of the current best
path from root to u and a cost A’ that is a lower bound
on the cost of the best path from u to any solution
node. Nodes representing the same problem state are
considered to be duplicates.

The cost estimate of a nodeis f' = g + I/, i.e., it
represents a lower bound on the cost of the best solu-

tion node reachable from this node. Two lists of nodes
are utilized: OPEN and CLOSED. OPEN is a list of
nodes that have been generated but not yet expanded
(not had their children generated), while CLOSED is
a list of all nodes that have been expanded. The ac-
tual operation of the algorithm proceeds in steps. At
each step, it picks a node from OPEN with the mini-
mum f’ value called best_node, generates its children
and computes their cost estimates. Next, it adds each
generated child to the OPEN list, after checking to
see if any duplicates exist, in which case all except the
best copy are removed. Finally best_node is placed
in CLOSED. This process is repeated until best_node
happens to be a solution node, which is then returned
as an optimal solution. This sequential A* algorithm
will be referred to as SEQ_A*.

Now we define a few terms used in the remainder
of the paper. At any time during the operation of
A*, the f’ value of the current best solution node
is denoted by best_soln. We use two classifications
of nodes based on best_soln and the optimal solution
cost. Nodes in OPEN that have f’ values less than
the current value of best_soln are called active nodes,
since these are the only nodes that need to be ex-
panded, and active_len represents the number of such
nodes at any time. Other nodes in OPEN are said
to be nactive. Nodes that have cost less than the
optimal solution cost are called essential nodes, since
they form a necessary and sufficient set of nodes that
a sequential algorithm needs to expand in order to
find an optimal solution. All other nodes are called
non-essential nodes.

In SEQ_A*, when a node is expanded, i.e., it is
an essential node, all its children are generated irre-
spective of their costs. This way a large number of
non-essential nodes may be generated. In our imple-
mentations we have used an improved A* algorithm,
that employs a partial expansion scheme to generate
only the best available child from the node undergoing
expansion [6]. This way very few non-essential nodes
are formed. We will refer to this improved sequential

A* algorithm as SEL_SEQ_A*.
3 Application of A* to TSP

The Traveling Salesman Problem can be posed as
follows. Given a set 0,1,.., N — 1 of cities and inter-
city distances, find the shortest tour that visits every
city exactly once and returns to the start city. We have
formulated TSP so that it is equivalent to a search in
a state space graph G, a problem domain most readily
handled by A*. The state of a node is defined by a
3-tuple: [start city, set of visited cities, present cityl.
Initially only root with root.state = [0, {0}, 0], exists.
An expansion of a node u € G yields a child v for each
city that remains to be visited in u. This way a TSP
tour is constructed by visiting an additional unvisited
city, from the present city, in each expansion. The
llclfr]istic function used by us is similar to the one given
in [3].

While our formulation of TSP reduces it to a graph-
search problem (as will be shown shortly), previous se-
quential and parallel branch-and-bound methods em-
ployed to address TSP [3, 5, 7, 10] have used a tree
search formulation. In their formulation, the state

of a node is defined by either: (1) a 1-tuple: [or-
dered list of cities visited] or (2) a 2-tuple: [set of
edges currently in the tour, set of edges excluded
from the tour]. Consider two nodes u and v, whose
states, according to the first tree formulation, are
defined by w.state = [(0,1,2,3,4)] and v.state =
[(0,2,3,1,4)]; and according to the second tree formu-
lation by w.state = [{(0,1),(1,2),(2,3),(3,4)},0] and
v.state = H(O 2), (2, 3), (3, 1), (1, 4)}, {(0, 1){ (where
(i,7) denotes the edge from city ¢ to city 7). Thus, u
and v would be considered to represent two different
subproblems (since their states are different) accord-
ing to these formulations. However, both v and v rep-
resent the same subproblem, which can be posed as:
find a minimal cost path visiting exactly once all cities
in the set {4,5,.... N —1,0}, originating at 4 and ter-
minating at (0. This statement is precisely captured by
our formulation, according to which the states of both
u and v are given by: [0,{0,1,2,3,4},4]. Duplicates
are detected by the duplication check carried out in
every iteration of A*. As a result, one of u and v gets
pruned. It can similarly be shown that a graph search
formulation is more appropriate for problems such as
the 15-puzzle and test pattern generation, that have
previously been tackled using a tree search formula-
tion [1, 3, 8.

