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Abstract

The task-to-processor mapping problem is addressed in the context of a local-memory
multiprocessor with a hypercube interconnection topology. Two heuristic cluster-based
mapping strategies are compared - 1) a nearest-neighbor approach and 2) a recursive-
clustering scheme. The nearest-neighbor strategy is shown to be more effective on
hypercube systems with high communication start-up costs, especially for finite element
graphs; the recursive partitioning heuristic is generally better on hypercubes with lower
communication start-up costs and is more effective on random task graphs.
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1 Introduction

The effective exploitation of the potential power of parallel computers requires efficient solutions to
the task-to-processor mapping problem. The problem is that of optimally allocating the tasks of a
parallel program among the processors of the parallel computer in order to minimize execution time
of the program. The mapping problem is NP-complete [8, 9], except in a few specific contexts with
very unrealistic constraints that typically do not hold in practice. Hence the various approaches
that have been proposed all seek to obtain satisfactory sub-optimal solutions in a reasonable amount
of time [1-4,6-9,11-18]. This paper discusses two heuristic approaches based on cluster-partitioning
- 1) a nearest-neighbor approach and 2) a recursive-clustering approach. We compare and contrast
the way in which these two approaches use heuristics to limit the configuration space of possible

mappings that is (partially) searched to derive satisfactory mappings in reasonable time.

The mapping problem has been investigated in two distinct settings that we refer to as the
Task Precedence Graph (TPG) model and the Task Interaction Graph (TIG) model. With the
TPG model, the parallel program is modeled as a collection of tasks with known (or estimated)
computation times and explicit execution dependences expressed in the form of precedence relations.
An example of a TPG is shown in Fig. 1(a). The parallel program is represented as a graph whose
vertices represent tasks and the directed edges represent execution dependences. In the example
shown in Fig. 1(a), task h can only commence execution after tasks f and g have completed
execution. The weight associated with a vertex represents the relative computation time required
for its execution and the weight associated with an edge represents the relative amount of data to
be communicated between two tasks. Thus task f requires twice as much computation as b and the
amount of data to be transferred between f and h is thrice as much as that between a and b. This
model is very appropriate in the context of parallel programs that may essentially be characterized

by an acyclic task graph.

With the TIG model, the parallel program is again modeled as a graph where the vertices
represent the parallel tasks and vertex-weights represent known or estimated computation costs
of the tasks. In contrast to the TPG model, however, execution dependences are not explicitly
captured; thus, the edges of a TIG represent communication requirements between tasks, with
edge-weights reflecting the relative amounts of communication involved, but do not capture any
temporal execution dependences. Thus in Fig. 1(b), the relative amount of data communication
required between tasks a and b is 2, but nothing is stated regarding the temporal dependences
between these two tasks. The TIG approach can be used to approximately model the behavior
of complex parallel programs by lumping together all estimated communications between pairs of
tasks and ignoring the temporal execution dependences. There is also a class of parallel programs,
that we call iterative parallel programs, where the TIG model is quite accurate [1]. With this class
of programs, execution proceeds as a sequence of sequential iterations. In each iteration, all parallel

tasks can execute independently, but each task then needs to communicate values computed during



Figure 1: Two approaches to modeling of parallel programs

that iteration with tasks it is connected to in the TIG, before it can commence its next iteration.
Given a mapping of tasks to processors, over a large number of iterations, the slowest processor
will clearly control program completion time. Thus minimizing iteration step completion time of
the slowest processor (sum of computation time and inter-processor communication time for all
inter-task communications that need to go across to other processors) will minimize execution time
of the parallel program. Hence there is no need to explicitly model temporal dependences and
their satisfaction on a per-task basis, as the sequence of iterations of the iterative parallel program
proceeds. This is the nature of the mapping problem addressed in this paper; an example of its
use is presented in [1] in the context of parallelizing a finite element modeling program employing

iterative techniques for the solution of large sparse systems of linear equations.

Given a parallel program that is characterized by a TIG, the mapping of the tasks to proces-
sors may either be performed statically (before program execution) or dynamically in an adaptive
manner as the parallel program executes. The appropriate approach depends on the nature of the
TIG. If the TIG that characterizes the parallel program is static, i.e. the vertex and edge weights
can be accurately estimated a priori, then a static approach is more attractive, since the mapping
computation need only be performed once. This is the case, for example, with many iterative

parallel programs. We only consider static mapping schemes in this paper.

