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the multiple-element-per-processor case). We brieydiscuss another metric called \resource consumptionmetric". According to this metric, both QSP1 andQSP2 are strictly superior to Lang's sort and its vari-ations. 1 IntroductionIn this paper, we investigate the problem of paral-lel sorting on a two-dimensional mesh multicomputerarchitecture. We characterize the scalability of vari-ous algorithms using the formally-de�ned isoe�ciencymetric [15]. As described below, this metric helps as-sess the performance of a given parallel algorithm ona given architecture under realistic situations.Let us �rst consider the disadvantages of using ametric other than isoe�ciency. Many parallel algo-rithms for sorting are analyzed using the metric of run-time complexity when the number of processors equalsthe number of data elements (e.g., see [18, 23, 17]).However, this metric is not very useful for realistic sit-uations when the number of data elements can far out-number the number of processors. For example, onecould easily expect to sort a million data elements,but it would be quite unreasonable to expect to havea million processor system to sort these elements.When there are fewer processors (p) than there aredata elements (N ), one possibility is to scale down theparallel algorithm by making each physical processoremulate Np processors. If context-switching costs are1



ignored, such a technique will result in a slow down ofat most a factor of Np over the original parallel algo-rithm. If the original parallel algorithm is cost-optimal(i.e., if the processor-time product [2] of the originalparallel algorithm is the same as the sequential timecomplexity of the best sequential algorithm), then thistechnique works well; the resulting scaled-down paral-lel algorithm still has the same processor-time prod-uct. Thus, one could choose the parallel algorithmwith the best run-time complexity, and scale it downappropriately to derive the best parallel algorithm forthe case in which fewer processors are available.Unfortunately, if the original parallel algorithm isnot cost-optimal, then scaling down can result inan inferior algorithm. It is entirely possible thata scaled-down variant of an algorithm with worserun-time complexity for the one-element-per-processorcase (or, rather, a minor variation of such an algo-rithm which handles multiple elements per proces-sor) might grossly outperform scaled-down variantsof other algorithms with superior one-element-per-processor run-time complexity. It should be observedthat cost-optimal parallel sorting algorithms (for theone-element-per-processor case) are available only forpractically infeasible architectures such as one of thevariations of PRAM. Thus, the above run-time com-plexity metric is of little use in assessing the perfor-mance of parallel sorting algorithms in realistic situ-ations. We need a metric that helps us compare theperformance of di�erent parallel algorithms for di�er-ent combinations of p and N (or some other indicatorof problem size). The above run-time metric is inad-equate, as it only deals with a 1-D curve on the 2-Dspace (of p and problem size).The isoe�ciency metric initially introduced in [15]is one metric that can be used to compare the per-formance of parallel algorithms when both problemsize and number of processors may vary. The isoef-�ciency of a parallel algorithm reects its scalability;i.e., its ability to e�ectively utilize increasing num-ber of processors. The speedup obtained by a par-allel algorithm is usually dependent upon the hard-ware architecture (such as interconnection network,the CPU speed, speed of the communication channel)as well as certain characteristics of the parallel algo-rithm (such as the degree of concurrency, and over-heads due to communication, synchronization, and re-dundant work). Due to these overheads, the speedupwill saturate at a certain limit for an architecture anda problem instance of a �xed size. For many paral-lel algorithms, a larger problem (e.g., a sorting prob-lem with a larger list of data elements) will have ahigher speedup limit. The isoe�ciency metric relates

