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1 IntroductionThe e�ective exploitation of the potential power of parallel computers requires e�cient solutions tothe task-to-processor mapping problem. The problem is that of optimally allocating the tasks of aparallel program among the processors of the parallel computer in order to minimize execution timeof the program. The mapping problem is NP-complete [8, 9], except in a few speci�c contexts withvery unrealistic constraints that typically do not hold in practice. Hence the various approachesthat have been proposed all seek to obtain satisfactory sub-optimal solutions in a reasonable amountof time [1-4,6-9,11-18]. This paper discusses two heuristic approaches based on cluster-partitioning- 1) a nearest-neighbor approach and 2) a recursive-clustering approach. We compare and contrastthe way in which these two approaches use heuristics to limit the con�guration space of possiblemappings that is (partially) searched to derive satisfactory mappings in reasonable time.The mapping problem has been investigated in two distinct settings that we refer to as theTask Precedence Graph (TPG) model and the Task Interaction Graph (TIG) model. With theTPG model, the parallel program is modeled as a collection of tasks with known (or estimated)computation times and explicit execution dependences expressed in the form of precedence relations.An example of a TPG is shown in Fig. 1(a). The parallel program is represented as a graph whosevertices represent tasks and the directed edges represent execution dependences. In the exampleshown in Fig. 1(a), task h can only commence execution after tasks f and g have completedexecution. The weight associated with a vertex represents the relative computation time requiredfor its execution and the weight associated with an edge represents the relative amount of data tobe communicated between two tasks. Thus task f requires twice as much computation as b and theamount of data to be transferred between f and h is thrice as much as that between a and b. Thismodel is very appropriate in the context of parallel programs that may essentially be characterizedby an acyclic task graph.With the TIG model, the parallel program is again modeled as a graph where the verticesrepresent the parallel tasks and vertex-weights represent known or estimated computation costsof the tasks. In contrast to the TPG model, however, execution dependences are not explicitlycaptured; thus, the edges of a TIG represent communication requirements between tasks, withedge-weights reecting the relative amounts of communication involved, but do not capture anytemporal execution dependences. Thus in Fig. 1(b), the relative amount of data communicationrequired between tasks a and b is 2, but nothing is stated regarding the temporal dependencesbetween these two tasks. The TIG approach can be used to approximately model the behaviorof complex parallel programs by lumping together all estimated communications between pairs oftasks and ignoring the temporal execution dependences. There is also a class of parallel programs,that we call iterative parallel programs, where the TIG model is quite accurate [1]. With this classof programs, execution proceeds as a sequence of sequential iterations. In each iteration, all paralleltasks can execute independently, but each task then needs to communicate values computed during2



Figure 1: Two approaches to modeling of parallel programsthat iteration with tasks it is connected to in the TIG, before it can commence its next iteration.Given a mapping of tasks to processors, over a large number of iterations, the slowest processorwill clearly control program completion time. Thus minimizing iteration step completion time ofthe slowest processor (sum of computation time and inter-processor communication time for allinter-task communications that need to go across to other processors) will minimize execution timeof the parallel program. Hence there is no need to explicitly model temporal dependences andtheir satisfaction on a per-task basis, as the sequence of iterations of the iterative parallel programproceeds. This is the nature of the mapping problem addressed in this paper; an example of itsuse is presented in [1] in the context of parallelizing a �nite element modeling program employingiterative techniques for the solution of large sparse systems of linear equations.Given a parallel program that is characterized by a TIG, the mapping of the tasks to proces-sors may either be performed statically (before program execution) or dynamically in an adaptivemanner as the parallel program executes. The appropriate approach depends on the nature of theTIG. If the TIG that characterizes the parallel program is static, i.e. the vertex and edge weightscan be accurately estimated a priori, then a static approach is more attractive, since the mappingcomputation need only be performed once. This is the case, for example, with many iterativeparallel programs. We only consider static mapping schemes in this paper.If the physical communication costs of the parallel computer system can be quantitativelycharacterized, then by using it in conjunction with the parallel program's TIG, a cost function can beformulated to evaluate the e�ectiveness of any particular mapping of the tasks onto the processors.The mapping problem can thus be formulated as a problem of �nding a mapping that minimizes3



