Scalability of Parallel Sorting on Mesh Multicomputers®

V. Singh,* V. Kumar,ﬂ G. Agha,§ and C. Tomlinson*

MCC
3500 West Balcones Center Drive
Austin, TX 78759

ﬂComputer Science Department
University of Minnesota

Minneapolis, MN 55455

§Departmemt of Computer Science
University of Illinois

Urbana, IL 61801

Abstract

This paper presents two new parallel algorithms QSP1
and QSP2 based on sequential quicksort for sorting
data on a mesh multicomputer, and analyzes their
scalability using the isoefficiency metric. We show
that QSP2 matches the lower bound on the isoeffi-
ciency function for mesh multicomputers. The 1soef-
ficiency of QSP1 is also fairly close to optimal. Lang
et al. and Schnorr et al. have developed parallel sort-
ing algorithms for the mesh architecture that have
either optimal (Schnorr) or close to optimal (Lang)
run-time complexity for the one-element-per-processor
case. Both QSP1 and QSP2 have worse perfor-
mance than these algorithms for the one-element-per-
processor case. But QSP1 and QSP2 have better scal-
ability than the scaled-down variants of these algo-
rithms (for the case in which there are more elements
than processors). As a result, our new parallel for-
mulations are better than these scaled-down variants
in terms of speedup w.r.t the best sequential algo-
rithms. We also present a different variant of Lang’s
sort which is asymptotically as scalable as QSP2 (for

*Kumar’s work was partially supported by Army Research
Office grant # 28408-MA-SDI to the University of Minnesota
and by the Army High Performance Computing Research Cen-
ter at the University of Minnesota. Agha’s work has been sup-
ported in part by a Young Investigator Award from the Office of
Naval Research (ONR contract number N00014-90-J-1899), by
an Incentives for Excellence Award from the Digital Equipment
Corporation Faculty Program, and by joint support from the
Defense Advanced Research Projects Agency and the National
Science Foundation (NSF CCR 90-07195).

the multiple-element-per-processor case). We briefly
discuss another metric called “resource consumption
metric”. According to this metric, both QSP1 and
QSP2 are strictly superior to Lang’s sort and its vari-
ations.

1 Introduction

In this paper, we investigate the problem of paral-
lel sorting on a two-dimensional mesh multicomputer
architecture. We characterize the scalability of vari-
ous algorithms using the formally-defined isoefficiency
metric [15]. As described below, this metric helps as-
sess the performance of a given parallel algorithm on
a given architecture under realistic situations.

Let us first consider the disadvantages of using a
metric other than isoefficiency. Many parallel algo-
rithms for sorting are analyzed using the metric of run-
time complexity when the number of processors equals
the number of data elements (e.g., see [18, 23, 17]).
However, this metric is not very useful for realistic sit-
uations when the number of data elements can far out-
number the number of processors. For example, one
could easily expect to sort a million data elements,
but 1t would be quite unreasonable to expect to have
a million processor system to sort these elements.

When there are fewer processors (p) than there are
data elements (N), one possibility is to scale down the
parallel algorithm by making each physical processor
emulate % processors. If context-switching costs are

ignored, such a technique will result in a slow down of
at most a factor of & over the original parallel algo-
rithm. If the original parallel algorithm is cost-optimal
(i.e., if the processor-time product [2] of the original
parallel algorithm is the same as the sequential time
complexity of the best sequential algorithm), then this
technique works well; the resulting scaled-down paral-
lel algorithm still has the same processor-time prod-
uct. Thus, one could choose the parallel algorithm
with the best run-time complexity, and scale it down
appropriately to derive the best parallel algorithm for
the case in which fewer processors are available.

Unfortunately, if the original parallel algorithm is
not cost-optimal, then scaling down can result in
an inferior algorithm. It is entirely possible that
a scaled-down variant of an algorithm with worse
run-time complexity for the one-element-per-processor
case (or, rather, a minor variation of such an algo-
rithm which handles multiple elements per proces-
sor) might grossly outperform scaled-down variants
of other algorithms with superior one-element-per-
processor run-time complexity. It should be observed
that cost-optimal parallel sorting algorithms (for the
one-element-per-processor case) are available only for
practically infeasible architectures such as one of the
variations of PRAM. Thus, the above run-time com-
plexity metric is of little use in assessing the perfor-
mance of parallel sorting algorithms in realistic situ-
ations. We need a metric that helps us compare the
performance of different parallel algorithms for differ-
ent combinations of p and N (or some other indicator
of problem size). The above run-time metric is inad-
equate, as it only deals with a 1-D curve on the 2-D
space (of p and problem size).