If the physical communication costs of the parallel computer system can be quantitatively
characterized, then by using it in conjunction with the parallel program’s TIG, a cost function can be
formulated to evaluate the effectiveness of any particular mapping of the tasks onto the processors.

The mapping problem can thus be formulated as a problem of finding a mapping that minimizes



this mathematical cost function, and indeed many researchers have done so [7, 8, 11, 13, 16, 17, 18].
In some contexts, mapping schemes have been proposed that utilize intuition about the specific
mapping context and do not use any explicit cost functions in the mapping procedure — for example,
the scattered decomposition scheme proposed in [12] and heuristics proposed in [15]. Such schemes,
which we call “domain-heuristic” schemes, are computationally very efficient. In contrast, schemes
that explicitly optimize cost functions are often computationally time consuming, but are more
generally applicable and potentially capable of obtaining better mappings. The primary problem
with most of the approaches based on explicit minimization of a cost function is the exponentially
large configuration space of possible mappings that must be selectively searched in seeking to
optimize the function. Many proposed heuristics to explicitly minimize cost functions have been
shown to work relatively well on small task graphs (with a few tens of tasks), but have not been
evaluated on large task graphs (with hundreds or thousands of nodes) [16, 17, 18]. The “flat”
and unstructured view of task allocation as a mapping of each task onto a processor leads to an
unmanageably large search space. If the task graph has N nodes and the parallel computer has P

processors, the space of possible mappings has PV configurations.

We propose that hybrid approaches that combine characteristics of domain-heuristics and the
use of an explicit cost function are most attractive for the mapping problem. Instead of using
“flat and unstructured” strategies aimed at minimizing a mathematically formulated cost function,
domain-heuristics are used in conjunction with an explicit cost function to significantly reduce the

search space of potentially good candidate mappings.

Our approach to mapping is motivated by the following observations:

e Clustering: Pairs of tasks that require much communication are better grouped together
and mapped to the same processor in order to reduce communication costs. Thus the task-to-
processor mapping problem may be viewed instead as a problem of forming clusters of tasks
with high intra-cluster communication and low inter-cluster communication, and allocating
these clusters to processors in a way that results in low inter-processor communication costs.
This view of mapping in terms of formation of clusters of closely coupled tasks helps reduce

significantly the space of mappings that is selectively searched for a satisfactory solution.

¢ Load Balancing: The clusters should be formed in such a way as to distribute the total
computational load as uniformly as possible among the clusters. This requirement can often
conflict with the requirement for minimal inter-cluster communication. We may hence identify
computational load balancing and minimization of inter-processor communication as the two
key objectives of the mapping. The component terms in typical cost functions used for

mapping often quantify one or the other of these two requirements.

o Complexity: The complexity of the mapping problem essentially arises due to the need

to simultaneously achieve both the objectives of load-balancing and minimization of com-



munication. Rather than use two explicit terms in the cost function, one representing load
balancing and another representing communication costs, the search space can be reduced
if only one of these two is explicitly modeled while the other is used implicitly in guiding
the search. As explained later, the two schemes used in this paper represent two alternate
ways of doing so. The nearest-neighbor mapping scheme explicitly attempts load balanc-
ing among clusters, whereas low communication costs are achieved implicitly through the
use of a domain-heuristic. In contrast, the recursive-clustering approach explicitly attempts
to minimize communication costs, while load balancing is achieved implicitly by the search

strategy.

The paper is organized as follows. In section 2, we formalize the mapping problem that we
address. In section 3, we discuss the nearest-neighbor approach to mapping and in section 4, we
develop the recursive-clustering scheme. In section 5, we compare the effectiveness of the two

schemes on a number of sample task graphs and summarize in section 6.

2 The Mapping Problem

In this section, we formalize the mapping problem considered and develop the cost function that
is used as a measure of goodness of the mapping. The parallel program is characterized by a Task
Interaction Graph G(V, F), whose vertices, V' = {1,2,..., N}, represent the tasks of a program,
and edges E, characterize the data communication requirements between tasks. The weight of a
task i, denoted w;, represents the computational load of the task. The weight of an edge (7,7)
between 7 and j, denoted ¢;;, represents the relative amount of communication required between

the two tasks.

The parallel computer is represented as a graph G(P, F,). The vertices P = {1,2,..., K}
represent the processors and the edges F, represent the communication links. The system is
assumed to be homogeneous, with identical processors. Hence, in contrast to the Task Interaction
Graph (TIG), no weights are associated with the vertices or edges of the Processor Interconnection
Graph. The processors are assumed to either execute a computation or perform a communication

at any given time, but not simultaneously do both.