this mathematical cost function, and indeed many researchers have done so [7, 8, 11, 13, 16, 17, 18].In some contexts, mapping schemes have been proposed that utilize intuition about the speci�cmapping context and do not use any explicit cost functions in the mapping procedure { for example,the scattered decomposition scheme proposed in [12] and heuristics proposed in [15]. Such schemes,which we call \domain-heuristic" schemes, are computationally very e�cient. In contrast, schemesthat explicitly optimize cost functions are often computationally time consuming, but are moregenerally applicable and potentially capable of obtaining better mappings. The primary problemwith most of the approaches based on explicit minimization of a cost function is the exponentiallylarge con�guration space of possible mappings that must be selectively searched in seeking tooptimize the function. Many proposed heuristics to explicitly minimize cost functions have beenshown to work relatively well on small task graphs (with a few tens of tasks), but have not beenevaluated on large task graphs (with hundreds or thousands of nodes) [16, 17, 18]. The \at"and unstructured view of task allocation as a mapping of each task onto a processor leads to anunmanageably large search space. If the task graph has N nodes and the parallel computer has Pprocessors, the space of possible mappings has PN con�gurations.We propose that hybrid approaches that combine characteristics of domain-heuristics and theuse of an explicit cost function are most attractive for the mapping problem. Instead of using\at and unstructured" strategies aimed at minimizing a mathematically formulated cost function,domain-heuristics are used in conjunction with an explicit cost function to signi�cantly reduce thesearch space of potentially good candidate mappings.Our approach to mapping is motivated by the following observations:� Clustering: Pairs of tasks that require much communication are better grouped togetherand mapped to the same processor in order to reduce communication costs. Thus the task-to-processor mapping problem may be viewed instead as a problem of forming clusters of taskswith high intra-cluster communication and low inter-cluster communication, and allocatingthese clusters to processors in a way that results in low inter-processor communication costs.This view of mapping in terms of formation of clusters of closely coupled tasks helps reducesigni�cantly the space of mappings that is selectively searched for a satisfactory solution.� Load Balancing: The clusters should be formed in such a way as to distribute the totalcomputational load as uniformly as possible among the clusters. This requirement can oftenconict with the requirement for minimal inter-cluster communication. We may hence identifycomputational load balancing and minimization of inter-processor communication as the twokey objectives of the mapping. The component terms in typical cost functions used formapping often quantify one or the other of these two requirements.� Complexity: The complexity of the mapping problem essentially arises due to the needto simultaneously achieve both the objectives of load-balancing and minimization of com-4



munication. Rather than use two explicit terms in the cost function, one representing loadbalancing and another representing communication costs, the search space can be reducedif only one of these two is explicitly modeled while the other is used implicitly in guidingthe search. As explained later, the two schemes used in this paper represent two alternateways of doing so. The nearest-neighbor mapping scheme explicitly attempts load balanc-ing among clusters, whereas low communication costs are achieved implicitly through theuse of a domain-heuristic. In contrast, the recursive-clustering approach explicitly attemptsto minimize communication costs, while load balancing is achieved implicitly by the searchstrategy.The paper is organized as follows. In section 2, we formalize the mapping problem that weaddress. In section 3, we discuss the nearest-neighbor approach to mapping and in section 4, wedevelop the recursive-clustering scheme. In section 5, we compare the e�ectiveness of the twoschemes on a number of sample task graphs and summarize in section 6.2 The Mapping ProblemIn this section, we formalize the mapping problem considered and develop the cost function thatis used as a measure of goodness of the mapping. The parallel program is characterized by a TaskInteraction Graph G(V;E), whose vertices, V = f1; 2; : : : ; Ng, represent the tasks of a program,and edges E, characterize the data communication requirements between tasks. The weight of atask i, denoted wi, represents the computational load of the task. The weight of an edge (i; j)between i and j, denoted cij , represents the relative amount of communication required betweenthe two tasks.The parallel computer is represented as a graph G(P;Ep). The vertices P = f1; 2; : : : ; Kgrepresent the processors and the edges Ep represent the communication links. The system isassumed to be homogeneous, with identical processors. Hence, in contrast to the Task InteractionGraph (TIG), no weights are associated with the vertices or edges of the Processor InterconnectionGraph. The processors are assumed to either execute a computation or perform a communicationat any given time, but not simultaneously do both.The cost of communication between a processor and its neighbor is assumed to consist oftwo components { 1) a startup (setup) cost Ts, that is independent of message size, and 2) adata transmission cost l � Tt; that is proportional to the number of bytes transmitted. This ischaracteristic of all commercially available hypercube computers, with Ts representing the cost ofa kernel call and context switch to process the message and Tt characterizing the physical rate ofdata transmission on the inter-processor communication link. For communication between remoteprocessors, with hypercube systems that use a packet-switched store-and-forward mechanism, thesource processor, destination processor and the intermediate processors expend time corresponding5