The isoefficiency metric initially introduced in [15]
is one metric that can be used to compare the per-
formance of parallel algorithms when both problem
size and number of processors may vary. The isoef-
ficiency of a parallel algorithm reflects its scalability;
i.e., its ability to effectively utilize increasing num-
ber of processors. The speedup obtained by a par-
allel algorithm is usually dependent upon the hard-
ware architecture (such as interconnection network,
the CPU speed, speed of the communication channel)
as well as certain characteristics of the parallel algo-
rithm (such as the degree of concurrency, and over-
heads due to communication, synchronization, and re-
dundant work). Due to these overheads, the speedup
will saturate at a certain limit for an architecture and
a problem instance of a fixed size. For many paral-
lel algorithms, a larger problem (e.g., a sorting prob-
lem with a larger list of data elements) will have a
higher speedup limit. The isoefficiency metric relates

the problem size to the number of processors neces-
sary for linear speedup. Isoefficiency analysis has been
found to be very useful in characterizing the scalabil-
ity of a variety of parallel algorithms [15, 22, 16, 8, 14].
An important feature of isoefficiency analysis is that
it succinctly captures the behavior of a parallel algo-
rithm in relation to the given parallel architecture.

This paper presents two new parallel algorithms
QSP1 and QSP2 based on sequential quicksort for
sorting data on a mesh multicomputer, and analyzes
their scalability. We show that QSP2 matches the
lower bound on the isoefficiency function for mesh
multicomputers. The isoefficiency of QSP1 is also
fairly close to optimal. Lang et al. [18] and Schnorr
et al. [23] have developed parallel sorting algorithms
for the mesh architecture that have either optimal
[23] or close to optimal [18] run-time complexity for
the one-element-per-processor case. Both QSP1 and
QSP2 have worse performance than these algorithms
for the one-element-per-processor case. But QSP1 and
QSP2 have better scalability than the scaled-down
variants of these algorithms (for the case in which
there are more elements than processors). As a result,
our new parallel formulations are better than these
scaled-down variants in terms of speedup w.r.t the
best sequential algorithms. We also present a different
variant of Lang’s sort which is asymptotically as scal-
able as QSP2 (for the multiple-element-per-processor
case). We briefly discuss another metric called “re-
source consumption metric”. According to this metric,
both QSP1 and QSP2 are strictly superior to Lang’s
sort and its variations.

2 Definitions and Assumptions

This paper considers parallel sorting of data elements
that are initially distributed with uniform density over
a mesh-connected multicomputer. The output data
is also distributed over the multicomputer and sorted
in row-major order (or some other well-defined order)
across processors; data is sorted within processors as
usual.

We introduce some terminology used in the rest of
the paper. We consider a parallel processor consisting
of an ensemble of p processing units each of which —
for purposes of determining the complexity — runs at
the same speed.

When a parallel algorithm is run on multiple proces-
sors, time spent by an individual processor P; can be
split into ¢ (e for essential), the time spent in useful
computation; and ¢ (o for overhead), the time spent
in doing communication, idling and other work which

would not have been performed by the best sequential
algorithm but is necessitated due to parallel process-
ing. The execution time on p processors, T, satisfies
1, = 41,

The computation size T, of a problem is defined to
be the amount of computation (in units of time) taken
by an optimal sequential algorithm. Clearly, T, =

5;:—01 t°. We define 7, = Zf:_ol t’. Clearly, we have
T,+ 1. =pxT,.

Note that earlier papers on scalability by the au-
thors have used the term problem size in place of com-
putation size. The reason for the switch in the terms
is that problem size is often used to refer to input size.

The speedup S of an algorithm on p processors is
defined to be the ratio g—e The efficiency 1s defined as
P
follows:

FE =

S T T
p Tpyxp T.+T,

We assume that the time to deliver a message of
size m from a processor to its neighbor’s processor
is (ks + kym), where k; is the start-up time and k;
is inverse of the channel bandwidth. Note that for
current multicomputers, the start-up time is an order
of magnitude larger than k;. Hence (to simplify some
of the expressions in the analysis), we assume the time
to deliver a message of size 1 from a processor to its
neighbor’s processor is k.

Finally, we let k. be the time for a processor to
compare two elements and kg be the time for moving
a data element within the processor’s memory. Let
kgs N log N! be the average-case time for a processor
to internally sort N elements using quicksort, where
kgs is a constant and k5N log N is the worst-case
time for a processor to internally sort N elements us-
ing mergesort, where kprs is a constant. We will use
quicksort as the base optimal sequential algorithm in
this paper for computing speedups and efficiencies of
parallel algorithms.? Let the total number of elements
to be sorted on the multicomputer be N and the to-
tal number of processors be p (arranged in a \/p x /p
mesh). Let r be the number of elements per processor
at the beginning of the sorting algorithm, which is %.