4 Parallelization of A*

Here we present a brief overview of our approach
to the parallelization of A* and introduce a few terms
used in the sequel. We have developed three paral-
lel A* algorithms targeted at the hypercube architec-
ture. Our parallel A* algorithms can be described as
parallel local A* (PLA*) algorithms, since each pro-
cessor exectuites an almost independent SEL_SEQ_A*
on its own OPEN and CLOSED lists. The start-
ing nodes required for a processor’s sequential algo-
rithm are generated and allocated in a startup phase.
Processors broadcast any improvements in best_soln,
which is maintained consistent in all processors. Apart
from solution broadcasts, processors interact to redis-
tribute work for better processor utilization, to send
or receive cost updates and to detect termination of
the algorithm; algorithms for these tasks are presented
in subsequent sections. We define non-essential work
(essential work) to be the total time over all proces-
sors spent in processing non-essential (resp. essential)
nodes. Let Tp denote the execution time on P pro-
cessors and T the sequential execution time. We use
work density to refer to the ratio T} /P. By duplicated
work we mean the total extra time over all proces-
sors associated with pursuing duplicate search spaces.
The total time over all processors spent in idling will
be referred to as starvation time.

In contrast to a parallel local A* algorithm, a par-
allel global A* (PGA¥) algorithm uses global lists or
lists that are consistent across processors. Such an al-
gorithm is suitable only for shared-memory machines
[3] and does not scale up well with the number of pro-
cessors, since contention for global lists or the cost of
maintaining consistent lists becomes excessive. Par-
allel local A* schemes on the other hand, can be im-
plemented on distributed-memory machines and have
better scalability. However, the use of multiple incon-

sistent OPEN lists and a distributed-memory imple-
mentation, introduce a number of inefficiencies in a
parallel local A* algorithm:

1. Starvation: This occurs when processors run out
of work and idle.

2. Non-essential work: Since the nodes expanded
in each processor do not necessarily represent a
global best selection, non-essential work may be
performed.

3. Duplicated work: This is due to duplicate nodes
that arise in different processors (inter-processor
duplicates).

4. Memory overhead: This is caused by non-
essential nodes and duplicate nodes formed.
Work transfer also adds to the memory require-
ment, since both nodes that are granted and
nodes that are received must be stored (in the
donor and acceptor processors respectively) in a
graph search algorithm to detect any possible du-
plicates that may arise later.

Later we present schemes that deal with the above
inefficiencies very effectively.

5 Parallel Startup Phase

Here we describe and analyze a novel parallel
startup phase that is used in all of our parallel al-
gorithms. The structure of the startup phase can be
represented as a b-ary tree of depth d. This is illus-
trated in Fig. 1 for the case b = 2 and P = 4. Each
vertex of the tree in Fig. 1 corresponds to a node gen-
eration phase and the outgoing edges from a vertex
correspond to a node distribution phase (these will be
described shortly). Each leaf of the tree correspondsto
the nodes finally allocated to a single processor. The
startup phase execution pattern for each processor is
described by a unique path from the root of the tree to
a corresponding leaf. Initially all processors start with
the same root node (node al in Fig. 1). Then each
processor asynchronously executes SEL_SEQ_A* until
it has obtained bm (m = 2 in Fig. 1) active nodes,
where m is the multiplicity of each branch. This is
the node generation phase. Next in the node distribu-
tion phase, the P processors are divided into b groups,
with each group being assigned the same number m
of nodes in OPEN. The assignment is done so as to
effect an equitable distribution of nodes among the
processor groups'. This sequence of node generation
and distribution alternates, until each processor has
obtained its own m nodes. Subsequently, processors
execute SEL_.SEQ_A* on these starting nodes.

Let us call the combination of a node generation
phase followed by a node distribution phase, a step.
Then in each step, bm distinct active nodes are gen-
erated, and m of them distributed to each of the b
processor groups. Note that each processor executes
a total of [log, P% steps. Therefore assuming that no
more than O(b.m) duplicates are encountered in any

"The distribution is made equitable in terms of the amount
of work the nodes represent. A less expensive node is likely to
generate more essential nodes compared to a costlier node with
a comparable number of visited cities. Therefore, the amount
of work a node represents can be approximately deduced from
its cost.