The cost of communication between a processor and its neighbor is assumed to consist of
two components — 1) a startup (setup) cost T, that is independent of message size, and 2) a
data transmission cost [ x Ty, that is proportional to the number of bytes transmitted. This is
characteristic of all commercially available hypercube computers, with T representing the cost of
a kernel call and context switch to process the message and T} characterizing the physical rate of
data transmission on the inter-processor communication link. For communication between remote
processors, with hypercube systems that use a packet-switched store-and-forward mechanism, the

source processor, destination processor and the intermediate processors expend time corresponding



to message setup and data transfer.

The task-to-processor mapping is a function M : V' — P. M (i) gives the processor onto which
task ¢ is mapped. The Task Set (7'5,) of a processor ¢ is defined as the set of tasks mapped onto
it:

TSy ={ilM(j)=q}, q=1....K
The Work Load (W L,) of processor ¢ is the total computational weight of all tasks mapped onto
it:
WLy= > w;, g¢=1...K
JETS,
and the idealized average load is given by WL = 4 Sk WL;. The Communication Set (C'S,)
of processor ¢ is the set of the edges of the TIG whose images under the mapping go through the

processor ¢, based on the routing used for messages on the hypercube.

The Communication Load (CL,) of processor ¢ is the total time spent by processor ¢ in
performing communication. This includes the communication start-up time and data transfer time

for each message originating or terminating at ¢ and for each message routed through g.

Cost functions that have been used with the task allocation problem may be broadly categorized
as belonging to one of two models: a minimaz cost model [11, 16] or a summed total cost model [3, 7,
8]. With the minimax cost model, the total time required (the execution time + communication time
+ idle time) by each processor under a given mapping is estimated and the maximum cost(time)
among all processors is to be minimized. By making a simplifying assumption that the maximally

loaded processor does not suffer significantly from idle time, the function to be minimized is:

Tminimax:m]\i;l {maX(CLq—I—WLq)}, g=1,..., K (1)
q

3 Nearest-Neighbor Mapping

The nearest-neighbor mapping strategy was proposed in [13] as an effective approach to mapping
finite element graphs onto processor meshes. Given a regular m X n rectangular mesh of processors
Pij,o=1...m,j=1...n, a nearest-neighbor of a processor P;; is any processor Py, where £ is
either t—1,¢,0r ¢+1, and [ is either j—1, 7, or 74+1. A nearest-neighbor mapping is one where any pair
of nodes that share an edge in the TIG are mapped onto nearest-neighbor processors. The essential
idea behind the nearest-neighbor mapping approach is that if TIG nodes are assigned to processors
in a manner that results in just nearest-neighbor communication, then the total communication
cost should be low. Starting with an initial nearest-neighbor mapping, successive incremental
modification of the mapping is done to improve load-balancing among the processors while always
maintaining the nearest-neighbor property. The search strategy reduces the configuration space of
possible mappings by incorporating a “cluster” viewpoint of the mapping as opposed to a “flat”

individual-task-to-processor viewpoint. Moreover, the search space is further reduced by being



explicitly concerned only with the load-balancing aspect of the mapping, while the implicit nearest-
neighbor constraint in conjunction with node-clustering aids in keeping communication costs low. In
this section we explain the approach through an example and refer the reader to [13] for algorithmic

details.

The nearest-neighbor mapping algorithm proceeds in two phases:

1. An initial mapping is first generated by grouping nodes of the TIG into clusters and assigning

clusters to processors in a manner that the nearest-neighbor property is satisfied.

2. The initial mapping is successively modified using a boundary-refinement procedure where
nodes are reassigned among processors in a manner that improves load balancing but always

maintains the nearest neighbor-property.

Allowing for the possibility that some of the processors do not get any nodes mapped onto
them, a nearest-neighbor mapping of any TIG onto a processor mesh is clearly always possible.
In the extreme case, all TIG nodes form a single cluster that is assigned to one of the processors,
while all other processors are assigned no tasks at all. The initial mapping algorithm of course
attempts to do considerably better than that extreme case. The initial-mapping procedure may
be understood through the example in Fig. 2, requiring the mapping of a 40-node TIG onto a
2 x 4 mesh of 8 processors. Here the TIG is a “mesh graph”, a graph that can be embedded onto
some subset of a uniform 2-dimensional grid with a dilation of 1, i.e. the nodes of the TIG can be
mapped onto the grid points of a uniform 2-dimensional grid in such a way that any two nodes of
the TIG that share an edge are mapped onto adjacent (vertically or horizontally) grid points. We
first use an example of a mesh graph to simplify the explanation of the initial mapping scheme and

later point out how the scheme can be generalized for arbitrary graphs.