the problem size to the number of processors neces-sary for linear speedup. Isoe�ciency analysis has beenfound to be very useful in characterizing the scalabil-ity of a variety of parallel algorithms [15, 22, 16, 8, 14].An important feature of isoe�ciency analysis is thatit succinctly captures the behavior of a parallel algo-rithm in relation to the given parallel architecture.This paper presents two new parallel algorithmsQSP1 and QSP2 based on sequential quicksort forsorting data on a mesh multicomputer, and analyzestheir scalability. We show that QSP2 matches thelower bound on the isoe�ciency function for meshmulticomputers. The isoe�ciency of QSP1 is alsofairly close to optimal. Lang et al. [18] and Schnorret al. [23] have developed parallel sorting algorithmsfor the mesh architecture that have either optimal[23] or close to optimal [18] run-time complexity forthe one-element-per-processor case. Both QSP1 andQSP2 have worse performance than these algorithmsfor the one-element-per-processor case. But QSP1 andQSP2 have better scalability than the scaled-downvariants of these algorithms (for the case in whichthere are more elements than processors). As a result,our new parallel formulations are better than thesescaled-down variants in terms of speedup w.r.t thebest sequential algorithms. We also present a di�erentvariant of Lang's sort which is asymptotically as scal-able as QSP2 (for the multiple-element-per-processorcase). We briey discuss another metric called \re-source consumptionmetric". According to this metric,both QSP1 and QSP2 are strictly superior to Lang'ssort and its variations.2 De�nitions and AssumptionsThis paper considers parallel sorting of data elementsthat are initially distributed with uniform density overa mesh-connected multicomputer. The output datais also distributed over the multicomputer and sortedin row-major order (or some other well-de�ned order)across processors; data is sorted within processors asusual.We introduce some terminology used in the rest ofthe paper. We consider a parallel processor consistingof an ensemble of p processing units each of which {for purposes of determining the complexity { runs atthe same speed.When a parallel algorithm is run on multiple proces-sors, time spent by an individual processor Pi can besplit into tie (e for essential), the time spent in usefulcomputation; and tio (o for overhead), the time spentin doing communication, idling and other work which



would not have been performed by the best sequentialalgorithm but is necessitated due to parallel process-ing. The execution time on p processors, Tp, satis�esTp = tie + tio.The computation size Te of a problem is de�ned tobe the amount of computation (in units of time) takenby an optimal sequential algorithm. Clearly, Te =Pp�1i=0 tie. We de�ne To = Pp�1i=0 tio. Clearly, we haveTo + Te = p� Tp.Note that earlier papers on scalability by the au-thors have used the term problem size in place of com-putation size. The reason for the switch in the termsis that problem size is often used to refer to input size.The speedup S of an algorithm on p processors isde�ned to be the ratio TeTp . The e�ciency is de�ned asfollows: E = Sp = TeTp � p = TeTe + ToWe assume that the time to deliver a message ofsize m from a processor to its neighbor's processoris (ks + kbm), where ks is the start-up time and kbis inverse of the channel bandwidth. Note that forcurrent multicomputers, the start-up time is an orderof magnitude larger than kb. Hence (to simplify someof the expressions in the analysis), we assume the timeto deliver a message of size 1 from a processor to itsneighbor's processor is ks.Finally, we let kc be the time for a processor tocompare two elements and kd be the time for movinga data element within the processor's memory. LetkQSN logN1 be the average-case time for a processorto internally sort N elements using quicksort, wherekQS is a constant and kMSN logN is the worst-casetime for a processor to internally sort N elements us-ing mergesort, where kMS is a constant. We will usequicksort as the base optimal sequential algorithm inthis paper for computing speedups and e�ciencies ofparallel algorithms.2 Let the total number of elementsto be sorted on the multicomputer be N and the to-tal number of processors be p (arranged in a pp�ppmesh). Let r be the number of elements per processorat the beginning of the sorting algorithm, which is Np .1Note that all logs in this paper are with base 2 except wherespeci�ed otherwise.2We consider only sequential algorithms for randomly dis-tributed elements based on compare-exchange. Thus we ignorealgorithms such as radix sorting.