INote that all logs in this paper are with base 2 except where
specified otherwise.

?We consider only sequential algorithms for randomly dis-
tributed elements based on compare-exchange. Thus we ignore
algorithms such as radix sorting.

3 Scalability of Parallel
Algorithms

If a parallel algorithm is used to solve a given prob-
lem of a fixed computation size (i.e., T.), then the
efficiency decreases as the number of processors in-
This property is true of all parallel algo-
rithms. For a large class of parallel algorithms (e.g.,
parallel DFS [15], parallel 0/1 knapsack [19], parallel
connected components [12], and parallel shortest path
algorithms [13]), the following additional property is
also true:

creases.

e For any given number p of processors, the effi-
ciency of the parallel algorithm goes up monoton-
ically (i.e., it never goes down, and approaches a
constant e, s.t. 0 < e < 1) if it is used to solve
problem instances of increasing size.

We call such algorithms scalable parallel algorithms.
In these algorithms, efficiency can be maintained at a
desired value (between 0 and e) for increasing num-
ber of processors provided that the computation size
is also increased. Note that for different parallel ar-
chitectures, the computation size may have to increase
at different rates (w.r.t. the number of processors) in
order to maintain efficiency. The rate of growth of
the computation size, w.r.t. the number of processors,
that is required to keep the efficiency fixed essentially
determines the degree of scalability of these parallel al-
gorithms (for a specific architecture). For example, if
the computation size is required to grow exponentially
w.r.t. the number of processors, then the algorithm-
architecture combination has a poor scalability, as it
would be difficult to obtain good speedups for a large
number of processors (unless the computation size be-
ing solved is enormously large). On the other hand, if
the computation size needs to grow only linearly w.r.t.
the number of processors then the parallel algorithm is
highly scalable; 1.e., it can easily deliver linear speedup
for arbitrarily large numbers of processors. Since all
problems have a sequential component (taken to be
at least one arithmetic operation in this paper), the
computation size must asymptotically grow at least
linearly w.r.t. the number of processors to maintain
a given efficiency. If the computation size needs to
grow as f(p), where p is the number of processors, to
maintain an efficiency E, then f(p) is defined to be the
isoefficiency function for efficiency E and the plot
of f(p) w.r.t. pis defined to be the isoefficiency curve
for efficiency E. It is possible to have different isoeffi-
ciency functions for different efficiencies. In this paper,
1soefficiency functions are the same for all values of £/

within some range 0 < £ < e < 1. Therefore, for the
sake of convenience in the rest of the paper, we will
refer to isoefficiency functions and isoefficiency curves
without reference to a specific efficiency.

4 A Naive Parallel
Formulation of Quicksort

Quicksort [1] is a recursive algorithm that repeatedly
partitions an unsorted list into two smaller sublists us-
ing one of the members of the original list as a pivot.
One of the sublists contains elements less than or equal
to the pivot and the other contains elements greater
than the pivot. After recursively “quicksorting” each
of the two unsorted sublists, the two sorted sublists
can be concatenated in the appropriate order to pro-
duce the sorted list corresponding to the original un-
sorted list. Recall that the average time to quicksort
a list of length N is kgs /N log IV, where kgg is a con-
stant.

The following naive parallel variant of quicksort [21]
is frequently used to illustrate the utility of high-level
parallel programming languages [9, 20].

In this algorithm, the entire unsorted list is stored
initially in one processor. This processor partitions the
list into two sublists. It hands one sublist to an idle
processor and keeps the other sublist. After the two
sublists are recursively sorted and the second processor
has returned its sorted sublist, the first processor com-
bines the two sorted sublists to produce the sorted list
corresponding to the original unsorted list. Note that
the recursive partitioning of the work continues until
all processors are busy. Then each processor invokes
the sequential mergesort to sort the sublist allotted to
it.?

As we show in [25], this algorithm is highly unscal-
able. Even on an architecture on which inter-processor
communication is free (e.g., PRAM) the isoefficiency
of this algorithm is ©(2*? x p) (here k is some con-
stant). Informally, the reason for poor scalability of
naive parallel quicksort is that it has a large sequential
component. Initial partitioning, which is done sequen-
tially, takes O(N) time, whereas the whole sequential
algorithm takes only O(Nlog N) time. Hence, irre-
spective of any other factors (such as sequential com-

3The reader may wonder as to why we don’t use sequential
quicksort at this point. The reason is as follows. When many
processors compute a sequential sort in parallel, the time taken
is the worst of all of them. Quicksort is not a good algorithm
here because it is efficient only on the average. In the worst
case, it takes time ©(L?) for a list of length L. As the number
of processors increases, the time taken will approach G)(L2) if
quicksort were used as the sequential sort.

ponents in the recursive steps, communication over-
heads, etc.), the problem size must grow at least ex-
ponentially to mask the effect of the large sequential
component.