The basis for the initial mapping procedure is the following 1-dimensional strip mapping
scheme. Let us imagine that all the processors in each row of the processor mesh are lumped
together to create a “macro-processor”. The 8-processor mesh in Fig. 2 can be so treated as a
linear chain of 4 macro-processors, as seen in Fig. 2(a). The essential idea behind the 1-D strip
method is to partition the mesh graph into “strips”, where each strip encompasses one or more
contiguous rows (columns) of the graph. The mesh graph is covered by strips in such a way that
each strip is adjacent to at most two other strips, one on either side of it. The number of strips
used equals the number of processors (macro-processors) in the processor chain, and the strips can
be made to each contain an equal number of mesh graph vertices (plus or minus one, if the number
of graph vertices is not a perfect multiple of the number of strips created). Given a mesh with
N nodes, to be mapped onto a linear chain of P processors, a load-balanced mapping will assign
either [&] or | %] nodes to each processor (the former to (N mod P) processors and the latter
number to (P — (N mod P)) processors). Starting with the leftmost node in the uppermost row

of the mesh-graph, nodes are checked off and assigned to a processor by proceeding across the row



Figure 2: Hlustration of the Nearest-Neighbor approach to mapping



Figure 3: Example of 1-D Strip-Partitioning of a Non-Mesh TIG



of the mesh graph. If the first row is completely exhausted, then we begin at the left end of the
next row and continue assigning nodes to the processor. When the required number of nodes has
been assigned, we begin assigning the remaining nodes in that row to the next processor in the
linear chain of processors. Proceeding in this manner, all nodes in the problem mesh are assigned
to processors. Thus in Fig. 2(a), the graph is partitioned into 4 strips containing 10 tasks each, to
be assigned to each of the 4 macro-processors. This could be thought of as a symmetric contraction

of the graph along one dimension.

A similar procedure can be used to create a vertical 1-D strip partition of the same graph, as
shown in Fig. 2(b). Now we group all processors in a column together, to form a chain of two macro-
processors. The TIG is partitioned into two vertical strips. By overlapping the two orthogonal
strip-partitions generated, and forming the intersections, we can generate a number of regions, that
equals the number of processors in the processor mesh, as shown in Fig. 2(c). The nature of the
construction guarantees that the generated partitions satisfy the nearest-neighbor property. The
two independent partitions of such a 2-D partition are each individually load balanced, but the
intersection partitions are generally not load-balanced, as can be seen from the table of assigned
loads in Fig. 2(c). However, this serves as a good initial nearest-neighbor mapping that is then

refined by the load-balancing boundary refinement procedure.

One way of balancing the computational loads of the processors is to reassign some of the tasks
among the processors; for example, by transferring one task from Pyo to each of Pj; and Psy, one
task from Pp; to P and one task from Ps; to Psy, as shown graphically in Fig. 2(d) as a Load
Transfer Graph (LTG). In general, given an initial mapping, it is possible to determine a set of
load transfers that will balance the load, by setting up and solving a system of linear equations in

integer variables.

A heuristic boundary-refinement procedure (described in detail in [13] iteratively attempts to
transfer tasks between processors using the LTG. An “active” processor list is formed, sorted in
decreasing order of current task-load, comprising all processors that source an edge in LTG. A task
is sought in the most heavily loaded active processor (preferably on the partition boundary), to be
transferred to a neighbor processor in the LTG, ensuring that the nearest-neighbor constraint is
not violated. If no such task can be found, the sorted active processor list is scanned in decreasing
order of processor loads till an active processor with a transferable task is found. The task transfer
is made and the L'TG is updated by decreasing the relevant edge-weight by one and removing it
if its edge-weight becomes zero. The algorithm thus proceeds incrementally to refine the mapping
by perturbing the boundaries of the partitions in attempting to balance the load. While its effec-
tiveness depends on the initial partition generated, it has been found to be good in practice. Even
initial mappings of finite element graphs, where one or more processors get no assigned nodes have
typically been load-balanced after boundary refinement. The final mapping after application of the