3 Scalability of ParallelAlgorithmsIf a parallel algorithm is used to solve a given prob-lem of a �xed computation size (i.e., Te), then thee�ciency decreases as the number of processors in-creases. This property is true of all parallel algo-rithms. For a large class of parallel algorithms (e.g.,parallel DFS [15], parallel 0/1 knapsack [19], parallelconnected components [12], and parallel shortest pathalgorithms [13]), the following additional property isalso true:� For any given number p of processors, the e�-ciency of the parallel algorithm goes up monoton-ically (i.e., it never goes down, and approaches aconstant e, s.t. 0 < e � 1) if it is used to solveproblem instances of increasing size.We call such algorithms scalable parallel algorithms.In these algorithms, e�ciency can be maintained at adesired value (between 0 and e) for increasing num-ber of processors provided that the computation sizeis also increased. Note that for di�erent parallel ar-chitectures, the computation size may have to increaseat di�erent rates (w.r.t. the number of processors) inorder to maintain e�ciency. The rate of growth ofthe computation size, w.r.t. the number of processors,that is required to keep the e�ciency �xed essentiallydetermines the degree of scalability of these parallel al-gorithms (for a speci�c architecture). For example, ifthe computation size is required to grow exponentiallyw.r.t. the number of processors, then the algorithm-architecture combination has a poor scalability, as itwould be di�cult to obtain good speedups for a largenumber of processors (unless the computation size be-ing solved is enormously large). On the other hand, ifthe computation size needs to grow only linearly w.r.t.the number of processors then the parallel algorithm ishighly scalable; i.e., it can easily deliver linear speedupfor arbitrarily large numbers of processors. Since allproblems have a sequential component (taken to beat least one arithmetic operation in this paper), thecomputation size must asymptotically grow at leastlinearly w.r.t. the number of processors to maintaina given e�ciency. If the computation size needs togrow as f(p), where p is the number of processors, tomaintain an e�ciency E, then f(p) is de�ned to be theisoe�ciency function for e�ciency E and the plotof f(p) w.r.t. p is de�ned to be the isoe�ciency curvefor e�ciency E. It is possible to have di�erent isoe�-ciency functions for di�erent e�ciencies. In this paper,isoe�ciency functions are the same for all values of E



within some range 0 < E � e � 1. Therefore, for thesake of convenience in the rest of the paper, we willrefer to isoe�ciency functions and isoe�ciency curveswithout reference to a speci�c e�ciency.4 A Naive ParallelFormulation of QuicksortQuicksort [1] is a recursive algorithm that repeatedlypartitions an unsorted list into two smaller sublists us-ing one of the members of the original list as a pivot.One of the sublists contains elements less than or equalto the pivot and the other contains elements greaterthan the pivot. After recursively \quicksorting" eachof the two unsorted sublists, the two sorted sublistscan be concatenated in the appropriate order to pro-duce the sorted list corresponding to the original un-sorted list. Recall that the average time to quicksorta list of length N is kQSN logN , where kQS is a con-stant.The following naive parallel variant of quicksort [21]is frequently used to illustrate the utility of high-levelparallel programming languages [9, 20].In this algorithm, the entire unsorted list is storedinitially in one processor. This processor partitions thelist into two sublists. It hands one sublist to an idleprocessor and keeps the other sublist. After the twosublists are recursively sorted and the second processorhas returned its sorted sublist, the �rst processor com-bines the two sorted sublists to produce the sorted listcorresponding to the original unsorted list. Note thatthe recursive partitioning of the work continues untilall processors are busy. Then each processor invokesthe sequential mergesort to sort the sublist allotted toit.3As we show in [25], this algorithm is highly unscal-able. Even on an architecture on which inter-processorcommunication is free (e.g., PRAM) the isoe�ciencyof this algorithm is �(2kp � p) (here k is some con-stant). Informally, the reason for poor scalability ofnaive parallel quicksort is that it has a large sequentialcomponent. Initial partitioning, which is done sequen-tially, takes O(N ) time, whereas the whole sequentialalgorithm takes only O(N logN ) time. Hence, irre-spective of any other factors (such as sequential com-3The reader may wonder as to why we don't use sequentialquicksort at this point. The reason is as follows. When manyprocessors compute a sequential sort in parallel, the time takenis the worst of all of them. Quicksort is not a good algorithmhere because it is e�cient only on the average. In the worstcase, it takes time �(L2) for a list of length L. As the numberof processors increases, the time taken will approach �(L2) ifquicksort were used as the sequential sort.