to message setup and data transfer.The task-to-processor mapping is a function M : V ! P . M(i) gives the processor onto whichtask i is mapped. The Task Set (TSq) of a processor q is de�ned as the set of tasks mapped ontoit: TSq = fjjM(j) = qg ; q = 1; : : : ; KThe Work Load (WLq) of processor q is the total computational weight of all tasks mapped ontoit: WLq = Xj2TSq wj; q = 1; : : : ; Kand the idealized average load is given by WL = 1K PKi=1WLi. The Communication Set (CSq)of processor q is the set of the edges of the TIG whose images under the mapping go through theprocessor q; based on the routing used for messages on the hypercube.The Communication Load (CLq) of processor q is the total time spent by processor q inperforming communication. This includes the communication start-up time and data transfer timefor each message originating or terminating at q and for each message routed through q:Cost functions that have been used with the task allocation problem may be broadly categorizedas belonging to one of two models: aminimax cost model [11, 16] or a summed total costmodel [3, 7,8]. With the minimax cost model, the total time required (the execution time + communication time+ idle time) by each processor under a given mapping is estimated and the maximum cost(time)among all processors is to be minimized. By making a simplifying assumption that the maximallyloaded processor does not su�er signi�cantly from idle time, the function to be minimized is:Tminimax = minM �maxq (CLq +WLq)� ; q = 1; : : : ; K (1)3 Nearest-Neighbor MappingThe nearest-neighbor mapping strategy was proposed in [13] as an e�ective approach to mapping�nite element graphs onto processor meshes. Given a regular m�n rectangular mesh of processorsPij ; i = 1 : : :m; j = 1 : : :n, a nearest-neighbor of a processor Pij is any processor Pkl, where k iseither i�1; i; or i+1, and l is either j�1; j; or j+1. A nearest-neighbor mapping is one where any pairof nodes that share an edge in the TIG are mapped onto nearest-neighbor processors. The essentialidea behind the nearest-neighbor mapping approach is that if TIG nodes are assigned to processorsin a manner that results in just nearest-neighbor communication, then the total communicationcost should be low. Starting with an initial nearest-neighbor mapping, successive incrementalmodi�cation of the mapping is done to improve load-balancing among the processors while alwaysmaintaining the nearest-neighbor property. The search strategy reduces the con�guration space ofpossible mappings by incorporating a \cluster" viewpoint of the mapping as opposed to a \at"individual-task-to-processor viewpoint. Moreover, the search space is further reduced by being6



explicitly concerned only with the load-balancing aspect of the mapping, while the implicit nearest-neighbor constraint in conjunction with node-clustering aids in keeping communication costs low. Inthis section we explain the approach through an example and refer the reader to [13] for algorithmicdetails.The nearest-neighbor mapping algorithm proceeds in two phases:1. An initial mapping is �rst generated by grouping nodes of the TIG into clusters and assigningclusters to processors in a manner that the nearest-neighbor property is satis�ed.2. The initial mapping is successively modi�ed using a boundary-re�nement procedure wherenodes are reassigned among processors in a manner that improves load balancing but alwaysmaintains the nearest neighbor-property.Allowing for the possibility that some of the processors do not get any nodes mapped ontothem, a nearest-neighbor mapping of any TIG onto a processor mesh is clearly always possible.In the extreme case, all TIG nodes form a single cluster that is assigned to one of the processors,while all other processors are assigned no tasks at all. The initial mapping algorithm of courseattempts to do considerably better than that extreme case. The initial-mapping procedure maybe understood through the example in Fig. 2, requiring the mapping of a 40-node TIG onto a2� 4 mesh of 8 processors. Here the TIG is a \mesh graph", a graph that can be embedded ontosome subset of a uniform 2-dimensional grid with a dilation of 1, i.e. the nodes of the TIG can bemapped onto the grid points of a uniform 2-dimensional grid in such a way that any two nodes ofthe TIG that share an edge are mapped onto adjacent (vertically or horizontally) grid points. We�rst use an example of a mesh graph to simplify the explanation of the initial mapping scheme andlater point out how the scheme can be generalized for arbitrary graphs.The basis for the initial mapping procedure is the following 1-dimensional strip mappingscheme. Let us imagine that all the processors in each row of the processor mesh are lumpedtogether to create a \macro-processor". The 8-processor mesh in Fig. 2 can be so treated as alinear chain of 4 macro-processors, as seen in Fig. 2(a). The essential idea behind the 1-D stripmethod is to partition the mesh graph into \strips", where each strip encompasses one or morecontiguous rows (columns) of the graph. The mesh graph is covered by strips in such a way thateach strip is adjacent to at most two other strips, one on either side of it. The number of stripsused equals the number of processors (macro-processors) in the processor chain, and the strips canbe made to each contain an equal number of mesh graph vertices (plus or minus one, if the numberof graph vertices is not a perfect multiple of the number of strips created). Given a mesh withN nodes, to be mapped onto a linear chain of P processors, a load-balanced mapping will assigneither dNP e or bNP c nodes to each processor (the former to (N mod P ) processors and the latternumber to (P � (N mod P )) processors). Starting with the leftmost node in the uppermost rowof the mesh-graph, nodes are checked o� and assigned to a processor by proceeding across the row7