The reader should note that there are other parallel
formulations of quicksort on PRAM [2, 10, 5] which
can be shown to have much better scalability.

5 More Scalable Formulations
of Quicksort

Here we present a new parallel quicksort algorithm and
some of its variations and show that all of them are
more scalable on a mesh than the naive parallel quick-
sort (on a PRAM). All time complexity results in this
section are for the average case. The following is an
informal description of the basic algorithm QSP1 and
its variations. An element is selected as the pivot. The
number of elements bigger and smaller than the pivot
are counted. Then the smaller elements are moved to
the processors that come first in the row-major order-
ing (and larger elements are moved to the processors
that come later in the row-major ordering). This step
is repeated recursively until a partition fits only within
one processor. At that time, a sequential mergesort is
used for sorting the local elements.

5.1 Algorithm QSP1

Here we describe QSP1 in greater detail. First, we
will describe the single-element-per-processor case and
then extend 1t to the multiple-elements-per-processor
case.

Let us look at the recursive partitioning step that is
applied over and over again. An example is given in
figure 1. The figure shows the distribution of elements
before and after the partitioning step. If the original
array of processors is of size \/p x ,/p, then the set
of processors in every partitioning step will consist of
zero or more rows of length /p with possibly a partial
row on top and possibly a partial row at the bottom.

The partitioning step consists of four phases—A, B,
C, and D.

Phase A: Send the pivot (in the first processor of
the set of processors ordered in row-major order) to all
the other processors. This is done by using a binary
tree threading of the processors as shown in figure 2.
The pivot is transmitted from the root of the tree to-
wards the leaves. Since the longest path from the root
to the leaves has 2,/p hops, this step takes O(,/p)
time. Phases B and C (described below) also use the

same binary tree threading of the processors and take
O(/p) time.

Phase B: In this phase, information is gathered at
each node and passed up the tree. In particular, each
node collects the numbers of greaters (elements greater
than the pivot) and lessers (elements smaller than or
equal to the pivot) in both the left and right subtrees.
Using the status of the element at the node itself, the
proper information is propagated to the parent.

Phase C: In this phase, information is propagated
down the tree to enable each element to move to the
proper position in the two processor partitions. As-
suming row-major order of the processors as before,
the greaters (lessers) occupy the same relative posi-
tions in the greater (lesser) partition that they occu-
pied in the pre-partitioned set of processors. Each
processor receives from its parent the next empty po-
sitions in the greater and lesser partitions. Depend-
ing on the status of the element in the processor, the
proper information for the two subtrees is then prop-
agated onwards.

Phase D: In this phase, each element moves to the
proper position in the greater or lesser partition.

The partitioning process recurses until partitions
are of size 1. That completes the sorting of the en-
tire array of processors in row-major order.

In order to extend this algorithm to apply to the
case of multiple elements per processor, the following
changes have to be made in the algorithm:

Phase A: One of the elements in the first processor
1s chosen as the pivot. Pivot distribution remains the
same. This step takes time ks x 2,/p, since the worst
case distance traveled in the vertical and horizontal
directions is ,/p hops each. The distance in the vertical
direction will halve on the average in every iteration
but we will ignore this effect.

Phase B: On receiving the pivot, each processor
divides its elements into bags of lessers and greaters.
Also, 1t maintains the number of lessers and greaters.
Information propagated from the leaves to the root of
the tree takes into account that number of lessers and
greaters at each node can be greater than 1. Since

there are % elements per processor, the time for com-

parison is %kc. Propagating the information back

takes time k,; x 2,/p (if the small k; term is ignored).

Phase C: Similarly, the information propagated
from the root to the leaves about the next free pro-
cessor (in each partition) is modified to account for
multiple elements per processor. In particular, the
two partitions are separated at a processor boundary.
Therefore, the number of elements per processor may
differ somewhat in the two partitions. The next free

Figure 1: QSP1 Example With One Element Per Pro-
cessor

Figure 2: Binary Tree Threading

processor is specified along with the number of ele-
ments that can be added to the processor. This takes
time ks x 2,/p.