ponents in the recursive steps, communication over-heads, etc.), the problem size must grow at least ex-ponentially to mask the e�ect of the large sequentialcomponent.The reader should note that there are other parallelformulations of quicksort on PRAM [2, 10, 5] whichcan be shown to have much better scalability.5 More Scalable Formulationsof QuicksortHere we present a new parallel quicksort algorithmandsome of its variations and show that all of them aremore scalable on a mesh than the naive parallel quick-sort (on a PRAM). All time complexity results in thissection are for the average case. The following is aninformal description of the basic algorithm QSP1 andits variations. An element is selected as the pivot. Thenumber of elements bigger and smaller than the pivotare counted. Then the smaller elements are moved tothe processors that come �rst in the row-major order-ing (and larger elements are moved to the processorsthat come later in the row-major ordering). This stepis repeated recursively until a partition �ts only withinone processor. At that time, a sequential mergesort isused for sorting the local elements.5.1 Algorithm QSP1Here we describe QSP1 in greater detail. First, wewill describe the single-element-per-processor case andthen extend it to the multiple-elements-per-processorcase.Let us look at the recursive partitioning step that isapplied over and over again. An example is given in�gure 1. The �gure shows the distribution of elementsbefore and after the partitioning step. If the originalarray of processors is of size pp � pp, then the setof processors in every partitioning step will consist ofzero or more rows of length pp with possibly a partialrow on top and possibly a partial row at the bottom.The partitioning step consists of four phases|A, B,C, and D.Phase A: Send the pivot (in the �rst processor ofthe set of processors ordered in row-major order) to allthe other processors. This is done by using a binarytree threading of the processors as shown in �gure 2.The pivot is transmitted from the root of the tree to-wards the leaves. Since the longest path from the rootto the leaves has 2pp hops, this step takes O(pp)time. Phases B and C (described below) also use the



same binary tree threading of the processors and takeO(pp) time.Phase B: In this phase, information is gathered ateach node and passed up the tree. In particular, eachnode collects the numbers of greaters (elements greaterthan the pivot) and lessers (elements smaller than orequal to the pivot) in both the left and right subtrees.Using the status of the element at the node itself, theproper information is propagated to the parent.Phase C: In this phase, information is propagateddown the tree to enable each element to move to theproper position in the two processor partitions. As-suming row-major order of the processors as before,the greaters (lessers) occupy the same relative posi-tions in the greater (lesser) partition that they occu-pied in the pre-partitioned set of processors. Eachprocessor receives from its parent the next empty po-sitions in the greater and lesser partitions. Depend-ing on the status of the element in the processor, theproper information for the two subtrees is then prop-agated onwards.Phase D: In this phase, each element moves to theproper position in the greater or lesser partition.The partitioning process recurses until partitionsare of size 1. That completes the sorting of the en-tire array of processors in row-major order.In order to extend this algorithm to apply to thecase of multiple elements per processor, the followingchanges have to be made in the algorithm:Phase A: One of the elements in the �rst processoris chosen as the pivot. Pivot distribution remains thesame. This step takes time ks � 2pp, since the worstcase distance traveled in the vertical and horizontaldirections ispp hops each. The distance in the verticaldirection will halve on the average in every iterationbut we will ignore this e�ect.Phase B: On receiving the pivot, each processordivides its elements into bags of lessers and greaters.Also, it maintains the number of lessers and greaters.Information propagated from the leaves to the root ofthe tree takes into account that number of lessers andgreaters at each node can be greater than 1. Sincethere are Np elements per processor, the time for com-parison is Np kc. Propagating the information backtakes time ks � 2pp (if the small kb term is ignored).Phase C: Similarly, the information propagatedfrom the root to the leaves about the next free pro-cessor (in each partition) is modi�ed to account formultiple elements per processor. In particular, thetwo partitions are separated at a processor boundary.Therefore, the number of elements per processor maydi�er somewhat in the two partitions. The next free

