
Published in the Proc. of the Fifth IEEE Parallel Processing Symposium, Apr. 1993, pp.797-803.Parallel A* Algorithms and theirPerformance on Hypercube Multiprocessors�Shantanu Dutt, MEMBER IEEE and Nihar R. Mahapatra, STUDENT MEMBER IEEEDepartment of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455AbstractIn this paper we develop parallel A* algorithms suit-able for distributed-memory machines. In parallel A* al-gorithms, ine�ciencies grow with the number of proces-sors P used, causing performance to drop signi�cantly atlower and intermediate work densities (the ratio of theproblem size to P). To alleviate this e�ect, we proposea novel parallel startup phase and e�cient dynamic workdistribution strategies, and thus improve the scalability ofparallel A* search. We also tackle the problem of dupli-cate searching by di�erent processors, by using work trans-fer as a means to partial duplicate pruning. The parallelstartup scheme proposed requires only �(logP) time com-pared to �(P) time for sequential startup methods used inthe past. Using the Traveling Salesman Problem (TSP) asour test case, we see that our work distribution strategiesyield speedup improvements of more than 30% and 15% atlower and intermediate work densities, respectively, whilerequiring 20% to 45% less memory, compared to previ-ous approaches. Moreover, our simple duplicate pruningscheme provides an average reduction of 20% in executiontime for up to 64 processors, compared to previous ap-proaches that do not prune any duplicates.Keywords: A* search, branch-and-bound search,duplicate pruning, dynamic work distribution, par-allel A*, scalability, startup work distribution.1 IntroductionThe A* algorithm [9] is a well-known, generalizedbranch-and-bound search procedure, widely used inthe solution of many computationally demanding com-binatorial optimization problems [1, 8]. Its opera-tion, as detailed later, can be viewed essentially asa best-�rst search of a state space graph. Paralleliza-tion of branch-and-bound methods provides an e�ec-tive means to meet the computational needs of manypractical search problems [3, 8, 10].Many researchers in the past have adopted a treeformulation of the search space in problems such asthe Traveling Salesman Problem (TSP) [3, 7], the 15-puzzle problem [3] and test pattern generation [1, 8],where a graph formulation is applicable. A tree for-mulation makes A* amenable to easy parallelization;each processor explores a di�erent part of the search�This research was funded in part by a Grant-in-Aid andin part by a Faculty Summer Research Fellowship both fromthe University of Minnesota Graduate School. Sandia NationalLabs provided access to their 1024-processor nCUBE2 parallelcomputer.

space, that is disjoint from the search spaces of otherprocessors. However, for the above problems, usinga tree formulation implies that nodes that representidentical subproblems are not considered duplicatessince their states are arti�cially de�ned to be di�er-ent. When such identical subproblems arise during A*search, they will remain undetected, thus resulting ina duplication of search e�ort. A graph formulationon the other hand, will enable detection of such nodesand hence duplicated search can be avoided. How-ever, it is not easily amenable to parallelization ondistributed-memory machines, since duplicate nodesmay be generated in di�erent processors.In this paper we develop parallel A* algorithms forsearching arbitrary directed graphs and suitable fordistributed-memory machines, with TSP as our testproblem. In parallel A* algorithms, ine�ciencies growwith the number of processors P used, causing perfor-mance to drop signi�cantly at lower and intermediatework densities (the ratio of the problem size to P).To alleviate this e�ect, we propose a novel parallelstartup phase and e�cient dynamic work distributionstrategies and thus improve the scalability of parallelA* algorithms. Our new parallel startup scheme re-quires only �(logP) time compared to �(P) time forsequential startup methods used previously. To tacklethe problem of duplicate searching discussed earlier wepresent an indirect but reasonably e�ective method ofpruning duplicates via work transfer. Explicit schemesfor inter-processor duplicate pruning are currently be-ing investigated. We also present a �(logP) termina-tion detection scheme for our parallel A* algorithms.2 The A* AlgorithmIn this section we briey describe the sequentialA* algorithm [9]. Given a combinatorial optimizationproblem P , we are interested in �nding a least cost so-lution to P . The A* algorithm operates by performinga best-�rst search for an optimal solution node froma root node in a state space graph G. The root nodecorresponds to the original problem P , while all othernodes represent subproblems derived from P . Associ-ated with each node u is a cost g of the current bestpath from root to u and a cost h0 that is a lower boundon the cost of the best path from u to any solutionnode. Nodes representing the same problem state areconsidered to be duplicates.The cost estimate of a node is f 0 = g + h0, i.e., itrepresents a lower bound on the cost of the best solu-1