0-3

initial ordered list of
active nodes —————— |

P
b1 b2 b3 b4

node generation phase
final ordered list of
active nodes

< node distribution phase

01 2-3
bl b4 b2 b3
i 1) / \ 3

Figure 1: Structure of the startup phase for b = 2,
m =2 and P = 4.

step, the startup phase time T, becomes:

T = O(mbllog, P]) = (_)(mb|—logg P-|)

log, b
Thus T, increases linearly with m and relatively more
slowly with b and P. In fact, we see that for the paral-
lel startup phase with constant values of b and m, Ty,
grows only as O(logP), while for a sequential startup
phase (b = P, m = 1) used in previous work [4], Ts.
grows as O(P).

We first define a few terms that will be useful in
our subsequent discussions. By the guality of a node
we mean the amount of essential work associated with
the node as reflected by its cost (see footnote 1). By
untqueness of nodes across processors we mean the
extent to which different processors are free of du-
plicates. We use the term guantity of work (nodes)
to mean the number of active nodes. A good dis-
tribution of nodes across processors is one in which
different processors have unique nodes, as well as al-
most equal quantity and quality of nodes. The startup
phase parameters b and m determine the initial distri-
bution of nodes across processors in terms of quality
and uniqueness?, as explained below.

In each distribution phase, some of the processor
groups receive costlier nodes compared to the oth-
ers, and the search graph gets partitioned into parts
that are not necessarily distinct. Hence smaller the
branching factor b, more are the number of distribu-
tion phases and worse is the quality and uniqueness
distribution of starting nodes across processors. On
the other hand, a larger value for m means a larger
choice of nodes to expand from in the node generation
phase. and hence better quality of nodes for the sub-
sequent distribution phase. We will analyze the effect
of parameters b and m on the performance of parallel
A* at different work densities in Sec. 8.

6 Work Distribution

In the interest of scalability, we have employed
nearest-neighbor work distribution strategies in which
both work requests and work transfers are confined

2Since each processor obtains the same number of starting
nodes, a good quantity distribution is effected by the startup
phase.

to neighbors. First we describe two commonly used
work distribution strategies for distributed-memory
machines proposed in previous work, viz.. the round-
robin (RR) strategy [4] and the random communica-
tion (RC) strategy [2, 3]. We then present our new
work distribution strategy, which we call quality equal-
izing (QE) strategy, because of its use of a highly effec-
tive scheme for balancing the quality of work between
neighbors.

6.1 Previous Strategies: In the round-robin strat-
egy, a processor that runs out of nodes requests work
from its busy neighbors in a round-robin fashion, until
it is successful in procuring work. The donor processor
grants a fixed fraction (one third in our implementa-
tion) of its active nodes to the acceptor processor.

In the random communication strategy, each pro-
cessor donates the newly generated children of the
node expanded in each iteration, to random neighbors.
This way a more uniform distribution of good quality
nodes is achieved and is therefore helpful in reducing
the amount of non-essential work.

The above strategies do not adequately address the
inefficiencies identified in Sec. 4. For instance, the
round-robin strategy strategy does not use any scheme
to directly reduce non-essential work. The random
communication strategy, on the other hand, employs
an expensive and to some extent redundant approach
of frequent node transfers to tackle this problem. The
deficiencies in these strategies will become clear in our
following discussion of the quality equalizing strategy.
6.2 Quality Equalizing Strategy (QE): The qual-
ity equalizing strategy comprises a combination of
schemes that address the inefficiencies identified in
Sec 4. We next describe each of these schemes in de-
tail.

6.2.1 Anticipatory Work Request: The first
scheme reduces the idling due to latency between
work request and work procurement by having pro-
cessors request work on imminent starvation®. Since
at any time the least cost node in a processor is ex-
panded, any decrease in active_len implies that the
best nodes available are not good enough to gener-
ate active nodes and hence this decrease is likely to
continue. In our scheme, processors start requesting
nodes when active_len is below a certain threshold,
the acceptor threshold, and it is decreasing. It is found
that this prediction rule works very well in practice.
Using such a look-ahead approach, we are able to over-
lap communication and computation. Moreover, the
delay due to transfer of a long message can be reduced
by pipelining the message transfer, i.e., by sending the
work in batches.