Figure 1: QSP1 Example With One Element Per Pro-cessor
Figure 2: Binary Tree Threading



processor is speci�ed along with the number of ele-ments that can be added to the processor. This takestime ks � 2pp.Phase D: Elements are moved in large messages totake advantage of the amortization of startup time ks.Notice that a message from one processor may have tobe split across two destination processors. This can betaken care of by having a processor send its message toany one of the two destination processors. Then, theportion for the other destination processor can be sentin one hop. We will ignore the second data movementover one hop since it is negligible compared to the �rst.Using Kunde's algorithm for permuting data across amesh multicomputer [17], the time taken for a permu-tation is 3pp(ks + kbNp ).4 Since two messages leaveeach processor|one for the lesser partition and thesecond for the greater partition|we will double thestart-up time ks charged to each processor to accountfor it. Therefore, the total time is 3pp(2ks + kbNp ).Theorem 1 The isoe�ciency function of QSP1 is�(2kpp log ppp log p), where k is a constant.The sum of the time spent on all the parts isks�2pp+(Np kc+ks�2pp)+ks�2pp+3pp(2ks+kbNp )The recursive step is applied until each partition oc-cupies a single processor. Since the partitioning stepdoes not cut the number of processors in exactly halfeach time, it turns out that the total number of it-erations is more than logp. The average number ofiterations is less than or equal to 3 log p + 6 [7]. Weapproximate this to be 3 logp.Therefore, the total time spent on all the iterationsis given by the following formula:(ks � 2pp+ Np kc + ks � 2pp+ ks � 2pp +3pp(2ks + kbNp ))3 logp (1)Finally, each processor needs to mergesort its el-ements sequentially. If the number of elements perprocessor remained constant, this would require timekMS Np log Np . However, the number of elements perprocessor varies somewhat across processors becausethe partition boundaries are forced to be at proces-sor boundaries. Let I Np be the maximum numberof elements in a processor. We are unable to de-termine the average value of I analytically. >From43pp may be reduced to 2pp if each processor is allowed touse more than a constant amount of memory.

Monte Carlo simulations, we found that I is less thana small constant up to very large values of p.5 There-fore, the maximum time for sequential sorting will bekMS INp log INp , which is approximately kMS INp log Np(ignoring a small log term).Note that formula 1 for the total time spent onall the iterations needs to be modi�ed as well to ac-count for the increased density. We assume the max-imum density throughout the process of parallel sort-ing. (The expression thus obtained is an upper bound.The actual time should be less.) Therefore, the newformula is obtained by replacing N by IN in the pre-vious formula. The new formula is:(ks � 2pp+ INp kc + ks � 2pp + ks � 2pp +3pp(2ks + kb INp ))3 logpOn adding the time for the initial sorting across pro-cessors and the sequential sorting at the end, we getthe total time Tp as given below.Tp = (ks � 2pp+ INp kc + ks � 2pp+ ks � 2pp+3pp(2ks + kb INp ))3 log p+ IkMSNp log Np= (6ppks + 3pp(2ks + kb INp ) +kc INp )3 log p+ IkMSNp log NpTherefore, Te + To = p� Tp= p1:5(12ks + 3Irkb + Irppkc)3 logp+ rpkMSI log rIf N is kept constant, and p increases, then E de-creases because Te stays the same while Te + To in-creases. If p is kept constant and N increases, then Eincreases because Te increases faster than Te + To. Ifp increases, then for constant E, N should grow suchthat TeTe+To stays constant. Since the largest term inthe order of complexity in (Te+To) is 9Irkbp1:5r logp,for constant e�ciency,N logN = �(Npp logp)or N = �(2kpp log p)5The second half of next subsection discusses a technique foreliminating I.