Figure 2: Illustration of the Nearest-Neighbor approach to mapping8



Figure 3: Example of 1-D Strip-Partitioning of a Non-Mesh TIG
9



of the mesh graph. If the �rst row is completely exhausted, then we begin at the left end of thenext row and continue assigning nodes to the processor. When the required number of nodes hasbeen assigned, we begin assigning the remaining nodes in that row to the next processor in thelinear chain of processors. Proceeding in this manner, all nodes in the problem mesh are assignedto processors. Thus in Fig. 2(a), the graph is partitioned into 4 strips containing 10 tasks each, tobe assigned to each of the 4 macro-processors. This could be thought of as a symmetric contractionof the graph along one dimension.A similar procedure can be used to create a vertical 1-D strip partition of the same graph, asshown in Fig. 2(b). Now we group all processors in a column together, to form a chain of two macro-processors. The TIG is partitioned into two vertical strips. By overlapping the two orthogonalstrip-partitions generated, and forming the intersections, we can generate a number of regions, thatequals the number of processors in the processor mesh, as shown in Fig. 2(c). The nature of theconstruction guarantees that the generated partitions satisfy the nearest-neighbor property. Thetwo independent partitions of such a 2-D partition are each individually load balanced, but theintersection partitions are generally not load-balanced, as can be seen from the table of assignedloads in Fig. 2(c). However, this serves as a good initial nearest-neighbor mapping that is thenre�ned by the load-balancing boundary re�nement procedure.One way of balancing the computational loads of the processors is to reassign some of the tasksamong the processors; for example, by transferring one task from P22 to each of P12 and P21, onetask from P11 to P21 and one task from P31 to P32, as shown graphically in Fig. 2(d) as a LoadTransfer Graph (LTG). In general, given an initial mapping, it is possible to determine a set ofload transfers that will balance the load, by setting up and solving a system of linear equations ininteger variables.A heuristic boundary-re�nement procedure (described in detail in [13] iteratively attempts totransfer tasks between processors using the LTG. An \active" processor list is formed, sorted indecreasing order of current task-load, comprising all processors that source an edge in LTG. A taskis sought in the most heavily loaded active processor (preferably on the partition boundary), to betransferred to a neighbor processor in the LTG, ensuring that the nearest-neighbor constraint isnot violated. If no such task can be found, the sorted active processor list is scanned in decreasingorder of processor loads till an active processor with a transferable task is found. The task transferis made and the LTG is updated by decreasing the relevant edge-weight by one and removing itif its edge-weight becomes zero. The algorithm thus proceeds incrementally to re�ne the mappingby perturbing the boundaries of the partitions in attempting to balance the load. While its e�ec-tiveness depends on the initial partition generated, it has been found to be good in practice. Eveninitial mappings of �nite element graphs, where one or more processors get no assigned nodes havetypically been load-balanced after boundary re�nement. The �nal mapping after application of thereassignment procedure is shown in Fig. 2(e) for the chosen example.10