6.2.2 Quantitative Load Balancing: This scheme
addresses the problem of starvation. In this scheme,
each processor monitors its active_len periodically and
reports any significant changes in it to its neighbors.
This way at any time each processor knows the quan-
tity of work available with each of its neighbors. Also,
each processor assumes that the processor space com-

3This latency may be caused primarily by a lack of work
with the neighbors, or if there is work, then by the neighbors
being busy. Furthermore, the message transfer time might be
high because of a long message.

prises its neighbors and itself only. Let w; denote the
amount of work available with processor 7, and W, ;
the average amount of work per processor available
with ¢ and its neighbors. Let bf = wj — Wyyy,; denote
the surplus amount of work at a neighboring processor
J with respect to Wy, ;. To achieve perfect quanti-
tative load balance between ¢ and its neighbors, each
processor should have Wy, ; amount of work. This

means that each neighbor j of 7 should contribute 6]
units of work to ¢, which is the common pool. A nega-

tive value for &/ implies a deficiency, and in that case,
2 J

7 will collect —&7 units of work from i, instead of con-
tributing. Similarly, if we look at the work transfer
problem from the perspective of a neighboring pro-
cessor J of ¢, then to achieve perfect load balance be-
tween j and its neighbors, processor ¢ should collect
—67 units of work from j.

In our scheme, if a processor ¢ runs out of work,
then it requests work from the neighbor 71 that has the
maximum amount of work. A request for work from

i to iy carries the information 8;', and the amount of
work granted is min(6;', =6}). The minimum of the
two is taken because we do not want to transfer any
extra work that may cause a work transfer in the op-
posite direction at a later time.

6.2.3 Qualitative Load Balancing: The next ob-
jective is to minimize the total amount of non-essential
work. Note that to achieve this, it is not necessary to
follow a global selection rule for expansion as has been
attempted earlier in [10]. Instead we need only ensure
that all processors work on essential nodes throughout
the duration of the algorithm. Our scheme is based on
the idea that any processor spends a reasonable period
of time expanding and processing its best few nodes
before it moves onto costlier nodes. Therefore as long
as the best few nodes with each processor are good
(ideally essential) our objective will be fulfilled. To
achieve this, we use a scheme in which each processor
monitors the cost of its fifth best node in OPEN pe-
riodically and reports any significant changes to its
neighbors. In this manner, every processor at any
time has information regarding the cost of the fifth
best node in the OPEN list of each of its neighbors.
A processor requests work from the neighbor with the
least cost fifth best node, when the cost of its best
node is more than the least cost fifth best node in any
of its neighbors. The donor processor grants only a
few good nodes to the acceptor. This way we ensure
that neighboring processors, and eventually all pro-
cessors, work on nodes that are qualitatively compa-
rable. As a result. the amount of non-essential work
gets reduced. Note that since only a few nodes are
transferred, this scheme has very low work transfer
overhead, and therefore is especially useful at low and
intermediate work densities. In our subsequent dis-
cussions we will refer to work requests meant to ef-
fect quantitative load balance (such as in the previ-
ous scheme) as quantitative work requests, while those
related to qualitative load balance (such as in the
present scheme) as qualitative work requests.

6.2.4 Duplicate Pruning: In our parallel algo-

rithms we prune all intra-processor duplicates using
the duplication check test in SEL_ SEQ_A*. We use an
indirect method for pruning inter-processor duplicates
via work transfer as follows. Consider two processors
P, and P, that possess duplicate nodes u and v, re-
spectively. In the absence of any inter-processor du-
plicate pruning scheme, the search space from both «
and v will be explored thus contributing to duplicated
work. In our scheme, if u, which can possibly be a
partially expanded node, is donated by P; to P, then
u is placed in the CLOSED list of P; and no further
expansions are carried out from u. Furthermore, the
child nodes that were already formed from u in P; are
not permitted to be formed from w in P,, unless they
were already generated from an existing duplicate of
« (v in this (fase) in 5. Thus the amount of inter-
processor duplicate pruning achieved corresponds to
the search paths that were generated from « in P; but
were not generated from v in P». Note, however, that
the pruning is not complete since at the time of work
transfer search paths that have been generated from
w in P; and from v in P, remain duplicated in both
the processors. This simple inter-processor duplicate
pruning scheme is used in all the parallel algorithms,
viz., PLA*-RR, PLA*-RC and PLA*-QE.

A formal description of the quality equalizing strat-
egy that comprises all the schemes discussed in this
subsection (6.2) is given in Fig. 2.