Phase D: Elements are moved in large messages to
take advantage of the amortization of startup time k.
Notice that a message from one processor may have to
be split across two destination processors. This can be
taken care of by having a processor send its message to
any one of the two destination processors. Then, the
portion for the other destination processor can be sent
in one hop. We will ignore the second data movement
over one hop since it is negligible compared to the first.
Using Kunde’s algorithm for permuting data across a
mesh multicomputer [17], the time taken for a permu-
tation is 3,/p(ks + kb%).4 Since two messages leave
each processor—one for the lesser partition and the
second for the greater partition—we will double the
start-up time k; charged to each processor to account
for it. Therefore, the total time is 3,/p(2k; + ks %)

Theorem 1 The isoeffictency function of QSPI is
@(Qk\/’_’bgp\/]_)logp), where k is a constant.

The sum of the time spent on all the parts is

N N
kyx 2\/§+(;k0+ks X 2:/D)+ks x2,/p+3/p(2k s +hy ?)

The recursive step is applied until each partition oc-
cupies a single processor. Since the partitioning step
does not cut the number of processors in exactly half
each time, it turns out that the total number of it-
erations is more than logp. The average number of
iterations is less than or equal to 3logp + 6 [7]. We
approximate this to be 3logp.

Therefore, the total time spent on all the iterations
is given by the following formula:

N
(ks x 2D+ ;kﬂrks X 2/p+ ks x 24/ +
N
3v/p(2ks + kb;))iﬂogp (1)

Finally, each processor needs to mergesort its el-
ements sequentially. If the number of elements per
processor remained constant, this would require time
kMS%log %. However, the number of elements per
processor varies somewhat across processors because
the partition boundaries are forced to be at proces-
sor boundaries. Let I% be the maximum number
of elements in a processor. We are unable to de-
termine the average value of I analytically. ;From

43\/]_) may be reduced to 2,/p if each processor is allowed to
use more than a constant amount of memory.

Monte Carlo simulations, we found that [is less than
a small constant up to very large values of p.> There-
fore, the maximum time for sequential sorting will be
kMS% log %, which is approximately kMS% log %
(ignoring a small log term).

Note that formula 1 for the total time spent on
all the iterations needs to be modified as well to ac-
count for the increased density. We assume the max-
imum density throughout the process of parallel sort-
ing. (The expression thus obtained is an upper bound.
The actual time should be less.) Therefore, the new
formula is obtained by replacing N by IN in the pre-
vious formula. The new formula is:

IN
(ks x2\/ﬁ+?k0+ks X 2P+ ks x 2\/p+
IN
3/p(2ks —|—kb?))3logp

On adding the time for the initial sorting across pro-
cessors and the sequential sorting at the end, we get
the total time T, as given below.

IN
T, = (ks x2/p+ ?kc+ks X 2/p+ ks X 2\/p+
IN N N
3\/]_)(2]6‘5 + k‘b—))310gp + Tkprs— log —
p p p
IN
= (6y/Pks + 3/p(2k;s + ky 7) +
IN N N
ke—)3logp + Tkpyrs — log —
p p p
Therefore,

Te + TO =P X Tp
I
= p'5(12k, + 3Irk; + 77:/@0)3logp + rpkarsT logr
p

If N is kept constant, and p increases, then F de-
creases because T, stays the same while T, + T, in-
creases. If p is kept constant and N increases, then F
increases because 7, increases faster than 7T, + 7,. If
p increases, then for constant F, N should grow such
that Tej_;fTo stays constant. Since the largest term in
the order of complexity in (T, +7T,) is 9Irkyp'->rlogp,
for constant efficiency,

Nlog N = ©(N/plogp)

or

N = @(Qk\/ﬁlogp)

5The second half of next subsection discusses a technique for
eliminating I.

where k 1s a constant.
T. = O(Nlog N) = ©(2FVPIo8P /plog p)

This function for 7, is the isoefficiency function for
QSP1. Note that this is fairly close to the lower bound
Q(2°V?,/p) (where c is a constant) derived in [25].

O

5.2 Algorithm QSP2

This variant differs from QSP1 in that the partition-
ing is done alternately in the vertical and horizontal
dimensions. The advantage of this 1s that the max-
imum distance (between a processor containing the
pivot and any other processor) within each partition
is reduced by a factor of two (on the average) after each
set of one horizontal and one vertical partitioning. As
a result, time taken by the steps A, B, C, and D in
all but the first few iterations is quite small compared
with the time taken by the first few iterations. Hence
the overall complexity of steps A, B, C, and D for all
iterations is @(N,/p) (as opposed to O(N,/plog p) for
QSP1). As a result, we have the following theorem
(proof in [25]):

Theorem 2 The isoeffictency function of QSP2 is
@(2’“\/’_’\/@, where k is a constant.