A generalization of the 1-dimensional strip method to non-mesh graphs is possible. This isillustrated through an example in Fig. 3. The essential idea again is to create strip-like regionsto cover the graph, such that if a node is on a certain strip, all other nodes sharing an edge withthat node in the TIG should lie either on the same strip or on an adjacent strip. In the case ofmesh graphs, the process of generating strips was facilitated by the regularity of the mesh-graphand the natural grouping of nodes into columns and rows. This is not so for a general non-meshTIG. Such a grouping is hence created by a levelization process that assigns a unique level to eachnode. Starting with a single randomly selected node, or if possible a peripheral node, or a set ofconnected peripheral nodes that are assigned to level 1, all nodes directly connected to these level1 nodes, and that have not yet been assigned a level, are assigned a level number of 2. The sameprocedure is carried out with the nodes at level 2, and continued thus till all nodes are levelized.The nature of the levelization procedure ensures that a neighbor node of any node assigned levell; will necessarily be assigned level l� 1; l or l+ 1. Now, strip partitioning can be performed usingthe levels similar to using columns(rows) in the earlier described procedure for 1-dimensional strippartitioning for mesh-graphs, as seen in �gure 3.In the case of mesh graphs, mapping onto anm�n processor mesh was achieved by performingtwo independent 1-D partitions - one n-way (in the horizontal direction) and the other m-way (inthe vertical direction). In the case of non-mesh graphs, the di�culty is in the generation of asecond levelization that is orthogonal to the �rst one. This is because, unlike with mesh graphs,it is not meaningful to associate physical directions such as vertical and horizontal with the levelsgenerated, as can be seen with many of the levels in �gure 3. A heuristic is hence used to attemptthe generation of a second levelization that is as orthogonal to the �rst one as possible. This isdone by �rst identifying so called \corner" nodes of the TIG - these are peripheral nodes thatform end-points of the maximum diameter(s) of the TIG, i.e. are nodes with maximum distanceof separation in the TIG. Starting with an arbitrary corner node, one fourth of the peripheralnodes visited upon traversing the periphery in one direction are used as the nodes in level 1 of the�rst levelization; the same number of nodes visited upon traversing the periphery in the oppositedirection are used for level 1 of the second levelization.The nearest-neighbor approach can be expected to be quite e�ective in mapping TIG's thatexhibit a high degree of locality, as is the case with parallel programs modeling physical systemsusing �nite element methods, �nite di�erence methods etc. When the TIG does not representpurely local interactions, but has \non-local" connectivity, the nearest-neighbor restriction becomesoverly constraining and load balancing becomes extremely di�cult. An alternate cluster-basedmapping scheme is developed in the next section that is not so restrictive. Instead of using asearch strategy that explicitly attempts load balancing while implicitly keeping communicationcosts low, the opposite view is taken, of explicitly attempting to minimize communication costs bythe use of an explicit cost function, while achieving load balance implicitly through the nature ofthe developed algorithm. 11



Algorithm Recursive Clustering (GI ; GP ;M)/* GI = (T;E) is the input TIG along with vertex and edge weights *//* GP = (P;EP ) is the Processor Interaction Graph of the target hypercube *//* M is a mapping V ! P that is the output of the algorithm *//* Phase 1 */Set Depth = 0 and Maxdepth = log2 jP jForm Clusters(GI ; Depth, Maxdepth,S)/* S is a set of jP j clusters returned by Form Clusters by *//* partitioning the graph GI . Minimization of inter-cluster *//* communication volume is attempted by Form Clusters */- From the set S of clusters, form graph GS that characterizes theinter-cluster communication./* GS = G(C;ES) has jP j vertices, one for each cluster in S *//* GS has an edge between two vertices if the corresponding clusters *//* contain a vertex each of GI that have an edge between them in GI *//* The edges of GS have weights that are the sum of the weights *//* of the relevant edges in GI *//* Phase 2 */Allocate Processors(GS; GP ;M)/* The vertices of GS are mapped onto processors of GP attempting *//* to minimize the total inter-processor communications volume, *//* accounting for physical distances */Figure 4: Algorithm for Recursive-Clustering4 Mapping by Recursive-ClusteringA recursive-clustering scheme is developed in this section to map arbitrary TIG's onto a localmemory machine with a hypercube interconnection topology. The algorithm proceeds in two phases:1. Cluster Formation: The TIG is �rst partitioned into as many clusters as the numberof processors. Starting with the entire TIG as a single cluster, this is done recursively,by successively dividing a cluster into two equally vertex-weighted (as nearly as possible)partitions with minimal total weight of inter-partition edges.2. Processor Allocation: The clusters generated in the �rst phase are each allocated to someprocessor, one cluster per processor, in a manner that attempts to minimize the total inter-processor communication volume.Both the phases of the algorithm { the cluster-formation phase and the processor-allocation phase {12