tion node reachable from this node. Two lists of nodesare utilized: OPEN and CLOSED . OPEN is a list ofnodes that have been generated but not yet expanded(not had their children generated), while CLOSED isa list of all nodes that have been expanded. The ac-tual operation of the algorithm proceeds in steps. Ateach step, it picks a node from OPEN with the mini-mum f 0 value called best node, generates its childrenand computes their cost estimates. Next, it adds eachgenerated child to the OPEN list, after checking tosee if any duplicates exist, in which case all except thebest copy are removed. Finally best node is placedin CLOSED . This process is repeated until best nodehappens to be a solution node, which is then returnedas an optimal solution. This sequential A* algorithmwill be referred to as SEQ A*.Now we de�ne a few terms used in the remainderof the paper. At any time during the operation ofA*, the f 0 value of the current best solution nodeis denoted by best soln. We use two classi�cationsof nodes based on best soln and the optimal solutioncost. Nodes in OPEN that have f 0 values less thanthe current value of best soln are called active nodes,since these are the only nodes that need to be ex-panded, and active len represents the number of suchnodes at any time. Other nodes in OPEN are saidto be inactive. Nodes that have cost less than theoptimal solution cost are called essential nodes, sincethey form a necessary and su�cient set of nodes thata sequential algorithm needs to expand in order to�nd an optimal solution. All other nodes are callednon-essential nodes.In SEQ A*, when a node is expanded, i.e., it isan essential node, all its children are generated irre-spective of their costs. This way a large number ofnon-essential nodes may be generated. In our imple-mentations we have used an improved A* algorithm,that employs a partial expansion scheme to generateonly the best available child from the node undergoingexpansion [6]. This way very few non-essential nodesare formed. We will refer to this improved sequentialA* algorithm as SEL SEQ A*.3 Application of A* to TSPThe Traveling Salesman Problem can be posed asfollows. Given a set 0; 1; ::; N � 1 of cities and inter-city distances, �nd the shortest tour that visits everycity exactly once and returns to the start city. We haveformulated TSP so that it is equivalent to a search ina state space graph G, a problem domain most readilyhandled by A*. The state of a node is de�ned by a3-tuple: [start city, set of visited cities, present city].Initially only root with root:state = [0; f0g; 0], exists.An expansion of a node u 2 G yields a child v for eachcity that remains to be visited in u. This way a TSPtour is constructed by visiting an additional unvisitedcity, from the present city , in each expansion. Theheuristic function used by us is similar to the one givenin [5].While our formulation of TSP reduces it to a graph-search problem (as will be shown shortly), previous se-quential and parallel branch-and-bound methods em-ployed to address TSP [3, 5, 7, 10] have used a treesearch formulation. In their formulation, the state

of a node is de�ned by either: (1) a 1-tuple: [or-dered list of cities visited] or (2) a 2-tuple: [set ofedges currently in the tour, set of edges excludedfrom the tour]. Consider two nodes u and v, whosestates, according to the �rst tree formulation, arede�ned by u:state = [(0; 1; 2; 3; 4)] and v:state =[(0; 2; 3; 1; 4)]; and according to the second tree formu-lation by u:state = [f(0; 1); (1; 2); (2; 3); (3; 4)g; ;] andv:state = [f(0; 2); (2; 3); (3; 1); (1; 4)g; f(0; 1)g] (where(i; j) denotes the edge from city i to city j). Thus, uand v would be considered to represent two di�erentsubproblems (since their states are di�erent) accord-ing to these formulations. However, both u and v rep-resent the same subproblem, which can be posed as:�nd a minimal cost path visiting exactly once all citiesin the set f4; 5; : : : ; N �1; 0g, originating at 4 and ter-minating at 0. This statement is precisely captured byour formulation, according to which the states of bothu and v are given by: [0; f0; 1; 2; 3; 4g; 4]. Duplicatesare detected by the duplication check carried out inevery iteration of A*. As a result, one of u and v getspruned. It can similarly be shown that a graph searchformulation is more appropriate for problems such asthe 15-puzzle and test pattern generation, that havepreviously been tackled using a tree search formula-tion [1, 3, 8].4 Parallelization of A*Here we present a brief overview of our approachto the parallelization of A* and introduce a few termsused in the sequel. We have developed three paral-lel A* algorithms targeted at the hypercube architec-ture. Our parallel A* algorithms can be described asparallel local A* (PLA*) algorithms, since each pro-cessor executes an almost independent SEL SEQ A*on its own OPEN and CLOSED lists. The start-ing nodes required for a processor's sequential algo-rithm are generated and allocated in a startup phase.Processors broadcast any improvements in best soln,which is maintained consistent in all processors. Apartfrom solution broadcasts, processors interact to redis-tribute work for better processor utilization, to sendor receive cost updates and to detect termination ofthe algorithm; algorithms for these tasks are presentedin subsequent sections. We de�ne non-essential work(essential work) to be the total time over all proces-sors spent in processing non-essential (resp. essential)nodes. Let TP denote the execution time on P pro-cessors and T1 the sequential execution time. We usework density to refer to the ratio T1=P . By duplicatedwork we mean the total extra time over all proces-sors associated with pursuing duplicate search spaces.The total time over all processors spent in idling willbe referred to as starvation time.In contrast to a parallel local A* algorithm, a par-allel global A* (PGA*) algorithm uses global lists orlists that are consistent across processors. Such an al-gorithm is suitable only for shared-memory machines[3] and does not scale up well with the number of pro-cessors, since contention for global lists or the cost ofmaintaining consistent lists becomes excessive. Par-allel local A* schemes on the other hand, can be im-plemented on distributed-memory machines and havebetter scalability. However, the use of multiple incon-