7 Termination Detection

In an A* algorithm, whether sequential or parallel,
a termination condition is reached when there are no
more active nodes to process. In PLA*, active nodes
are either with a processor or are extraneously present
in active messages that are potential sources of active
nodes for the receiving processor. In our parallel al-
gorithms, work transfers and cost updates are the two
types of active messages the former may carry ac-
tive nodes, while the latter may cause existing inactive
nodes to become active. An active message originating
at processor i and destined for processor j is said to
be “owned” by ¢ until an acknowledgement is received
from j. A processor “stops” when it has neither ac-
tive nodes to process nor owns any active messages. A
stopped processor “resumes” when it receives an ac-
tive message that becomes a source of active nodes.
The purpose of the acknowledge signal is to allow the
acceptor processor to resume before the donor proces-
sor can stop. Therefore to correctly detect termina-
tion, i.e.. to ensure that there are no more active nodes
or unacknowledged active messages, we need to only
ascertain that all processors have stopped. For this
purpose, a spanning tree of depth log P rooted at pro-
cessor 0, is mapped onto the hypercube. STOP mes-
sages are passed upward in the spanning tree starting
at stopped leaf processors. Non-leaf processors send a
STOP message upward only after they have stopped
and have received STOP messages from all their child
processors. Thus in O(logP) time the root processor
receives all STOP messages and determines that a ter-
mination barrier has been reached by all processors.
Subsequently, processor 0 signals termination to all
processors.

Procedure QLTY_EQUALIZING_STRATEGY (¢)

/* Procedure QLTY_EQUALIZING_.STRATEGY is used
in PLA*-QE to achieve load balance, and i is the processor
that executes it */

begin

Processor 1 executes the following steps:

1. Work status report: Periodically monitor activelen
and the cost of the fifth least cost node, and report
any significant changes (10% and 2% respectively) in
them to all neighbors.

[N]

If (a work status report is received from a neighbor)

then record it.

3. Let j_max := neighbor with the maximum active_len
value; and j_best := neighbor with the best fifth least
cost node.

4. Work request:
if (no previous work request from i remains to be
serviced) then begin

if(active_len = 0) or (activelen < 5 and is decreasing)
Send a quantitative work request to j_max, along with
the information 6'[7"7""13 ;

else if (best_node is costlier than the fifth least cost
node in j_best)

Send a qualitative work request to j_best, along with
the cost of best_node.

endif

5. If (a quantitative work request is received from neigh-
bor j) then grant min(s}, —&7) (but at least 10% and
not more than 50% of activelen) active nodes in a
pipelined fashion.

6. If (a qualitative work request is received from neigh-
bor j) then grant at most 2 active nodes that are
cheaper than j’s best_node.

. If (work is received) then check for duplicates of

nodes received;

-1

If (no duplicates are found) then insert in myOPEN;
else perform appropriate duplicate pruning and prop-
agate cost improvements if any.

end /* Procedure QLTY_EQUALIZING_STRATEGY */

Figure 2: Algorithm for the Quality Equalizing Strat-
egy

Two additional signals RESUME and ACKNOWL-
EDGE are used to signal a resume caused by an active
message, and to acknowledge the receipt of an active
message, respectively. If an active message originat-
ing at processor 7 causes j to resume, then j sends
a RESUME signal upward in the spanning tree. The
RESUME signal is sent to nullify a STOP signal previ-
ously transmitted along this path from j*. If the RE-
SUME is no longer needed to be transmitted upward
at the ancestor processor k of 7, then k signals an AC-
KNOWLEDGE to i. On receiving the ACKNOWL-
EDGE signal, ¢ “relinquishes” ownership of the active
message originally sent to j. Now processor ¢ can stop
if it has neither active nodes nor owns any active mes-
sages.