Algorithm Form Clusters (G,Depth,Maxdepth,S)if (Depth = MaxDepth)then /* No more partitioning of G; add it to the set of clusters S */else /* Recursively partition */f Mincut(G;GL; GR) /* Partition G into two equal parts GL and GR */Form Clusters(GL,Depth+1, Maxdepth,S)Form Clusters(GR,Depth+1, Maxdepth,S)g Figure 5: Algorithm for Forming Clustersexplicitly attempt to minimize communication volume through the use of an iterative improvementheuristic based on the Kernighan-Lin mincut algorithm [10] and load balancing is achieved implicitlyin the �rst phase of the algorithm.Kernighan and Lin [10] proposed an extremely e�ective mincut heuristic for graph bisection,with an empirically determined time complexity of O(n2:4). Their algorithm is based on �nding afavorable sequence of vertex-exchanges between the two partitions to minimize the number of inter-partition edges. The evaluation of sequences of perturbations instead of single perturbations endowsthe method with the hill-climbing ability, rendering it superior to simple local search heuristics.Fiduccia and Mattheyses [5] used e�cient data structures and vertex displacements instead ofexchanges to derive a linear time heuristic for graph partitioning, based on a modi�cation of thealgorithm in [10]. While the original mincut algorithm of Kernighan and Lin applied only to graphswith uniform vertex weights, the Fiduccia-Mattheyses scheme can handle graphs with variablevertex weights, to divide it into partitions with equi-total vertex weights.The basic mincut algorithm used here is similar in spirit to the Fiduccia-Mattheyses variantof the Kernighan-Lin heuristic. An initial two-way partition is created by assigning the nodes ofthe graph, one by one, always to the partition with lesser total weight (randomly in case bothare equal). After creating the initial partition, a sequence of maximally improving node transfersfrom the partition with currently greater load to the partition with lower load are tried. Theiterative improvement heuristic is otherwise very similar to the Kernighan-Lin mincut heuristic,except for the use of one-way node transfers instead of node exchanges. The use of node transfersin this fashion guarantees load-balance even though the individual vertex weights are variable. Themincut bipartitioning procedure is used recursively to perform a P-way partition of a graph if P is apower of 2 { by �rst creating two equal sized partitions, then independently dividing each of theseinto two sub-partitions each, and so on till P partitions are created. The recursive partitioningprocedure is illustrated using an example in Figure 8(a) - 8(c). The parallel processor system has8 processors and so the recursive partitioning procedure is applied upto depth log2 8 = 3.13



Algorithm Mincut (GI ; GL; GR)/* accepts a graph GI as input and partitions it into *//* two clusters GL; GR such that the cutsize is minimal */- Form an initial load-balanced partition of GIassigning its nodes into one of two clusters C�1 and C�2 .- Mark all nodes as unlocked.- Associate a gain value gv with each node v and initialize gv to zerodo fC1  C�1 ; C2  C�2 ;- Compute 8v 2 V; gv = total reduction in cost of the cut when v ismoved from its currently assigned cluster to the other cluster.- Compute W1 and W2; the total load in C1 and C2 respectivelyseqno  0 ;do fseqno  seqno + 1- Let Ci be the cluster with greater total weight and Cj the lessertotal weight i.e., Wi � Wj ; i; j 2 f1; 2g; i 6= j- Among the unlocked vertices, identify v� 2 Ci with maximal gain g�v- If no such vertex exists, exit this loop.- Assume that v� is moved to Cj ; update the gain for all unlocked nodesand calculate loads W1 and W2 for C1 and C2- Lock v� and record the status of the movement and gain[seqno] g�vg while (there is at least one vertex to move)Let G� = maxlPli=1 gain[i] =Pl�i=1 gain[i]where l� is the value of l that maximizes the cumulative gainif [(G� > 0) OR ((G� = 0) AND (better load balancing))]then perform all moves from 1 to l� i.e., form C�1 and C�2 .g while G� > 0GL  C�1GR  C�2 Figure 6: Mincut Algorithm14