where k is a constant.Te = �(N logN ) = �(2kpp logppp logp)This function for Te is the isoe�ciency function forQSP1. Note that this is fairly close to the lower bound
(2cpppp) (where c is a constant) derived in [25].25.2 Algorithm QSP2This variant di�ers from QSP1 in that the partition-ing is done alternately in the vertical and horizontaldimensions. The advantage of this is that the max-imum distance (between a processor containing thepivot and any other processor) within each partitionis reduced by a factor of two (on the average) after eachset of one horizontal and one vertical partitioning. Asa result, time taken by the steps A, B, C, and D inall but the �rst few iterations is quite small comparedwith the time taken by the �rst few iterations. Hencethe overall complexity of steps A, B, C, and D for alliterations is �(Npp) (as opposed to �(Npp log p) forQSP1). As a result, we have the following theorem(proof in [25]):Theorem 2 The isoe�ciency function of QSP2 is�(2kpppp), where k is a constant.We note a small variation of QSP2 (and analogouslyof QSP1) which has similar order of time complexitybut reduces run-time by a constant factor. In thisvariation, partition boundaries are permitted to fallwithin processors. This will lead to a reduction inmaximum density compared to QSP2 and thereby re-duce per processor calculation time. However, since aprocessor may belong to up to 4 partitions, its com-munication ports may be congested, thereby slowingcommunication by up to a factor of 4. The slowdownwill probably be much less since current multicomput-ers can perform a lot of the message-passing commu-nication tasks concurrently for all ports on each pro-cessor. Hence, this variant promises to improve QSP2for large numbers of processors. However, we are cur-rently unable to analytically quantify the exact extentof improvement.6 Langsort and its variationsLang et al. [18] presented a parallel sorting algorithmfor SIMD mesh parallel computers for the case inwhich each processor has 1 element per processor. Dueto space constraints, this section is very cryptic. Thereader is referred to [25] for more details.

6.1 The Basic Langsort AlgorithmIn Langsort, the basic operations allowed are exchangeand compare-exchange. The exchange operation ex-changes two elements in adjacent processors (one ele-ment in each processor). The compare-exchange op-eration exchanges the two elements if and only if theelements are not in correct sorted order (given an or-dering of the two processors involved). Otherwise, thecompare-exchange operation does nothing. We showin [25] that Tp � (9pp� 9)(ks + kb + kc) (2)6.2 Scaled-Down Variant of LangsortIf we scale down Langsort to the case where N ele-ments need to be sorted using p < N processors, theresulting algorithm will have complexity no more thanTp � (9pN � 9)(ks + kb + kc)� Np (3)Now, we make some further optimizations to the sim-ple scaled-down variant (1) by aggregating smallermessages into longer ones and (2) by using an opti-mal sequential sorting algorithm right at the begin-ning within each processor. We call this new algorithmELS1 and we show in [25] thatTheorem 3 The isoe�ciency function for algorithmELS1 is unde�ned (i.e., ELS1 is not scalable).There is another algorithm designed by Schnorrand Shamir [23] for the single-element-per-processorcase on a mesh multicomputer that is asymptoticallyfaster by a constant factor than Langsort. Schnorrand Shamir's algorithm has the worst-case time-complexity of 3pp (plus some lower order terms). Ithas been shown that this is the lowest worst-case com-plexity one can obtain for mesh multicomputers [23].Schnorr and Shamir's algorithm can be modi�ed in away similar to ELS1 and will su�er from the same lackof an isoe�ciency function (more details in [25].6.3 Algorithm ELS2This section describes another variant of Langsort todeal with multiple elements per processor. In this vari-ant, each compare-exchange in the original Langsortis replaced by a sublist compare-exchange. A sublistcompare-exchange takes two sorted sublists and cre-ates two sorted sublists. One of the output sublistscontains the higher half of the elements from the in-put sublists and the second contains the lower half.We show in [25] that