8 Performance Results

Algorithm PLA* utilizes a parallel startup phase,
either one of the three work distribution strategies dis-
cussed earlier, viz., RR, RC and QE strategies, the du-
plicate pruning scheme of Sec. 6.2.4, and the termina-
tion detection algorithm. The three versions of PLA*
employing the different work distribution strategies
are called PLA*-RR, PLA*-RC and PLA*QE. We
implemented our parallel algorithms on an nCUBE2
hypercube multicomputer to solve TSP and averaged
all data over 25 random samples. Four merits of per-
formance are used: (1) Execution time measured in
terms of the number of clock ticks on the nCUBE2.
(2) Speedup defined as the ratio 71 /Tp. (3) Memory
utilization factor (MUF) defined to be the ratio of the
memory required by the parallel algorithm to that re-
quired by the sequential algorithm. (4) Isoefficiency
function, which is the required rate of growth of T}
with respect to P, to keep the efficiency fixed at some
value, and is a measure of the scalability of the algo-
rithm [4].
8.1 Effect of the Startup Phase: In Fig. 3, we
plot the execution times for various b and m combina-
tions, as a percentage of the execution time of the case
b= P and m = 1 (sequential startup). The amount of
startup phase time T, affects the performance at dif-
ferent work deunsities in the following ways: (1) At low
work densities (roughly P > 16 for N = 19) the frac-
tion of the time 1 — T, /Tp spent in completely par-
allel execution is small; this can be counterbalanced
by decreasing Ty, and hence smaller values for b and
m yield better performance. (2) At intermediate work
densities (roughly 4 < P < 16 for N = 19) the total
time Tp — Ty, available for load balancing and dupli-
cate pruning is insufficient; this can be alleviated by
a good distribution of starting nodes and hence larger
(though not necessarily the largest) values of b and m
prove to be more useful. (3) Finally, at high work den-
sities (roughly P < 4 for N = 19) Tp > T, so that
the effect of the above two factors is minimal. Hence
the choice of b and m is crucial at low and intermedi-
ate work densities.
8.2 Effect of Graph Search Formulation and
Duplicate Pruning: Next in Fig. 4 we plot for
PLA*-QE the percentage improvement obtained us-

4Note that the root processor will not signal termination,
since processor ¢ has not yet stopped.

ing a graph formulation (duplication check on) over a
tree formulation (duplication check off) for uniformly
distributed and normally distributed random inputs.
Two effects are apparent from these plots: (1) The
performance benefit from duplication check gradually
tapers off with larger number of processors, i.e., with
larger number of partitions of the search graph, un-
til it is no longer useful. This is because with larger
number of partitions of the search graph, more dupli-
cates are inter-processor rather than intra-processor,
and hence checking for intra-processor duplicates ac-
tually becomes a penalty, since there are fewer such
duplicates. (2) The performance gain due to dupli-
cation check is more pronounced (on an average 20%
better for up to 64 processors) when the data distribu-
tion is normal and the variance is low than when it is
uniformly distributed. When the variance of the data
is low, it becomes more likely that many search paths
will be equally competitive and hence will be explored
to an equal extent; this increases the chances of dupli-
cation. In practice, data is most often distributed nor-
mally, and thus an explicit duplicate pruning scheme
should prove very useful.

8.3 Effect of Work Distribution Strategies—
Speedup and Isoefficiency Results: In Fig. 5(a)
we plot the average speedup and 100 times the aver-
age memory utilization factor versus number of pro-
cessors for PLA*-RR, PLA*-RC and PLA*-QE. The
fact that PLA*-QE performs significantly better than
PLA*-RR and PLA*-RC at lower and intermediate
work densities corroborates our predictions regarding
the utility of the quality equalizing strategy in enhanc-
ing scalability—speedups of PLA*-QE for P = 64,
ie., at an intermediate work deunsity, and for P = 256,
i.e., at a lower work density, are about 15% and 15
to 35%. respectively, above the speedups of PLA*-RR
and PLA*-RC. From the same figure we also note that
PLA*-QE has a very low memory overhead, about 20
to 45% less for P = 256, in comparison to PLA*-RR
and PLA*-RC. Finally, in Fig. 5(b) we plot the isoeffi-
ciency curves for PLA*-RR, PLA*-RC and PLA*-QE.
A lower bound on the isoefficiency of any load balanc-
ing scheme for the hypercube architecture is (PlogP)
[4]. Although not many data points are available, we
notice that the general trend of the isoefficiency func-
tion for PLA*-QE is close to the lower bound and is

much better than that of PLA*-RR and PLA*-RC.

9 Conclusions

For most parallel search algorithms, it is possible
to obtain linear speedups for sufficiently high work
densities. At lower and intermediate work densities,
inefficiencies such as uneven work distribution. search
of non-essential as well as duplicate spaces, and over-
heads due to communication and increased memory
utilization, gain prominence and cause performance
to deteriorate. In this paper, we proposed a par-
allel startup scheme and dynamic work distribution
strategies to tackle these problems. Our new parallel
startup phase requires only ©(logP) time compared to
O(P) time for sequential startup methods used pre-
viously. Moreover, we presented efficient work dis-
tribution schemes based on a qualitative analysis of
the inefficiencies that exist in parallel A* algorithms.