sistent OPEN lists and a distributed-memory imple-mentation, introduce a number of ine�ciencies in aparallel local A* algorithm:1. Starvation: This occurs when processors run outof work and idle.2. Non-essential work : Since the nodes expandedin each processor do not necessarily represent aglobal best selection, non-essential work may beperformed.3. Duplicated work : This is due to duplicate nodesthat arise in di�erent processors (inter-processorduplicates).4. Memory overhead : This is caused by non-essential nodes and duplicate nodes formed.Work transfer also adds to the memory require-ment, since both nodes that are granted andnodes that are received must be stored (in thedonor and acceptor processors respectively) in agraph search algorithm to detect any possible du-plicates that may arise later.Later we present schemes that deal with the aboveine�ciencies very e�ectively.5 Parallel Startup PhaseHere we describe and analyze a novel parallelstartup phase that is used in all of our parallel al-gorithms. The structure of the startup phase can berepresented as a b-ary tree of depth d. This is illus-trated in Fig. 1 for the case b = 2 and P = 4. Eachvertex of the tree in Fig. 1 corresponds to a node gen-eration phase and the outgoing edges from a vertexcorrespond to a node distribution phase (these will bedescribed shortly). Each leaf of the tree corresponds tothe nodes �nally allocated to a single processor. Thestartup phase execution pattern for each processor isdescribed by a unique path from the root of the tree toa corresponding leaf. Initially all processors start withthe same root node (node a1 in Fig. 1). Then eachprocessor asynchronously executes SEL SEQ A* untilit has obtained bm (m = 2 in Fig. 1) active nodes,where m is the multiplicity of each branch. This isthe node generation phase. Next in the node distribu-tion phase, the P processors are divided into b groups,with each group being assigned the same number mof nodes in OPEN . The assignment is done so as toe�ect an equitable distribution of nodes among theprocessor groups1. This sequence of node generationand distribution alternates, until each processor hasobtained its own m nodes. Subsequently, processorsexecute SEL SEQ A* on these starting nodes.Let us call the combination of a node generationphase followed by a node distribution phase, a step.Then in each step, bm distinct active nodes are gen-erated, and m of them distributed to each of the bprocessor groups. Note that each processor executesa total of dlogb P e steps. Therefore assuming that nomore than �(b:m) duplicates are encountered in any1The distribution is made equitable in terms of the amountof work the nodes represent. A less expensive node is likely togenerate more essential nodes compared to a costlier node witha comparable number of visited cities. Therefore, the amountof work a node represents can be approximately deduced fromits cost.

