
TakTuk, Adaptive Deployment of Remote Executions

Benoit Claudel
INRIA Sardes research team

CNRS LIG Laboratory
Grenoble University, France
Benoit.Claudel@imag.fr

Guillaume Huard
INRIA Moais research team

CNRS LIG Laboratory
Grenoble University, France

Guillaume.Huard@imag.fr

Olivier Richard
INRIA Mescal research team

CNRS LIG Laboratory
Grenoble University, France
Olivier.Richard@imag.fr

ABSTRACT
This article deals with TakTuk, a middleware that deploys
efficiently parallel remote executions on large scale grids
(thousands of nodes). This tool is mostly intended for inter-
active use: distributed machines administration and parallel
applications development. Thus, it has to minimize the time
required to complete the whole deployment process.

To achieve this minimization, we propose and validate
a remote execution deployment model inspired by the real
world behavior of standard remote execution protocols (rsh
and ssh). From this model and from existing works in net-
working, we deduce an optimal deployment algorithm for
the homogeneous case. Unfortunately, this optimal algo-
rithm does not translate directly to the heterogeneous case.

Therefore, we derive from the theoretical solution a heuris-
tic based on dynamic work-stealing that adapts to hetero-
geneities (processors, links, load, ...). The underlying princi-
ple of this heuristic is the same as the principle of the optimal
algorithm: to deploy nodes as soon as possible. Experiments
assess TakTuk efficiency and show that TakTuk scales well
to thousands of nodes. Compared to similar tools, TakTuk
ranks among the best performers while offering more fea-
tures and versatility. In particular, TakTuk is the only tool
really suited to remote executions deployment on grids or
more heterogeneous platforms.

Categories and Subject Descriptors
D.4.9 [Operating Systems]: System Programs and Utili-
ties—Command and control languages; C.2.4 [Computer-
Communication Networks]: Distributed Systems

General Terms
Algorithms, Experimentation, Performance

Keywords
work-stealing, remote executions deployment, adaptivity

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’09, June 11–13, 2009, Munich, Germany.
Copyright 2009 ACM 978-1-60558-587-1/09/06 ...$5.00.

1. INTRODUCTION
Nowadays, most of highest performance computers in the

world are made of thousands of computation nodes that
might themselves contain several processors or processors
cores. Grids are expected to become the next major evo-
lution of highest performing platforms in the world. Like
usual desktop machines, these huge platforms have to be
administrated (updates, configuration, monitoring, ...) and
exploited for the development and the execution of parallel
applications. These administration tasks as well as the de-
velopment of parallel applications often require to perform
the same operation or to execute the same program on all
the computation nodes. Furthermore, the results of all these
executions have to be gathered for diagnostic and analysis.
For instance, a grid administrator might be interested in
executing the command uptime on all the nodes of the plat-
form in order to gather statistics about nodes availability.
This would be the same for the developer of a master-slave
distributed application who needs to execute slave processes
on all computation nodes of the grid (as an example, this
is what does mpirun for MPI applications). This task of
collective remote executions is called remote executions de-
ployment (or deployment for short). The deployment has to
be highly efficient because its main uses are administration
tasks and development of parallel applications which are in-
teractive tasks. In other words, the user waits for the result
of his deployment before deciding what to do next. Thus,
in order to be scalable, the whole deployment time should
not grow linearly with the number of machines, otherwise it
would become useless for grids.

The remote executions deployment is made of two steps:
the first one involves the connection to remote nodes along
with a setup of a logical communication network, while the
second one is made of the actual execution of the program
on all the connected nodes and the redirection of their I/Os.
Usually, the most difficult part of the deployment is the effi-
cient management of remote connections initiation as this is
the most time consuming step of the whole process. Among
existing deployment solutions two approaches can be iden-
tified that address this problem:

• centralized approaches in which a single master node
set up all the connections by itself. Using a centralized
approach greatly eases the I/Os redirection of remotely
executed commands to the initiating machine. Never-
theless it results in a deployment time which is linear
in the number of nodes.

91



• distributed approaches in which the remote nodes take
part of the deployment process by running a deploy-
ment engine that will eventually spawn the program
and redirect I/Os. Although this approach can lead to
a logarithmic deployment time, it suffers the overhead
of initiating the deployment engine on all the remote
nodes.