reassignment procedure is shown in Fig. 2(e) for the chosen example.
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A generalization of the 1-dimensional strip method to non-mesh graphs is possible. This is
illustrated through an example in Fig. 3. The essential idea again is to create strip-like regions
to cover the graph, such that if a node is on a certain strip, all other nodes sharing an edge with
that node in the TIG should lie either on the same strip or on an adjacent strip. In the case of
mesh graphs, the process of generating strips was facilitated by the regularity of the mesh-graph
and the natural grouping of nodes into columns and rows. This is not so for a general non-mesh
TIG. Such a grouping is hence created by a levelization process that assigns a unique level to each
node. Starting with a single randomly selected node, or if possible a peripheral node, or a set of
connected peripheral nodes that are assigned to level 1, all nodes directly connected to these level
1 nodes, and that have not yet been assigned a level, are assigned a level number of 2. The same
procedure is carried out with the nodes at level 2, and continued thus till all nodes are levelized.
The nature of the levelization procedure ensures that a neighbor node of any node assigned level
[, will necessarily be assigned level [ — 1,/ or [ + 1. Now, strip partitioning can be performed using
the levels similar to using columns(rows) in the earlier described procedure for 1-dimensional strip

partitioning for mesh-graphs, as seen in figure 3.

In the case of mesh graphs, mapping onto an m X n processor mesh was achieved by performing
two independent 1-D partitions - one n-way (in the horizontal direction) and the other m-way (in
the vertical direction). In the case of non-mesh graphs, the difficulty is in the generation of a
second levelization that is orthogonal to the first one. This is because, unlike with mesh graphs,
it is not meaningful to associate physical directions such as vertical and horizontal with the levels
generated, as can be seen with many of the levels in figure 3. A heuristic is hence used to attempt
the generation of a second levelization that is as orthogonal to the first one as possible. This is
done by first identifying so called “corner” nodes of the TIG - these are peripheral nodes that
form end-points of the maximum diameter(s) of the TIG, i.e. are nodes with maximum distance
of separation in the TIG. Starting with an arbitrary corner node, one fourth of the peripheral
nodes visited upon traversing the periphery in one direction are used as the nodes in level 1 of the
first levelization; the same number of nodes visited upon traversing the periphery in the opposite

direction are used for level 1 of the second levelization.

The nearest-neighbor approach can be expected to be quite effective in mapping TIG’s that
exhibit a high degree of locality, as is the case with parallel programs modeling physical systems
using finite element methods, finite difference methods etc. When the TIG does not represent
purely local interactions, but has “non-local” connectivity, the nearest-neighbor restriction becomes
overly constraining and load balancing becomes extremely difficult. An alternate cluster-based
mapping scheme is developed in the next section that is not so restrictive. Instead of using a
search strategy that explicitly attempts load balancing while implicitly keeping communication
costs low, the opposite view is taken, of explicitly attempting to minimize communication costs by
the use of an explicit cost function, while achieving load balance implicitly through the nature of

the developed algorithm.
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Algorithm Recursive_Clustering (G, Gp, M)
/* G = (T, F)is the input TIG along with vertex and edge weights */
/* Gp = (P, Ep)is the Processor Interaction Graph of the target hypercube */
/* M is a mapping V — P that is the output of the algorithm */

/* Phase 1 */

Set Depth = 0 and Maxdepth = log, | P|

Form_Clusters(G;, Depth, Maxdepth,S)
/* S is a set of | P| clusters returned by Form_Clusters by */
/* partitioning the graph ;. Minimization of inter-cluster */
/* communication volume is attempted by Form_Clusters */

- From the set S of clusters, form graph Gg that characterizes the
inter-cluster communication.
/* Gs = G(C, Es) has |P| vertices, one for each cluster in S */
* (G5 has an edge between two vertices if the corresponding clusters *
g p g

/* contain a vertex each of GGy that have an edge between them in G */
/* The edges of G5 have weights that are the sum of the weights */
/* of the relevant edges in G */

/* Phase 2 */

Allocate_Processors(Gs,Gp, M)
/* The vertices of Gg are mapped onto processors of Gp attempting */
/* to minimize the total inter-processor communications volume, */
/* accounting for physical distances */

Figure 4: Algorithm for Recursive-Clustering

4 Mapping by Recursive-Clustering

A recursive-clustering scheme is developed in this section to map arbitrary TIG’s onto a local

memory machine with a hypercube interconnection topology. The algorithm proceeds in two phases:

1. Cluster Formation: The TIG is first partitioned into as many clusters as the number
of processors. Starting with the entire TIG as a single cluster, this is done recursively,
by successively dividing a cluster into two equally vertex-weighted (as nearly as possible)

partitions with minimal total weight of inter-partition edges.