Data for N=24, uniform distribution

log(Sequential execution time)

Datafor Efficiency=0.75

18
17} 3
161 —
15+ ;
141 —
13} —
12 | . L |
.......... W = Plog(P) (lower bound)
114 PLA*-RR,b=2,m=1 7
10F 7 O N N N e PLA*-RC,b=2,m=1 |
’ X-X-%- PLA*-QE,b=2,m=1
9 |- -
8 ; ; ; ; ; ;
1 2 3 4 5 6 7 8

log(Number of Processors)

(b)

Figure 5: (a) Speedup and (b) Isoefficiency curves for PLA*RR, PLA*-RC and PLA*-QE.

300 Idea speedip ‘
T e LA R ot
-------- Speedup,PLA*-RC,b=2,m=1
250} ~X-X-X- Speedup,PLA*-QE,b=2,m=1 |
-0-0-0- 100*MUF,PLA*-RR,b=2,m=1
-+-+-+- 100*MUF,PLA*-RC,b=2,m=1
-*-*-*- 100*MUF,PLA*-:QE,b=2,m=1
L 200 7
=}
s
5
S 150 ’ 7
S e
g 100 | 7
50+ 7
0 ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 - |
Number of Processors
(a)
Datafor N=19, uniform distribution, PLA*-QE
. | | ‘ T T T

P,m=1

Total time asa % of total time for b:

35

Number of Processors

Figure 3: Effect of the parameters b, m and P on the

total execution time T'p.
Datafor N=19, b=2, m=1, uniform and normal distribution, PLA*-QE
40 T T : : :

uniform distribution
30f 1
e S normal distribution, deviation=15
20

10

% Improvement in total time using graph model wrt tree model

0 50 100 150 200 250 300

Number of Processors

Figure 4: Effect of the duplication check test on the

total execution time T'p.

For a fixed problem size, the above strategies enable
us to use a larger number of processors more effec-
tively, thus enhancing the scalability of our parallel
algorithms. Furthermore, we observed that for search
spaces that are actually graphs and not simple trees,
duplicate pruning is critical in obtaining good perfor-
mance. There appears to be a good scope for im-
proving the performance of our parallel A* algorithm
further by using explicit duplicate pruning strategies
that will be more effective with a larger number of
processors; we are currently investigating such prun-
ing strategies. Lastly, we presented an optimal termi-
nation detection scheme for our parallel A* algorithm.
Performance results of our parallel algorithms reveal
the utility of all our schemes and corroborate their
analyses. Our schemes should prove very useful in
practice, since A* is a generalized branch-and-bound
algorithm used to solve a large class of optimization
problems.

References

(1] S. Arvindam, V. Kumar and V.N. Rao, “Efficient Par-
allel Algorithms for Search Problems: Applications in
VLSI CAD,” Proc. 8rd Symp. Mass. Par. Comp., Oct.
1990.

[2] R.M. Karp and Y. Zhang, “A Randomized Parallel
Branch-and-Bound Procedure,” J. of the ACM. 1988.

[3] V. Kumar, K. Ramesh and V.N. Rao, “Parallel Best-
First Search of State-Space Graphs: A Summary of
Results,” Proc. 1988 Nat’l Conf. Artifictal Intell..
1988.

[4] V. Kumar and V.N. Rao, “Load Balancing on the Hy-
percube Architecture,” Proc. Hypercubes, Concurrent
Comp., Appli., Mar 1989.

[5] J.D. Little, et. al., “An Algorithm for the Travel-
ing Salesman Problem,” Operations Research, Vol.11,
1963.

[6] N.R. Mahapatra and S. Dutt,
Analysis of the A* Algorithm,” Technical Report in

“Improvement and

(8]

[9]

[10]

preparation, Electrical Engineering Dept., Univ. of
Minnesota, Minneapolis, MN, 1993.

J. Mohan, “Experience with Two Parallel Programs
Solving the Traveling Salesman Problem.” IEEE
Conf. Par. Proc’g, pp.191-193, 1983.

S. Patil and P. Banerjee, “A Parallel Branch and
Bound Algorithm for Test Generation,” IEEE Trans.
Computer-Aided Design, Vol.9, pp.313-322, Mar 1990.

E. Rich, Artificial Intelligence, McGraw Hill, New
York, 1983.

B.W. Wah and Y.W. Ma, “MANIP - A Parallel Com-
puter System For Implementing Branch And Bound

Algorithms,” Proc. 8th Annu. Symp. on. Comp. Arch.,
pp-239-262, 1982.