In the first case [10, 5, 3, 9, 4], the connections aver-
age initiation time is reduced by using concurrency: several
connections are initiated in parallel. But, as we will demon-
strate in this article, this is limited by the characteristics of
the master node and is generally not scalable above several
hundred of nodes. In the second case, the deployment is
distributed among nodes using a tree topology to setup con-
nections and logical communication network. To our knowl-
edge, only gexec [8] uses this approach. Although this tool
is very efficient, it is quite intrusive as it requires the in-
stallation of a deployment server on remote nodes. In the
context of grid platforms, this tool suffers from even more
serious issues: the deployment topology is fixed statically
and the deployment fails if any node is down (due to failure
or maintenance).

Looking back at the deployment problem from a general
point of view, spreading the execution of some program on
remote nodes and collecting their results reminds of usual
broadcast and gather operations in a network. These two
communication primitives have been extensively studied for
several variants of send/receive model with 1 or k ports.
One might think that the models used in this community
are different than the deployment model. In this article,
we show this is not the case: we conducted experiments
that validate a deployment model which is similar to the
postal model used in networking [1]. Consequently, taking
advantage of existing results related to this postal model, we
deduce an optimal solution for the deployment on homoge-
neous machines: as in the case of broadcast communication,
the scalability of deployment will be achieved by using a
tree topology for the remote connections spreading and the
associated logical communication network setup. Neverthe-
less, when the execution platform is heterogeneous, further
investigations are required in order to design an efficient de-
ployment algorithm.

The optimal algorithm for the homogeneous case initiates
connections as soon as possible. To reach this result, it dis-
tributes work among nodes and parallelizes a small quantity
of connection tasks within each node. When we developed
TakTuk, we kept all these ideas in mind to design an heuris-
tic which is efficient on all kind of platforms that would con-
verge toward the optimal on homogeneous machines. This
is achieved in TakTuk by using an adaptive work-stealing
([2, 7]) algorithm to balance local parallelization and work
distribution. To avoid issues that hinder existing tools in
grid context, we also forced ourselves to meet the following
constraints: no assumption about the network capabilities,
no required installation on remote hosts, possibility to stat-
ically fix a part or all the deployment topology.

In the remaining of this article, we first present in section 2
some preliminary experiments regarding standard execution
protocols and we derive from them a connection model that
allows us to solve the optimal deployment problem on homo-
geneous machines. In section 3, we introduce our approach
that extends the optimal solution to address heterogeneity
among nodes and in the network. We also present the overall

architecture and implementation characteristics of TakTuk.
In section 4 we experimentally validate our tool. In section 5
we present in more details projects related to the deployment
problem and we explain how they compare to TakTuk. We
also present two projects that make use of TakTuk. Finally,
in section 6 we conclude by giving a summary of our results
and we present the next evolutions of TakTuk.

2. COMMUNICATION MODEL
As TakTuk is intended to be used on very large scale plat-

forms and grids, genericity and portability have been two
strong constraints during its design phase. Thus, our tool
has to be built on top of standard communication methods
installed on all parallel infrastructures: this will ensure it the
maximal genericity. Taking this consideration into account,
we built TakTuk on top of standard remote shell execution
facilities (such as rsh or ssh) that are installed on all UNIX-
like systems (which is the kind of operating system running
on most grids). Notice though, that this does not lessen
the generality of our approach as TakTuk is able to use any
remote execution mechanism with I/O redirections to setup
its own communication network. The only difference in us-
ing another remote execution method would be the duration
of the two parts of the connector model that we present in
this section.

The rsh and ssh commands open a TCP connection to
a remote host and execute a command on this remote host
redirecting all I/O to the initiating machine. This remote
execution mechanism and the associated point-to-point com-
munication that constitute the I/O redirection is the basis
on which TakTuk is built. The duty of TakTuk is thus to
parallelize and distribute among deployed hosts these re-
mote connection initiations in order to achieve an efficient
deployment. It is therefore important to precisely know the
behavior of the connection commands in order to decide on
the balance between local parallelization and work distribu-
tion. Any tool which performs a remote execution is based
on the client/server model: the client sends a request for
connection and waits for the server answer before consid-
ering the connection as operational. This means that the
client machine is idle during the wait for the connection
acknowledgement: it should be possible to overlap several
connection initiations. This is what centralized approaches
do and this explains why they are efficient on a small number
of remote hosts. But to scale well as the number of involved
hosts increases, we have to know the limits of the centralized
approach and its local parallelization. Thus, we have con-
ducted a batch of experiments to find out how simultaneous
connection initiations overlap on the same machine.