2. Processor Allocation: The clusters generated in the first phase are each allocated to some
processor, one cluster per processor, in a manner that attempts to minimize the total inter-

processor communication volume.

Both the phases of the algorithm — the cluster-formation phase and the processor-allocation phase —
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Algorithm Form_Clusters (G,Depth,Maxdepth,S5)

if (Depth = MaxDepth)
then /* No more partitioning of G; add it to the set of clusters S */
else /* Recursively partition */

{

Mincut(G, G, GRr) /* Partition GG into two equal parts G, and G */
Form_Clusters(Gy,Depth+1, Maxdepth,$)
Form_Clusters(Gr,Depth4+1, Maxdepth,S)

}

Figure 5: Algorithm for Forming Clusters

explicitly attempt to minimize communication volume through the use of an iterative improvement
heuristic based on the Kernighan-Lin mincut algorithm [10] and load balancing is achieved implicitly

in the first phase of the algorithm.

Kernighan and Lin [10] proposed an extremely effective mincut heuristic for graph bisection,
with an empirically determined time complexity of O(n?*). Their algorithm is based on finding a
favorable sequence of vertex-exchanges between the two partitions to minimize the number of inter-
partition edges. The evaluation of sequences of perturbations instead of single perturbations endows
the method with the hill-climbing ability, rendering it superior to simple local search heuristics.
Fiduccia and Mattheyses [5] used efficient data structures and vertex displacements instead of
exchanges to derive a linear time heuristic for graph partitioning, based on a modification of the
algorithm in [10]. While the original mincut algorithm of Kernighan and Lin applied only to graphs
with uniform vertex weights, the Fiduccia-Mattheyses scheme can handle graphs with variable

vertex weights, to divide it into partitions with equi-total vertex weights.

The basic mincut algorithm used here is similar in spirit to the Fiduccia-Mattheyses variant
of the Kernighan-Lin heuristic. An initial two-way partition is created by assigning the nodes of
the graph, one by one, always to the partition with lesser total weight (randomly in case both
are equal). After creating the initial partition, a sequence of maximally improving node transfers
from the partition with currently greater load to the partition with lower load are tried. The
iterative improvement heuristic is otherwise very similar to the Kernighan-Lin mincut heuristic,
except for the use of one-way node transfers instead of node exchanges. The use of node transfers
in this fashion guarantees load-balance even though the individual vertex weights are variable. The
mincut bipartitioning procedure is used recursively to perform a P-way partition of a graph if P is a
power of 2 — by first creating two equal sized partitions, then independently dividing each of these
into two sub-partitions each, and so on till P partitions are created. The recursive partitioning
procedure is illustrated using an example in Figure 8(a) - 8(c). The parallel processor system has

8 processors and so the recursive partitioning procedure is applied upto depth log, 8 = 3.
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Algorithm Mincut (G, G, GR)

/* accepts a graph G as input and partitions it into */
* two clusters (7, Gg such that the cutsize is minimal *
?

- Form an initial load-balanced partition of G’y
assigning its nodes into one of two clusters Cf and C73.
- Mark all nodes as unlocked.
- Associate a gain value g, with each node v and initialize ¢, to zero

do {
C1 < C7; Oy — (O3
- Compute Vv € V. g, = total reduction in cost of the cut when v is
moved from its currently assigned cluster to the other cluster.
- Compute Wy and Wy, the total load in €1 and C5 respectively
seqno «— 0 ;
do {
seqno < seqno + 1
- Let C; be the cluster with greater total weight and C; the lesser
total weight i.e., W; > W;, 1,5 € {1,2}, 1 # j
- Among the unlocked vertices, identify »™ € (; with maximal gain g
- If no such vertex exists, exit this loop.
- Assume that v* is moved to (;, update the gain for all unlocked nodes
and calculate loads Wy and W5 for ' and (Y
- Lock v* and record the status of the movement and gain[seqno] — ¢
} while (there is at least one vertex to move)
Let G* = max; Y.\, gain[i] = S2I_, gain[i]
where [* is the value of [ that maximizes the cumulative gain
if [(G* > 0) OR ((G* = 0) AND (better load balancing))]
then perform all moves from 1 to [* i.e., form C§ and (3.
} while G* > 0
G — CY
Gr«— C3

Figure 6: Mincut Algorithm
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Algorithm Allocate_Processors (Gs,Gp, M)

/* accepts two graphs Gg, Gp as input and returns mapping M */

/* Gp = G(P, Ep) is a graph representing the interconnection of the hypercube */
/* Gg=G(C, Eg) is a graph with | P| nodes, each node is a cluster of TIG nodes */
/* M is the mapping of clusters to processors */