 a1

b1 b2 b3 b4

0−3

b2 b3

d1 d2 d3 d4

d1 d4 d2 d3

2−3

2 3

b1 b4

c1 c4 c2 c3

0−1

0 1

c1 c2 c3 c4

initial ordered list of
active nodes

node generation phase
final ordered list of
active nodes

node distribution phase

Figure 1: Structure of the startup phase for b = 2,m = 2 and P = 4.step, the startup phase time Tsu becomes:Tsu = �(mbdlogb P e) = �(mbd log2 Plog2 b e)Thus Tsu increases linearly withm and relatively moreslowly with b and P . In fact, we see that for the paral-lel startup phase with constant values of b and m, Tsugrows only as �(logP), while for a sequential startupphase (b = P , m = 1) used in previous work [4], Tsugrows as �(P).We �rst de�ne a few terms that will be useful inour subsequent discussions. By the quality of a nodewe mean the amount of essential work associated withthe node as reected by its cost (see footnote 1). Byuniqueness of nodes across processors we mean theextent to which di�erent processors are free of du-plicates. We use the term quantity of work (nodes)to mean the number of active nodes. A good dis-tribution of nodes across processors is one in whichdi�erent processors have unique nodes, as well as al-most equal quantity and quality of nodes. The startupphase parameters b and m determine the initial distri-bution of nodes across processors in terms of qualityand uniqueness2, as explained below.In each distribution phase, some of the processorgroups receive costlier nodes compared to the oth-ers, and the search graph gets partitioned into partsthat are not necessarily distinct. Hence smaller thebranching factor b, more are the number of distribu-tion phases and worse is the quality and uniquenessdistribution of starting nodes across processors. Onthe other hand, a larger value for m means a largerchoice of nodes to expand from in the node generationphase, and hence better quality of nodes for the sub-sequent distribution phase. We will analyze the e�ectof parameters b and m on the performance of parallelA* at di�erent work densities in Sec. 8.6 Work DistributionIn the interest of scalability, we have employednearest-neighbor work distribution strategies in whichboth work requests and work transfers are con�ned2Since each processor obtains the same number of startingnodes, a good quantity distribution is e�ected by the startupphase.

to neighbors. First we describe two commonly usedwork distribution strategies for distributed-memorymachines proposed in previous work, viz., the round-robin (RR) strategy [4] and the random communica-tion (RC) strategy [2, 3]. We then present our newwork distribution strategy, which we call quality equal-izing (QE) strategy, because of its use of a highly e�ec-tive scheme for balancing the quality of work betweenneighbors.6.1 Previous Strategies: In the round-robin strat-egy, a processor that runs out of nodes requests workfrom its busy neighbors in a round-robin fashion, untilit is successful in procuringwork. The donor processorgrants a �xed fraction (one third in our implementa-tion) of its active nodes to the acceptor processor.In the random communication strategy, each pro-cessor donates the newly generated children of thenode expanded in each iteration, to random neighbors.This way a more uniform distribution of good qualitynodes is achieved and is therefore helpful in reducingthe amount of non-essential work.The above strategies do not adequately address theine�ciencies identi�ed in Sec. 4. For instance, theround-robin strategy strategy does not use any schemeto directly reduce non-essential work. The randomcommunication strategy, on the other hand, employsan expensive and to some extent redundant approachof frequent node transfers to tackle this problem. Thede�ciencies in these strategies will become clear in ourfollowing discussion of the quality equalizing strategy.6.2 Quality Equalizing Strategy (QE): The qual-ity equalizing strategy comprises a combination ofschemes that address the ine�ciencies identi�ed inSec 4. We next describe each of these schemes in de-tail.6.2.1 Anticipatory Work Request: The �rstscheme reduces the idling due to latency betweenwork request and work procurement by having pro-cessors request work on imminent starvation3. Sinceat any time the least cost node in a processor is ex-panded, any decrease in active len implies that thebest nodes available are not good enough to gener-ate active nodes and hence this decrease is likely tocontinue. In our scheme, processors start requestingnodes when active len is below a certain threshold,the acceptor threshold, and it is decreasing. It is foundthat this prediction rule works very well in practice.Using such a look-ahead approach, we are able to over-lap communication and computation. Moreover, thedelay due to transfer of a long message can be reducedby pipelining the message transfer, i.e., by sending thework in batches.6.2.2 Quantitative Load Balancing: This schemeaddresses the problem of starvation. In this scheme,each processormonitors its active len periodically andreports any signi�cant changes in it to its neighbors.This way at any time each processor knows the quan-tity of work available with each of its neighbors. Also,each processor assumes that the processor space com-3This latency may be caused primarily by a lack of workwith the neighbors, or if there is work, then by the neighborsbeing busy. Furthermore, the message transfer time might behigh because of a long message.