The first experiment aims at understanding the global be-
havior of a group of concurrent processes performing connec-
tion initiations. It has been performed on the single cluster
machine described in detail in section 4.1. In this experi-
ment, we create a group of 100 background processes (using
the fork system call) remotely executing the command true

(negligible execution time) on a distinct host using either rsh
or ssh. Using Linux scheduler capabilities, we have forced
all the processes to be executed on the same single proces-
sor core. We have measured the completion time of each
individual process involved in this experiment. These mea-
surements are presented in figure 1 in which the processes
are numbered according to their creation order. As we can
notice in the figure, the completion of individual processes

92



rsh

 0.5

 1

 1.5

 2

 2.5

 0  10  20  30  40  50  60  70  80  90  100

Ex
ec

ut
io

n 
tim

e 
(in

 se
cs

)

Process number

ssh

 0

Figure 1: Behavior of concurrent connections using
either rsh or ssh on a single core.

is shifted in time by a regular amount. This phenomenon
is not only due to the round-robin CPU assignment in the
scheduler which occurs at a finer grain. In contrary, it seems
like the processes are naturally pipelined by the system due
to some contention on a common resource (processor core,
network interface, ...).

rsh

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  10  20  30  40  50  60  70  80  90  100

Ex
ec

ut
io

n 
tim

e 
(in

 se
cs

)

Process number

ssh

 0

Figure 2: Behavior of concurrent connections using
either rsh or ssh on multicore (4 cores).

When executing the same experiment on a multicore ma-
chine (4 cores), the contention on the processor is greatly
reduced and the 100 connections complete roughly 2 times
earlier for rsh and 3.5 times earlier for ssh. Although the
measures are more chaotic, they keep this general linear
behavior: the resources are still limited (number of cores
fixed, network interface...) and some contention still occurs.
This second experiment is presented in figure 2. As a conse-
quence, it seems that a local parallelization always ends up in
a near linear time progression of connections execution with
some overlap. One might think that this parallelization be-
haves as a pipeline and could even be performed explicitly as
a pipeline: it is useless to create from start more processes
than the resources can handle.

To check this last hypothesis, we conducted a new multi-
core experiment in which we explicitly start connection pro-
cesses in pipeline. More precisely, we have taken the same
previous experiment (100 processes performing connections)
but we have inserted a small wait delay before the creation
of each process. We have measured the completion time of

Inflection point

Implicit

<

pipeline
Explicit
pipeline

>

Explicit
pipeline

Implicit
pipeline

 0

 1

 1.5

 2

 0  5000  10000  15000  20000

Ex
ec

ut
io

n 
tim

e 
(in

 se
cs

)

Inserted delay (in usecs)

ssh
rsh

 0.5

Figure 3: Comparison between fully concurrent pro-
cesses and explicit pipeline on multicore (4 cores).

the last process and have repeated the experiment for vari-
ous values of the delay. Figure 3 presents these experiments:
the two curves report the total completion time of the group
of processes depending on the inserted delay respectively for
rsh and ssh. On this figure, the point for which the inserted
delay is null (0 abscissa) corresponds to the completion time
of the last process in the previous experiment: around 0.1s
for rsh and near 0.6s for ssh.

On this figure, both curves are made of a constant part
at the beginning followed by an increasing linear part. The
inflection point is around 1ms for rsh and 5ms for ssh. If
calculate the average shift between process in the previous
experiment (figure 2), we obtain 1ms for rsh (almost 0.1s
between the completion of the first process and the last one
divided by 100 processes) and 5ms for ssh ((0.6s-0.1s)/100).
The average shift is the same as the position of the inflection
point on figure 3. Thus, as long as the inserted delay is lower
than this shift amount, the overall execution time does not
change. This means that doing an explicit pipeline still lets
connection processes overlap nicely as they would do if they
were started at the same time. Nevertheless, above this
limit, the inserted delay degrades the overall execution time.
This certainly indicates that the total connection initiation
time is fixed and does not decrease as resources become idle.

Time

connection
processes

Concurrent

Figure 4: Behavior model for concurrent rsh or ssh.