Algorithm Allocate Processors (GS ; GP ;M)/* accepts two graphs GS ; GP as input and returns mapping M *//* GP = G(P;EP ) is a graph representing the interconnection of the hypercube *//* GS = G(C;ES) is a graph with jP j nodes, each node is a cluster of TIG nodes *//* M is the mapping of clusters to processors */- Start with an initial mapping M that assigns cluster Ci to processor Pi- Unlock all processor nodesdo f- Calculate the gain for all processor pairs Pi and Pj assumingthe clusters currently assigned to Pi and Pj are swapped.- seqno  0 ;do fseqno  seqno + 1- Among the unlocked processor-pairs, pick the one, say, (Pk; Pl) with maximum gain- If no such pair exists, exit this loop.- Assume that Pk and Pl are swapped, update the gain for all unlocked processor-pairs- Lock Pk and Plg while (there is at least one unlocked processor)Let G� = maxkPki=1 gain[i] =Pk�i=1 gain[i]where k� is the value of k that maximizes the cumulative gainif (G� > 0) then perform all moves from 1 to k� by changing Mg while G� > 0return (M) Figure 7: Processor Assignment Algorithm
15



The second phase attempts to minimize total inter-processor communication volume when theclusters generated in the �rst phase are allocated to processors, one cluster per processor. Whereasin the �rst phase, clusters are formed with minimal inter-cluster communication volume, in thesecond phase, actual communication distances required with the cluster-to-processor mapping aretaken into account in determining the mapping with minimal total inter-processor communicationvolume. An iterative improvement heuristic that uses the \hill-climbing" ability of Kernighan-Lin-like local search methods is used in algorithm Allocate Processors (See Figure. 7). Pairs ofclusters that maximally decrease the total inter-processor communication volume, are consideredfor swapping. This is illustrated in Figure. 8(d), where it can be seen that the cluster initiallyassigned to P41 is �nally assigned to P22 and vice-versa, and the assignments to P31 and P12 arelikewise exchanged. The total volume of inter-processor communication decreases from 164 to 144as a result of this second phase optimization.5 Comparison of E�ectiveness of Mapping SchemesIn this section, we compare the e�ectiveness of the Nearest Neighbor (NN) and Recursive-Clustering(RC) schemes using a number of sample TIG's. Four of the samples are �nite element graphs andtwo are random graphs. The �rst two samples are mesh-graphs (taken from [12]) and are shownin Fig. 9(a) and 9(b). These graphs exhibit a high degree of locality and are locally regularand uniform but very irregular at the outer periphery. These are representative of the kinds ofgraphs that result from exploiting parallelism from computations modeling physical systems by�nite element and �nite di�erence methods. Sample 3 (taken from [6]) and sample 4 (similar tothose in [2]), shown in Fig. 9(c) and 9(d) respectively, are non-mesh graphs. Unlike mesh graphs,these graphs are not uniform, but nevertheless exhibit considerable locality of interconnection.They are similar to graphs obtained with the use of multi-grid methods. The last two samplesare completely random graphs, generated using a random generator. These graphs are hence quitenon-uniform and do not exhibit any locality of interconnection either.Mappings were generated both using NN and RC for a target 16-processor hypercube system.The generated mappings were evaluated under two settings. Table 1 presents estimates of thespeedup that would be obtained on executing iterative parallel programs characterized by theTIG's on a hypercube system with a message setup time of 1150 �s; data transmission time of10 �s per word, wi = 1200�s and eij = 1. These parameters are representative for the parallelsolution of a system of linear equations by a Gauss-Jacobi scheme. Table 2 contains estimates ofspeedups in an idealized setting with message setup time of zero, the other parameters being thesame as for Table 1. The estimated speedup reported in Tables 1 and 2 is de�ned by:Speedup = TseqTpar = Pni=1 wiTminimax16