prises its neighbors and itself only. Let wi denote theamount of work available with processor i, and Wavg;ithe average amount of work per processor availablewith i and its neighbors. Let �ji = wj �Wavg;i denotethe surplus amount of work at a neighboring processorj with respect to Wavg;i. To achieve perfect quanti-tative load balance between i and its neighbors, eachprocessor should have Wavg;i amount of work. Thismeans that each neighbor j of i should contribute �jiunits of work to i, which is the common pool. A nega-tive value for �ji implies a de�ciency, and in that case,j will collect ��ji units of work from i, instead of con-tributing. Similarly, if we look at the work transferproblem from the perspective of a neighboring pro-cessor j of i, then to achieve perfect load balance be-tween j and its neighbors, processor i should collect��ij units of work from j.In our scheme, if a processor i runs out of work,then it requests work from the neighbor i1 that has themaximum amount of work. A request for work fromi to i1 carries the information �i1i , and the amount ofwork granted is min(�i1i ;��ii1). The minimum of thetwo is taken because we do not want to transfer anyextra work that may cause a work transfer in the op-posite direction at a later time.6.2.3 Qualitative Load Balancing: The next ob-jective is to minimize the total amount of non-essentialwork. Note that to achieve this, it is not necessary tofollow a global selection rule for expansion as has beenattempted earlier in [10]. Instead we need only ensurethat all processors work on essential nodes throughoutthe duration of the algorithm. Our scheme is based onthe idea that any processor spends a reasonable periodof time expanding and processing its best few nodesbefore it moves onto costlier nodes. Therefore as longas the best few nodes with each processor are good(ideally essential) our objective will be ful�lled. Toachieve this, we use a scheme in which each processormonitors the cost of its �fth best node in OPEN pe-riodically and reports any signi�cant changes to itsneighbors. In this manner, every processor at anytime has information regarding the cost of the �fthbest node in the OPEN list of each of its neighbors.A processor requests work from the neighbor with theleast cost �fth best node, when the cost of its bestnode is more than the least cost �fth best node in anyof its neighbors. The donor processor grants only afew good nodes to the acceptor. This way we ensurethat neighboring processors, and eventually all pro-cessors, work on nodes that are qualitatively compa-rable. As a result, the amount of non-essential workgets reduced. Note that since only a few nodes aretransferred, this scheme has very low work transferoverhead, and therefore is especially useful at low andintermediate work densities. In our subsequent dis-cussions we will refer to work requests meant to ef-fect quantitative load balance (such as in the previ-ous scheme) as quantitative work requests , while thoserelated to qualitative load balance (such as in thepresent scheme) as qualitative work requests .6.2.4 Duplicate Pruning: In our parallel algo-

rithms we prune all intra-processor duplicates usingthe duplication check test in SEL SEQ A*. We use anindirect method for pruning inter-processor duplicatesvia work transfer as follows. Consider two processorsP1 and P2 that possess duplicate nodes u and v, re-spectively. In the absence of any inter-processor du-plicate pruning scheme, the search space from both uand v will be explored thus contributing to duplicatedwork. In our scheme, if u, which can possibly be apartially expanded node, is donated by P1 to P2, thenu is placed in the CLOSED list of P1 and no furtherexpansions are carried out from u. Furthermore, thechild nodes that were already formed from u in P1 arenot permitted to be formed from u in P2, unless theywere already generated from an existing duplicate ofu (v in this case) in P2. Thus the amount of inter-processor duplicate pruning achieved corresponds tothe search paths that were generated from u in P1 butwere not generated from v in P2. Note, however, thatthe pruning is not complete since at the time of worktransfer search paths that have been generated fromu in P1 and from v in P2 remain duplicated in boththe processors. This simple inter-processor duplicatepruning scheme is used in all the parallel algorithms,viz., PLA*-RR, PLA*-RC and PLA*-QE.A formal description of the quality equalizing strat-egy that comprises all the schemes discussed in thissubsection (6.2) is given in Fig. 2.7 Termination DetectionIn an A* algorithm, whether sequential or parallel,a termination condition is reached when there are nomore active nodes to process. In PLA*, active nodesare either with a processor or are extraneously presentin active messages that are potential sources of activenodes for the receiving processor. In our parallel al-gorithms, work transfers and cost updates are the twotypes of active messages|the former may carry ac-tive nodes, while the latter may cause existing inactivenodes to become active. An active message originatingat processor i and destined for processor j is said tobe \owned" by i until an acknowledgement is receivedfrom j. A processor \stops" when it has neither ac-tive nodes to process nor owns any active messages. Astopped processor \resumes" when it receives an ac-tive message that becomes a source of active nodes.The purpose of the acknowledge signal is to allow theacceptor processor to resume before the donor proces-sor can stop. Therefore to correctly detect termina-tion, i.e., to ensure that there are no more active nodesor unacknowledged active messages, we need to onlyascertain that all processors have stopped. For thispurpose, a spanning tree of depth logP rooted at pro-cessor 0, is mapped onto the hypercube. STOP mes-sages are passed upward in the spanning tree startingat stopped leaf processors. Non-leaf processors send aSTOP message upward only after they have stoppedand have received STOP messages from all their childprocessors. Thus in �(logP) time the root processorreceives all STOP messages and determines that a ter-mination barrier has been reached by all processors.Subsequently, processor 0 signals termination to allprocessors.