- Start with an initial mapping M that assigns cluster C; to processor P,
- Unlock all processor nodes
do {
- Calculate the gain for all processor pairs P; and P; assuming
the clusters currently assigned to P; and P; are swapped.
- seqno — 0 ;
do {
seqno < seqno + 1
- Among the unlocked processor-pairs, pick the one, say, (Pg, P;) with maximum gain
- If no such pair exists, exit this loop.
- Assume that P and F; are swapped, update the gain for all unlocked processor-pairs
- Lock P, and P
} while (there is at least one unlocked processor)
Let G* = max; S5 gain[i] = Y25, gain[i]
where k* is the value of k£ that maximizes the cumulative gain
if (G* > 0) then perform all moves from 1 to k* by changing M
} while G* > 0
return (M)

Figure 7: Processor Assignment Algorithm

15



The second phase attempts to minimize total inter-processor communication volume when the
clusters generated in the first phase are allocated to processors, one cluster per processor. Whereas
in the first phase, clusters are formed with minimal inter-cluster communication volume, in the
second phase, actual communication distances required with the cluster-to-processor mapping are
taken into account in determining the mapping with minimal total inter-processor communication
volume. An iterative improvement heuristic that uses the “hill-climbing” ability of Kernighan-Lin-
like local search methods is used in algorithm Allocate_Processors (See Figure. 7). Pairs of
clusters that maximally decrease the total inter-processor communication volume, are considered
for swapping. This is illustrated in Figure. 8(d), where it can be seen that the cluster initially
assigned to Py is finally assigned to Pp and vice-versa, and the assignments to Ps; and P are
likewise exchanged. The total volume of inter-processor communication decreases from 164 to 144

as a result of this second phase optimization.

5 Comparison of Effectiveness of Mapping Schemes

In this section, we compare the effectiveness of the Nearest Neighbor (NN) and Recursive-Clustering
(RC) schemes using a number of sample TIG’s. Four of the samples are finite element graphs and
two are random graphs. The first two samples are mesh-graphs (taken from [12]) and are shown
in Fig. 9(a) and 9(b). These graphs exhibit a high degree of locality and are locally regular
and uniform but very irregular at the outer periphery. These are representative of the kinds of
graphs that result from exploiting parallelism from computations modeling physical systems by
finite element and finite difference methods. Sample 3 (taken from [6]) and sample 4 (similar to
those in [2]), shown in Fig. 9(c) and 9(d) respectively, are non-mesh graphs. Unlike mesh graphs,
these graphs are not uniform, but nevertheless exhibit considerable locality of interconnection.
They are similar to graphs obtained with the use of multi-grid methods. The last two samples
are completely random graphs, generated using a random generator. These graphs are hence quite

non-uniform and do not exhibit any locality of interconnection either.

Mappings were generated both using NN and RC for a target 16-processor hypercube system.
The generated mappings were evaluated under two settings. Table 1 presents estimates of the
speedup that would be obtained on executing iterative parallel programs characterized by the
TIG’s on a hypercube system with a message setup time of 1150 us, data transmission time of
10 ps per word, w; = 1200us and e;; = 1. These parameters are representative for the parallel
solution of a system of linear equations by a Gauss-Jacobi scheme. Table 2 contains estimates of
speedups in an idealized setting with message setup time of zero, the other parameters being the

same as for Table 1. The estimated speedup reported in Tables 1 and 2 is defined by:

Speedup = Toeq = Diz1 Wi

Tpar Tminimax
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Figure 8: Illustration of the Recursive-Clustering Algorithm
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Figure 9: Sample problem graphs used for performance evaluation
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‘ Cost of mappings produced by NN & RC

No. | Graph Characteristics Estimated Speedup

|V| | Description RC (5 runs) NN

best | worst | mean

1. 505 | Sample 1 (mesh) 11.31 | 9.97 | 10.49 | 13.02
2. | 1449 | Sample 2 (mesh) 13.89 | 12.84 | 13.31 | 14.64
3. | 602 | Sample 3 (non-mesh) | 10.63 | 9.31 | 10.06 | 12.38
4. | 256 | Sample 4 (non-mesh) | 7.25 | 5.94 | 6.60 | 7.62
5. | 400 | Sample 5 (random) 448 | 4.47 | 4.48 | 3.96
6. | 800 | Sample 6 (random) 6.92 | 6.91 | 6.92 | 4.69

Table 1: Comparison of solution quality of NN and RC on sample graphs: Setup cost = 1150 pus;
Number of processors in hypercube = 16.