We note a small variation of QSP2 (and analogously
of QSP1) which has similar order of time complexity
but reduces run-time by a constant factor. In this
variation, partition boundaries are permitted to fall
within processors. This will lead to a reduction in
maximum density compared to QSP2 and thereby re-
duce per processor calculation time. However, since a
processor may belong to up to 4 partitions, its com-
munication ports may be congested, thereby slowing
communication by up to a factor of 4. The slowdown
will probably be much less since current multicomput-
ers can perform a lot of the message-passing commu-
nication tasks concurrently for all ports on each pro-
cessor. Hence, this variant promises to improve QSP2
for large numbers of processors. However, we are cur-
rently unable to analytically quantify the exact extent
of improvement.

6 Langsort and its variations

Lang et al. [18] presented a parallel sorting algorithm
for SIMD mesh parallel computers for the case in
which each processor has 1 element per processor. Due
to space constraints, this section is very cryptic. The
reader is referred to [25] for more details.

6.1 The Basic Langsort Algorithm

In Langsort, the basic operations allowed are exchange
and compare-exchange. The exchange operation ex-
changes two elements in adjacent processors (one ele-
ment in each processor). The compare-exchange op-
eration exchanges the two elements if and only if the
elements are not in correct sorted order (given an or-
dering of the two processors involved). Otherwise, the
compare-exchange operation does nothing. We show

in [25] that
T, < (9D — 9)(ks + ky + k) (2)

6.2 Scaled-Down Variant of Langsort

If we scale down Langsort to the case where N ele-
ments need to be sorted using p < N processors, the
resulting algorithm will have complexity no more than

T, < VN -0k + bt k) x ()

Now, we make some further optimizations to the sim-
ple scaled-down variant (1) by aggregating smaller
messages into longer ones and (2) by using an opti-
mal sequential sorting algorithm right at the begin-
ning within each processor. We call this new algorithm
ELS1 and we show in [25] that

Theorem 3 The isocfficiency function for algorithm
FELS1 is undefined (i.e., ELSI is not scalable).

There is another algorithm designed by Schnorr
and Shamir [23] for the single-element-per-processor
case on a mesh multicomputer that is asymptotically
faster by a constant factor than Langsort. Schnorr
and Shamir’s algorithm has the worst-case time-
complexity of 3,/p (plus some lower order terms). It
has been shown that this is the lowest worst-case com-
plexity one can obtain for mesh multicomputers [23].
Schnorr and Shamir’s algorithm can be modified in a
way similar to ELS1 and will suffer from the same lack
of an isoefficiency function (more details in [25].

6.3 Algorithm ELS2

This section describes another variant of Langsort to
deal with multiple elements per processor. In this vari-
ant, each compare-exchange in the original Langsort
is replaced by a sublist compare-exchange. A sublist
compare-exchange takes two sorted sublists and cre-
ates two sorted sublists. One of the output sublists
contains the higher half of the elements from the in-
put sublists and the second contains the lower half.

We show in [25] that

Theorem 4 The isoefficiency of algorithm ELS2 is
o(/r 2¢VP), where ¢ is a constant.

7 Performance Predictions

Figures 3, 4, and 5 plot efficiency versus number of
processors and number of data elements for QSPI,
ELS1, and ELS2 respectively based on the theoret-
ical analyses presented earlier. The portions of the
plots where the number of processors is greater than
the number of data elements should be ignored. The
values given to the parameters were: by, = 10, ky =
ke=ks=1 kys=3,kgs=21=5.

Clearly, ELS1 is unscalable; efficiency drops as the
number of elements increase for a fixed number of pro-
cessors. QSP1 is better than ELS1 except for a small
set of combinations of number of data elements and
number of processors. For moderate to large problem
sizes, ELS1 gives very poor efficiencies. We noted ear-
lier in the paper that ELS2 and QSP1 have almost
equal isoefficiency functions. However, the single-
element-per-processor Langsort has higher efficiency
compared to the single-element-per-processor QSP1.
This should lead to better asymptotic efficiency for
ELS2 (by at least a constant factor) if the computa-
tion sizes are increased at the rate specified by the
optimal isoefficiency function. As shown in the plots,
ELS2 seems to be better for all combinations of the
number of data elements and the number of proces-
sors.

Note that complexity analyses in this paper ignore
some small terms that may make an asymptotic differ-
ence of a small constant multiple in the derived time of
computation. Theorems do not get affected by these
small constant multiples because they deal with or-
der of complexity. Performance predictions depend on
constants and may be off by a small amount. How-
ever, the trends in the performance predictions will be
correct.