Procedure QLTY EQUALIZING STRATEGY(i)/* Procedure QLTY EQUALIZING STRATEGY is usedin PLA*-QE to achieve load balance, and i is the processorthat executes it */beginProcessor i executes the following steps:1. Work status report: Periodically monitor active lenand the cost of the �fth least cost node, and reportany signi�cant changes (10% and 2% respectively) inthem to all neighbors.2. If (a work status report is received from a neighbor)then record it.3. Let j max := neighbor with the maximum active lenvalue; and j best := neighbor with the best �fth leastcost node.4. Work request:if (no previous work request from i remains to beserviced) then beginif(active len = 0) or (active len < 5 and is decreasing)Send a quantitative work request to j max, along withthe information �j maxi ;else if (best node is costlier than the �fth least costnode in j best)Send a qualitative work request to j best, along withthe cost of best node.endif5. If (a quantitative work request is received from neigh-bor j) then grantmin(�ij;��ji) (but at least 10% andnot more than 50% of active len) active nodes in apipelined fashion.6. If (a qualitative work request is received from neigh-bor j) then grant at most 2 active nodes that arecheaper than j's best node.7. If (work is received) then check for duplicates ofnodes received;If (no duplicates are found) then insert in myOPEN ;else perform appropriate duplicate pruning and prop-agate cost improvements if any.end /* Procedure QLTY EQUALIZING STRATEGY */Figure 2: Algorithm for the Quality Equalizing Strat-egy

Two additional signals RESUME and ACKNOWL-EDGE are used to signal a resume caused by an activemessage, and to acknowledge the receipt of an activemessage, respectively. If an active message originat-ing at processor i causes j to resume, then j sendsa RESUME signal upward in the spanning tree. TheRESUME signal is sent to nullify a STOP signal previ-ously transmitted along this path from j4. If the RE-SUME is no longer needed to be transmitted upwardat the ancestor processor k of j, then k signals an AC-KNOWLEDGE to i. On receiving the ACKNOWL-EDGE signal, i \relinquishes" ownership of the activemessage originally sent to j. Now processor i can stopif it has neither active nodes nor owns any active mes-sages.8 Performance ResultsAlgorithm PLA* utilizes a parallel startup phase,either one of the three work distribution strategies dis-cussed earlier, viz., RR, RC and QE strategies, the du-plicate pruning scheme of Sec. 6.2.4, and the termina-tion detection algorithm. The three versions of PLA*employing the di�erent work distribution strategiesare called PLA*-RR, PLA*-RC and PLA*-QE. Weimplemented our parallel algorithms on an nCUBE2hypercube multicomputer to solve TSP and averagedall data over 25 random samples. Four merits of per-formance are used: (1) Execution time measured interms of the number of clock ticks on the nCUBE2.(2) Speedup de�ned as the ratio T1=TP . (3) Memoryutilization factor (MUF) de�ned to be the ratio of thememory required by the parallel algorithm to that re-quired by the sequential algorithm. (4) Isoe�ciencyfunction, which is the required rate of growth of T1with respect to P , to keep the e�ciency �xed at somevalue, and is a measure of the scalability of the algo-rithm [4].8.1 E�ect of the Startup Phase: In Fig. 3, weplot the execution times for various b and m combina-tions, as a percentage of the execution time of the caseb = P and m = 1 (sequential startup). The amount ofstartup phase time Tsu a�ects the performance at dif-ferent work densities in the following ways: (1) At lowwork densities (roughly P > 16 for N = 19) the frac-tion of the time 1 � Tsu=TP spent in completely par-allel execution is small; this can be counterbalancedby decreasing Tsu and hence smaller values for b andm yield better performance. (2) At intermediate workdensities (roughly 4 < P � 16 for N = 19) the totaltime TP � Tsu available for load balancing and dupli-cate pruning is insu�cient; this can be alleviated bya good distribution of starting nodes and hence larger(though not necessarily the largest) values of b and mprove to be more useful. (3) Finally, at high work den-sities (roughly P � 4 for N = 19) TP � Tsu, so thatthe e�ect of the above two factors is minimal. Hencethe choice of b and m is crucial at low and intermedi-ate work densities.8.2 E�ect of Graph Search Formulation andDuplicate Pruning: Next in Fig. 4 we plot forPLA*-QE the percentage improvement obtained us-4Note that the root processor will not signal termination,since processor i has not yet stopped.