‘ Cost of mappings produced by NN & RC ‘

No. | Graph Characteristics Estimated Speedup
|V| | Description RC (5 runs) NN
best | worst | mean
505 | Sample 1 (mesh) 15.23 | 15.07 | 15.15 | 14.44
1449 | Sample 2 (mesh) 15.60 | 15.47 | 15.53 | 15.51

602 | Sample 3
256 | Sample 4
400 | Sample 5
800 | Sample 6

non-mesh) | 15.15 | 14.98 | 15.09 | 14.70
non-mesh) | 14.76 | 13.96 | 14.21 | 9.87
random) 14.32 | 14.23 | 14.29 | 4.28
random) 14.76 | 14.68 | 14.72 | 4.91

PN P N R PR Py

| O A~ W N —

Table 2: Comparison of solution quality of NN and RC on sample graphs: Setup cost = 0; Number
of processors in hypercube = 16.

With RC, since pseudo-random numbers are used for generating random initial partitions,
different runs on the same sample TIG will generally produce different final partitions. Hence,
the best-case, worst-case and average-case speedups are reported for sets of five runs. With the
finite-element graphs (samples 1-4), the nearest-neighbor mapping is clearly superior. This has
been the case with every finite-element graph sample tested. This is a consequence of the high
degree of locality and planar nature of the TIG that permits very good mappings onto a mesh
(and hence onto a hypercube). Even though only a mesh-subset of the links of the hypercube are
utilized, the planar nature of the TIG suggests that higher degrees of processor connectivity may
not be of much use. In the case of random graphs, poor speedups are obtained with both schemes,
with the RC mapping being slightly better. Both approaches result in mappings requiring many

inter-processor communication messages.

Table 2 presents results for an idealized hypercube system with zero communication start-up
cost. In this case, the total communication cost is entirely due to data transmission time. Speedups
with both approaches improve as the startup time decreases but the improvement with RC is in

all cases significantly greater. In fact, the estimated speedup with RC is better than the NN

19



‘ Comparison of mapping times for NN & RC.

No. | Graph Characteristics Mapping times in sec.
|V| | Description RC(per run) | NN
1. | 505 | Sample 1 (mesh) 10.12 5.0
2. | 1449 | Sample 2 (mesh) 37.42 11.6
3. | 602 | Sample 3 (non-mesh) 4.95 2.3
4. | 256 | Sample 4 (non-mesh) 12.78 6.3
5. | 400 | Sample 5 (random) 13.20 7.3
6. | 800 | Sample 6 (random) 20.23 12.6

Table 3: Comparison of mapping times (in seconds) for NN and RC on sample graphs on a Pyramid
90x processor running Pyramid 0Sx/4.0

mapping for all samples when start-up cost is zero. This is because RC explicitly minimizes total
communication volume. Whereas NN minimizes total number of messages and achieves reasonably

low communication volume, it does not attempt explicit minimization of the volume.

Table 3 reports the execution time of NN and RC mapping schemes on a Pyramid 90x processor
running Pyramid OSx/4.0 operating system. It can be seen that NN is faster than each run of RC
by a factor of 2 to 3. Howeve, the time taken for mapping by either scheme is small enough that the
generation time should not be a critical factor in choosing one or the other of the two approaches.
Overall, RC appears to be preferable for random TIG’s, independent of communication start-up
cost. With finite-element graphs, NN provides better mappings for machines with a relatively high
communication start-up cost, while RC is more attractive for machines with low communication

start-up cost.

6 Summary

In this paper, the task-to-processor mapping problem was addressed. Since the problem is NP-
complete, efficient heuristics to obtain satisfactory sub-optimal solutions in reasonable time are
required. A minimaz cost function was formulated to evaluate the effectiveness of proposed mapping
strategies. Two mapping strategies were described — the Nearest-Neighbor (NN) approach and
the Recursive-Clustering (RC) approach. The former approach uses a procedure that explicitly
attempts to improve load balance and implicitly keeps communication costs low. The latter method
on the other hand explicitly attempts to minimize communication costs while guaranteeing load
balance implicitly. The effectiveness of the mapping schemes was evaluated by using different
sample TIG’s. The nearest-neighbor strategy is found to be more effective on hypercube systems
with high message start-up times, especially for finite element graphs; the recursive partitioning
heuristic is generally better on hypercubes with lower message start-up times and is more effective

on random task graphs.
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