Figure 8: Illustration of the Recursive-Clustering Algorithm17



Figure 9: Sample problem graphs used for performance evaluation18



Cost of mappings produced by NN & RCNo. Graph Characteristics Estimated SpeedupjV j Description RC (5 runs) NNbest worst mean1. 505 Sample 1 (mesh) 11.31 9.97 10.49 13.022. 1449 Sample 2 (mesh) 13.89 12.84 13.31 14.643. 602 Sample 3 (non-mesh) 10.63 9.31 10.06 12.384. 256 Sample 4 (non-mesh) 7.25 5.94 6.60 7.625. 400 Sample 5 (random) 4.48 4.47 4.48 3.966. 800 Sample 6 (random) 6.92 6.91 6.92 4.69Table 1: Comparison of solution quality of NN and RC on sample graphs: Setup cost = 1150 �s;Number of processors in hypercube = 16:Cost of mappings produced by NN & RCNo. Graph Characteristics Estimated SpeedupjV j Description RC (5 runs) NNbest worst mean1. 505 Sample 1 (mesh) 15.23 15.07 15.15 14.442. 1449 Sample 2 (mesh) 15.60 15.47 15.53 15.513. 602 Sample 3 (non-mesh) 15.15 14.98 15.09 14.704. 256 Sample 4 (non-mesh) 14.76 13.96 14.21 9.875. 400 Sample 5 (random) 14.32 14.23 14.29 4.286. 800 Sample 6 (random) 14.76 14.68 14.72 4.91Table 2: Comparison of solution quality of NN and RC on sample graphs: Setup cost = 0; Numberof processors in hypercube = 16:With RC, since pseudo-random numbers are used for generating random initial partitions,di�erent runs on the same sample TIG will generally produce di�erent �nal partitions. Hence,the best-case, worst-case and average-case speedups are reported for sets of �ve runs. With the�nite-element graphs (samples 1{4), the nearest-neighbor mapping is clearly superior. This hasbeen the case with every �nite-element graph sample tested. This is a consequence of the highdegree of locality and planar nature of the TIG that permits very good mappings onto a mesh(and hence onto a hypercube). Even though only a mesh-subset of the links of the hypercube areutilized, the planar nature of the TIG suggests that higher degrees of processor connectivity maynot be of much use. In the case of random graphs, poor speedups are obtained with both schemes,with the RC mapping being slightly better. Both approaches result in mappings requiring manyinter-processor communication messages.Table 2 presents results for an idealized hypercube system with zero communication start-upcost. In this case, the total communication cost is entirely due to data transmission time. Speedupswith both approaches improve as the startup time decreases but the improvement with RC is inall cases signi�cantly greater. In fact, the estimated speedup with RC is better than the NN19



Comparison of mapping times for NN & RC.No. Graph Characteristics Mapping times in sec.jV j Description RC(per run) NN1. 505 Sample 1 (mesh) 10.12 5.02. 1449 Sample 2 (mesh) 37.42 11.63. 602 Sample 3 (non-mesh) 4.95 2.34. 256 Sample 4 (non-mesh) 12.78 6.35. 400 Sample 5 (random) 13.20 7.36. 800 Sample 6 (random) 20.23 12.6Table 3: Comparison of mapping times (in seconds) for NN and RC on sample graphs on a Pyramid90x processor running Pyramid OSx/4.0mapping for all samples when start-up cost is zero. This is because RC explicitly minimizes totalcommunication volume. Whereas NN minimizes total number of messages and achieves reasonablylow communication volume, it does not attempt explicit minimization of the volume.Table 3 reports the execution time of NN and RC mapping schemes on a Pyramid 90x processorrunning Pyramid OSx/4.0 operating system. It can be seen that NN is faster than each run of RCby a factor of 2 to 3. Howeve, the time taken for mapping by either scheme is small enough that thegeneration time should not be a critical factor in choosing one or the other of the two approaches.Overall, RC appears to be preferable for random TIG's, independent of communication start-upcost. With �nite-element graphs, NN provides better mappings for machines with a relatively highcommunication start-up cost, while RC is more attractive for machines with low communicationstart-up cost.6 SummaryIn this paper, the task-to-processor mapping problem was addressed. Since the problem is NP-complete, e�cient heuristics to obtain satisfactory sub-optimal solutions in reasonable time arerequired. Aminimax cost function was formulated to evaluate the e�ectiveness of proposed mappingstrategies. Two mapping strategies were described { the Nearest-Neighbor (NN) approach andthe Recursive-Clustering (RC) approach. The former approach uses a procedure that explicitlyattempts to improve load balance and implicitly keeps communication costs low. The latter methodon the other hand explicitly attempts to minimize communication costs while guaranteeing loadbalance implicitly. The e�ectiveness of the mapping schemes was evaluated by using di�erentsample TIG's. The nearest-neighbor strategy is found to be more e�ective on hypercube systemswith high message start-up times, especially for �nite element graphs; the recursive partitioningheuristic is generally better on hypercubes with lower message start-up times and is more e�ectiveon random task graphs. 20
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