ing a graph formulation (duplication check on) over atree formulation (duplication check o�) for uniformlydistributed and normally distributed random inputs.Two e�ects are apparent from these plots: (1) Theperformance bene�t from duplication check graduallytapers o� with larger number of processors, i.e., withlarger number of partitions of the search graph, un-til it is no longer useful. This is because with largernumber of partitions of the search graph, more dupli-cates are inter-processor rather than intra-processor,and hence checking for intra-processor duplicates ac-tually becomes a penalty, since there are fewer suchduplicates. (2) The performance gain due to dupli-cation check is more pronounced (on an average 20%better for up to 64 processors) when the data distribu-tion is normal and the variance is low than when it isuniformly distributed. When the variance of the datais low, it becomes more likely that many search pathswill be equally competitive and hence will be exploredto an equal extent; this increases the chances of dupli-cation. In practice, data is most often distributed nor-mally, and thus an explicit duplicate pruning schemeshould prove very useful.8.3 E�ect of Work Distribution Strategies{Speedup and Isoe�ciency Results: In Fig. 5(a)we plot the average speedup and 100 times the aver-age memory utilization factor versus number of pro-cessors for PLA*-RR, PLA*-RC and PLA*-QE. Thefact that PLA*-QE performs signi�cantly better thanPLA*-RR and PLA*-RC at lower and intermediatework densities corroborates our predictions regardingthe utility of the quality equalizing strategy in enhanc-ing scalability|speedups of PLA*-QE for P = 64,i.e., at an intermediate work density, and for P = 256,i.e., at a lower work density, are about 15% and 15to 35%, respectively, above the speedups of PLA*-RRand PLA*-RC. From the same �gure we also note thatPLA*-QE has a very low memory overhead, about 20to 45% less for P = 256, in comparison to PLA*-RRand PLA*-RC. Finally, in Fig. 5(b) we plot the isoe�-ciency curves for PLA*-RR, PLA*-RC and PLA*-QE.A lower bound on the isoe�ciency of any load balanc-ing scheme for the hypercube architecture is
(P logP)[4]. Although not many data points are available, wenotice that the general trend of the isoe�ciency func-tion for PLA*-QE is close to the lower bound and ismuch better than that of PLA*-RR and PLA*-RC.9 ConclusionsFor most parallel search algorithms, it is possibleto obtain linear speedups for su�ciently high workdensities. At lower and intermediate work densities,ine�ciencies such as uneven work distribution, searchof non-essential as well as duplicate spaces, and over-heads due to communication and increased memoryutilization, gain prominence and cause performanceto deteriorate. In this paper, we proposed a par-allel startup scheme and dynamic work distributionstrategies to tackle these problems. Our new parallelstartup phase requires only �(logP) time compared to�(P) time for sequential startup methods used pre-viously. Moreover, we presented e�cient work dis-tribution schemes based on a qualitative analysis ofthe ine�ciencies that exist in parallel A* algorithms.

0

50

100

150

200

250

300

0 50 100 150 200 250 300
xxx

x
x

x

x

x

x

o

oo o o o o
o o

+

+++ + + +
+

+

*** * * * *
* *

Data for N=24, uniform distribution

............ Ideal speedup
_____ Speedup,PLA*-RR,b=2,m=1
-------- Speedup,PLA*-RC,b=2,m=1
-x-x-x- Speedup,PLA*-QE,b=2,m=1
-o-o-o- 100*MUF,PLA*-RR,b=2,m=1
-+-+-+- 100*MUF,PLA*-RC,b=2,m=1
-*-*-*- 100*MUF,PLA*-QE,b=2,m=1