8 The Resource Consumption
Metric

So far we have essentially judged the parallel algo-
rithms by the speedup obtained (w.r.t. to the best
sequential algorithm). This method of evaluation is
reasonable if the entire multicomputer is dedicated to
a single problem, as all that matters is the time in
which the problem is solved (on the given number of
processors). Consider the case of two parallel algo-
rithms P1 and P2. P1 takes more time to finish solv-

Figure 3: Efficiency Plot for QSP1

Figure 4: Efficiency Plot for ELS1

Figure 5: Efficiency Plot for ELS2

ing the problem than P2 on a given number of proces-
sors (and thus provides worse speedup than P2). But
while executing P1 most of the processors remain idle,
whereas P2 keeps all the processors busy all the time.
Clearly, P1 can become more desirable than P2 if we
time-share the parallel processor among a number of
problems; i.e., if the entire p-processor system is used
to solve more than one problem. (This is different than
the case in which the parallel processor is partitioned
into 2 subsystems, and each is used to solve a different
problem.)

Let us define resource consumption of a parallel
algorithm as the sum of all machine cycles consumed
by the parallel processor. A parallel processor con-
taining p processors has a total of p7’ cycles available
during time 7. The resource consumption of a par-
allel algorithm is the number of these cycles used by
the algorithm, leaving the remaining ones to be used
by other parallel algorithms that are time-sharing the
parallel processor.

The total number of comparison steps performed by
all the processors in the execution of QSP1 and QSP2
is clearly ©(NlogN), as collectively they perform ex-
actly the same operations that would be performed by
the sequential quicksort. The reader can verify that
the total time spent by the processors in communica-
tion as well as in bookkeeping operations for QSP1 and
QSP2 is no more than O(NlogN). Hence, the resource
consumption of QSP1 and QSP2is ©(Nlog/N). On the
other hand, in ELS2, all the processors remain busy
for a duration that is of the same order as the run-time
of the algorithm. Hence for ELS2, the resource con-
sumption is O(N,/p+ N log N — N logp). (For ELS1,
the resource consumption is O(N1®), which is even
worse than that for ELS2.) Clearly, for p > (log N)?,
QSP2 and QSP1 would consume fewer machine cycles

than ELS2.

9 Conclusions

Isoefficiency analysis provides insights into the useful-
ness of various parallel sorting algorithms for mesh
multicomputers. As discussed in Section 7, ELS1, the
optimized scaled-down variant of Langsort, performs
very poorly compared with QSP1 and QSP2 for most
practical combinations of computation and architec-
ture sizes. The number of data points in a typical
sorting application should far exceed the number of
processors. QSP1 and QSP2 are much better at bene-
fiting from the increased problem size compared with
ELS1. As discussed in Section 7, ELS2 is able to ob-
tain better speedups than QSP1 and QSP2. However,

QSP1 and QSP2 are superior to ELS2 in terms of over-
all resource consumption; i.e., the number of comput-
ing cycles consumed by QSP1 and QSP2 are smaller
than that for ELS2 for many combinations of 7, (or
N) and p. This becomes important when the parallel
processor is being shared among many different appli-
cations.

It must be noted that ELSI1 is a natural algorithm
that one would derive by simply following the data-
parallel paradigm in [11]. The main argument of the
proponents of this paradigm is that the user can as-
sume the existence of as many virtual processors as
needed by the problem and the compiler, the run-
time system, or algorithm designer can simply map
more than one virtual processor to a single processor
as necessary. From the analysis of ELS1, it is clear
that this is not a good technique for at least some
problems. Even the scaled-down variant of Schnorr
and Shamir’s optimal one-element-per-processor algo-
rithm has no isoefficiency (i.e., is not scalable). The
methodology of first uncovering all the inherent paral-
lelism in the problem, and then mapping the concur-
rent activities to the parallel architectures has been
promoted by a number of researchers [3, 24, 4]. This
is one of the motivations behind developing the paral-
lel algorithms that are in the NC class [6]. This is also
similar to the idea advocated by Athas and Seitz in
the context of the Actor paradigm.® Our results show
that this methodology does not result in the best pos-
sible parallel algorithms at least for some problems.
It 1s important to keep the scalability issues in focus
while designing the algorithms.

Some researchers have claimed that mesh-based
multicomputers with cut-through routing can emu-
late a fully-connected network. From our analysis, it
is clear that for asymptotic order of time complexity
of sorting, mesh with cut-through routing is no more
powerful than a mesh with simple routing (i.e., store-
and-forward routing). Tt has been shown elsewhere
that the same is true for FFT [8] and some parallel
algorithms for shortest path [16]. Of course, for many
other parallel algorithms (including some for shortest
path), mesh with cut-through routing has much better
scalability than mesh with store-and-forward routing.

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ull-

man. Data Structures and Algorithms. Computer

6They believe that random mapping should work well in a lot
of cases. In all cases, they feel that an algorithm-independent
strategy will suffice.

[10]

[11]

[12]

[13]

[14]

Science and Information Processing, Addison-Wesley,
1983.