Theorem 4 The isoe�ciency of algorithm ELS2 is�(pp 2cpp), where c is a constant.7 Performance PredictionsFigures 3, 4, and 5 plot e�ciency versus number ofprocessors and number of data elements for QSP1,ELS1, and ELS2 respectively based on the theoret-ical analyses presented earlier. The portions of theplots where the number of processors is greater thanthe number of data elements should be ignored. Thevalues given to the parameters were: ks = 10, kb =kc = kd = 1, kMS = 3, kQS = 2, I = 5.Clearly, ELS1 is unscalable; e�ciency drops as thenumber of elements increase for a �xed number of pro-cessors. QSP1 is better than ELS1 except for a smallset of combinations of number of data elements andnumber of processors. For moderate to large problemsizes, ELS1 gives very poor e�ciencies. We noted ear-lier in the paper that ELS2 and QSP1 have almostequal isoe�ciency functions. However, the single-element-per-processor Langsort has higher e�ciencycompared to the single-element-per-processor QSP1.This should lead to better asymptotic e�ciency forELS2 (by at least a constant factor) if the computa-tion sizes are increased at the rate speci�ed by theoptimal isoe�ciency function. As shown in the plots,ELS2 seems to be better for all combinations of thenumber of data elements and the number of proces-sors.Note that complexity analyses in this paper ignoresome small terms that may make an asymptotic di�er-ence of a small constant multiple in the derived time ofcomputation. Theorems do not get a�ected by thesesmall constant multiples because they deal with or-der of complexity. Performance predictions depend onconstants and may be o� by a small amount. How-ever, the trends in the performance predictions will becorrect.8 The Resource ConsumptionMetricSo far we have essentially judged the parallel algo-rithms by the speedup obtained (w.r.t. to the bestsequential algorithm). This method of evaluation isreasonable if the entire multicomputer is dedicated toa single problem, as all that matters is the time inwhich the problem is solved (on the given number ofprocessors). Consider the case of two parallel algo-rithms P1 and P2. P1 takes more time to �nish solv-

Figure 3: E�ciency Plot for QSP1
Figure 4: E�ciency Plot for ELS1
Figure 5: E�ciency Plot for ELS2



ing the problem than P2 on a given number of proces-sors (and thus provides worse speedup than P2). Butwhile executing P1 most of the processors remain idle,whereas P2 keeps all the processors busy all the time.Clearly, P1 can become more desirable than P2 if wetime-share the parallel processor among a number ofproblems; i.e., if the entire p-processor system is usedto solve more than one problem. (This is di�erent thanthe case in which the parallel processor is partitionedinto 2 subsystems, and each is used to solve a di�erentproblem.)Let us de�ne resource consumption of a parallelalgorithm as the sum of all machine cycles consumedby the parallel processor. A parallel processor con-taining p processors has a total of pT cycles availableduring time T . The resource consumption of a par-allel algorithm is the number of these cycles used bythe algorithm, leaving the remaining ones to be usedby other parallel algorithms that are time-sharing theparallel processor.The total number of comparison steps performed byall the processors in the execution of QSP1 and QSP2is clearly �(NlogN ), as collectively they perform ex-actly the same operations that would be performed bythe sequential quicksort. The reader can verify thatthe total time spent by the processors in communica-tion as well as in bookkeeping operations for QSP1 andQSP2 is no more than �(NlogN ). Hence, the resourceconsumption of QSP1 and QSP2 is �(NlogN ). On theother hand, in ELS2, all the processors remain busyfor a duration that is of the same order as the run-timeof the algorithm. Hence for ELS2, the resource con-sumption is �(Npp+N logN �N logp). (For ELS1,the resource consumption is �(N1:5), which is evenworse than that for ELS2.) Clearly, for p > (logN )2,QSP2 and QSP1 would consume fewer machine cyclesthan ELS2. 9 ConclusionsIsoe�ciency analysis provides insights into the useful-ness of various parallel sorting algorithms for meshmulticomputers. As discussed in Section 7, ELS1, theoptimized scaled-down variant of Langsort, performsvery poorly compared with QSP1 and QSP2 for mostpractical combinations of computation and architec-ture sizes. The number of data points in a typicalsorting application should far exceed the number ofprocessors. QSP1 and QSP2 are much better at bene-�ting from the increased problem size compared withELS1. As discussed in Section 7, ELS2 is able to ob-tain better speedups than QSP1 and QSP2. However,
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