Number of Processors

Sp
ee

du
p/

10
0*

M
U

F

8

9

10

11

12

13

14

15

16

17

18

1 2 3 4 5 6 7 8

x

x

x

x

x

.......... W = Plog(P) (lower bound)

_____ PLA*-RR,b=2,m=1

-------- PLA*-RC,b=2,m=1

-x-x-x- PLA*-QE,b=2,m=1

Data for Efficiency=0.75

log(Number of Processors)

lo
g(

Se
qu

en
tia

l e
xe

cu
tio

n
tim

e)

(a) (b)Figure 5: (a) Speedup and (b) Isoe�ciency curves for PLA*-RR, PLA*-RC and PLA*-QE.
85

90

95

100

105

110

115

0 5 10 15 20 25 30 35

x

x

x

x

x

x

o

o

o

o

o

o

+ + + + + +*

*

*

*

*

*

______ b=2,m=1
------- b=2,m=2
-x-x-x- b=4,m=1
-o-o-o- b=4,m=2
-+-+-+- b=P,m=1
-*-*-*- b=P,m=2

Data for N=19, uniform distribution, PLA*-QE

Number of Processors

T
ot

al
 ti

m
e

as
 a

 %
 o

f
to

ta
l t

im
e

fo
r

b=
P,

m
=

1

Figure 3: E�ect of the parameters b, m and P on thetotal execution time TP .
-40

-30

-20

-10

0

10

20

30

40

0 50 100 150 200 250 300

Data for N=19, b=2, m=1, uniform and normal distribution, PLA*-QE

______ uniform distribution

--------- normal distribution, deviation=15

Number of Processors

%
 I

m
pr

ov
em

en
t i

n
to

ta
l t

im
e

us
in

g
gr

ap
h

m
od

el
 w

rt
 tr

ee
 m

od
el

Figure 4: E�ect of the duplication check test on thetotal execution time TP .

For a �xed problem size, the above strategies enableus to use a larger number of processors more e�ec-tively, thus enhancing the scalability of our parallelalgorithms. Furthermore, we observed that for searchspaces that are actually graphs and not simple trees,duplicate pruning is critical in obtaining good perfor-mance. There appears to be a good scope for im-proving the performance of our parallel A* algorithmfurther by using explicit duplicate pruning strategiesthat will be more e�ective with a larger number ofprocessors; we are currently investigating such prun-ing strategies. Lastly, we presented an optimal termi-nation detection scheme for our parallel A* algorithm.Performance results of our parallel algorithms revealthe utility of all our schemes and corroborate theiranalyses. Our schemes should prove very useful inpractice, since A* is a generalized branch-and-boundalgorithm used to solve a large class of optimizationproblems.References[1] S. Arvindam, V. Kumar and V.N. Rao, \E�cient Par-allel Algorithms for Search Problems: Applications inVLSI CAD," Proc. 3rd Symp. Mass. Par. Comp., Oct.1990.[2] R.M. Karp and Y. Zhang, \A Randomized ParallelBranch-and-Bound Procedure," J. of the ACM, 1988.[3] V. Kumar, K. Ramesh and V.N. Rao, \Parallel Best-First Search of State-Space Graphs: A Summary ofResults," Proc. 1988 Nat'l Conf. Arti�cial Intell.,1988.[4] V. Kumar and V.N. Rao, \Load Balancing on the Hy-percube Architecture," Proc. Hypercubes, ConcurrentComp., Appli., Mar 1989.[5] J.D. Little, et. al., \An Algorithm for the Travel-ing Salesman Problem," Operations Research, Vol.11,1963.[6] N.R. Mahapatra and S. Dutt, \Improvement andAnalysis of the A* Algorithm," Technical Report in

preparation, Electrical Engineering Dept., Univ. ofMinnesota, Minneapolis, MN, 1993.[7] J. Mohan, \Experience with Two Parallel ProgramsSolving the Traveling Salesman Problem," IEEEConf. Par. Proc'g, pp.191-193, 1983.[8] S. Patil and P. Banerjee, \A Parallel Branch andBound Algorithm for Test Generation," IEEE Trans.Computer-Aided Design, Vol.9, pp.313-322, Mar 1990.[9] E. Rich, Arti�cial Intelligence, McGraw Hill, NewYork, 1983.[10] B.W. Wah and Y.W. Ma, \MANIP - A Parallel Com-puter System For Implementing Branch And BoundAlgorithms," Proc. 8th Annu. Symp. on Comp. Arch.,pp.239-262, 1982.