S. G. Akl. The Design and Analysis of Parallel Algo-
rithms. Prentice-Hall, 1989.

Bill Athas. Fine Grain Concurrent Computations.
PhD thesis, Computer Science Department, Califor-
nia Institute of Technology, 1987. Also published as
technical report 5242:TR:87.

K. M. Chandy and J. Misra. Parallel Program De-
sign: A Foundation. Addison-Wesley, Reading, Mas-
sachusetts, 1988.

Bogdan S. Chlebus and Imrich Vrto. Parallel quick-
sort. Journal of Parallel and Distributed Processing,
1991(to appear).

Stephen A. Cook. Towards a complexity theory of
synchronous parallel computation. L ’Enseignement
Mathematique, XXVIII:99-124, 1981.

L. Devroye. A note on the height of binary search
trees. Journal of Association of Computing Machin-
ery, 33:489-498, 1986.

Anshul Gupta and Vipin Kumar. On the scalability
of FFT on parallel computers. In Proceedings of the
Frontiers 90 Conference on Massively Parallel Com-
putation, October 1990. An extended version of the
paper is available as a technical report from the De-
partment of Computer Science and Army High Per-
formance Computing Research Center, University of
Minnesota.

R. Halstead. Multilisp: a language for concurrent
symbolic computation. ACM Trans. on Prog. Lan-
guages and Systems, 501-538, 1985.

P. Heidelberger, A. Norton, and J.T. Robinson. Par-
allel quicksort using fetch-and-add. [EFEE Transac-
tions on Computers, 39(1):133-138, 1990.

D. Hillis and G. L. Steele. Data parallel algorithms.
Communications of the ACM, 29 (12):1170-1183,
1986.

M. A. Huang. Solving some graph problems with
optimal or near optimal speedup on mesh-of-trees
In Proceedings of 26th Annual IEFFE
Symposium on Foundations of Computer Science,
pages 232-240, 1985.

networks.

J. Jenq and S. Sahni. All Pairs Shortest Paths on a
Hypercube Multiprocessor. In International Confer-
ence on Parallel Processing, pages 713-716, 1987.

Vipin Kumar and V. Nageshwara Rao. Load bal-
ancing on the hypercube architecture. In Proceedings
of the 1989 Conference on Hypercubes, Concurrent
Computers and Applications, pages 603—608, 1989.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Vipin Kumar and V. Nageshwara Rao. Parallel depth-
first search, part II: analysis. International Journal
of Parallel Programming, 16 (6):501-519, 1987.

Vipin Kumar and V. Singh. Scalability of Parallel
Algorithms for the All-Pairs Shortest Path Problem:
A Summary of Results. In Proceedings of the Inter-
national Conference on Parallel Processing, August
1990. Extended version available as a technical report
from the department of computer science, University
of Minnesota, Minneapolis, MN 55455 and as MCC
TR ACT-O0ODS-058-90.

Manfred Kunde. Routing and Sorting on Mesh-
Connected Arrays. In Proceedings of the 1988 AWOC
Conference, pages 423—433, 1988. Also available as
Springer LNCS Vol. 319.

Hans-Werner Lang, Manfred Schimmler, Hartmut
Schmeck, and Heiko Schroder. Systolic sorting on
a mesh-connected network. [FEE Transactions on
Computers, c-34(7):652-658, July 1985.

J. Lee, E. Shragowitz, and S. Sahni. A hypercube
algorithm for the 0/1 knapsack problem. In Proceed-
ings of International conference on Parallel Process-
ing, pages 699-706, 1987.

K. Murakami, T. Kakuta, R. Onai, and N. Ito.
Research on parallel machine architecture for fifth-
IEEE Computer,

generation computer systems.
18(6):76-92, 1985.

Michael J. Quinn. Designing Efficient Algorithms for
Parallel Computers. McGraw Hill, NewYork, 1987.

S. Ranka and S. Sahni. Hypercube Algorithms for
Image Processing and Pattern Recognition. Springer-
Verlag, New York, 1990.

C.P. Schnorr and A. Shamir. An optimal sorting algo-
rithm for mesh-connected computers. In Proceedings
STOC, pages 255-263, 1986.

E. Shapiro, editor. Concurrent Prolog, chapter 7,
pages 207-242. Volume 1, MIT Press, 1987.

Vineet Singh, Vipin Kumar, Gul Agha, and Chris
Tomlinson. Scalability of parallel sorting on mesh
multicomputers. Technical Report ACT-SPA-298-90,
Microelectronics and Computer Technology Corp.,
Austin, TX, 1990. Also available as a technical report
(number TR 90-45) from the department of computer
science, University of Minnesota, Minneapolis, MN
55455.