These experiments show that we can model the execu-
tion of concurrent connection processes as a pipelined exe-
cution of fixed time tasks. The Gantt diagram in figure 4
presents this model. In this model, each connection task is
composed of a part which can be overlapped and another
one which cannot be overlapped. This simplified view of
connections is presented in figure 5. We name T the total
time it takes to initiate a connection (after this time, the
remote host is ready to execute commands) and t the part
which cannot be overlapped (which is the same as the shift

93



amount in the pipeline). For each connector command, this
model expresses the possible gain that local parallelization
can achieve and the limit above which additional concur-
rent processes are useless. This also enables to decide above
which number of remote connections it is interesting to use
a remote node to execute a child deployment engine and dis-
tribute the deployment process. Indeed, when the connec-
tion to N hosts is required and Nt > T the deployment will
be faster with some distribution. This idea is represented
as Gantt diagram in figure 6. On each host, the number of
simultaneous ongoing connection initiations is limited to the
width of the pipeline: at most T/t processes. We call this
value the concurrency index of the pipeline window.

t

T

cannot be overlapped can be overlapped

Figure 5: Overlapping model for rsh and ssh.

processes

Time

node 3

node 2

node 1

Concurrent
connection

Figure 6: Optimal deployment mixing local paral-
lelization and distribution.

Actually, this model is the same as the postal model pre-
sented in [1] and our deployment problem is also the same
as the broadcast problem from one node to N they study. In
this article, they present an optimal solution to the broad-
cast problem in question. This optimal solution is an “as
soon as possible” (ASAP) schedule of communication tasks.
This optimal schedule is straightforward to construct with a
simple linear algorithm (iteration on tasks completion time
along with greedy task scheduling). This optimal solution
forms a deployment tree which arity depends on the respec-
tive values of t and T . The extreme cases are a flat tree
when t << T , a chain when t >> T , and a binomial tree
when t = T . Notice that the case t >> T is unlikely to
occur in our deployment problem as this would mean that
the remote host is ready to deploy before the completion of
the connection in the originating host. Outside the scope
of the deployment problem, this situation could occur when
transmitting large volumes of data. In such case the remote

host can start forwarding chunks of data before having com-
pletely received the whole message.

3. TAKTUK, SCALABLE DEPLOYMENT
Although we presented an optimal deployment algorithm

in section 2, its straightforward implementation is not really
relevant as it raises several issues. First, it constructs the
solution based on t and T values which depend on the de-
ploying host performance and on the connector used. There
is no obvious way to guess them for any deployment target
machine. Second, it does not take into account implemen-
tation issues: distributing deployment enforces the remote
execution of subdeployment engines. This implies a connec-
tion overhead and changes the values for t and T . Obvi-
ously a “‘real world” optimal would be the minimum of flat
deployment without overhead and ASAP deployment with
overhead. Third, it assumes that the target machine is ho-
mogeneous (same t and T on all hosts), which is not the
case in general. Obviously, grids are not homogeneous, and
even cluster might sometimes have aberrant nodes that are
slower than usual due to unusual perturbing processes (zom-
bies, deadlocking application, ...). Fourth, some nodes of a
cluster might fail to answer to connection requests (hard-
ware or software failure, interconnection problem, ...). In
this last case, it is necessary to recompute the deployment
tree to force it to adapt to actual resources availability. In
summary, because each machine is unique, the deployment
process should adapt dynamically to the target machine ca-
pabilities.

To achieve this adaptivity in TakTuk, we have chosen to
use the well known work-stealing approach [2, 7] to dis-
tribute deployment tasks on the deployed hosts. The draw-
back of this approach is that we always pay the overhead
for distribution of the engine on remote hosts: on small ma-
chines a flat deployment should be faster. This is not really
an issue as our main target is grid platforms and large scale
deployment. In our approach, each connection to a remote
host will start the execution of a remote TakTuk engine in-
stance that we will call the child instance. Then, whenever a
TakTuk instance is idle, it asks for new deployment tasks to
its father. Using such work-stealing approach tends to pro-
duce an ASAP schedule (assuming that the penalty for the
work-stealing negotiation is negligible) which is the principle
of the optimal algorithm. This approach also nicely handles
nodes heterogeneity: if a node is slower than others, it will
take more time to perform its deployment tasks and will ask
for more work less often. Furthermore, to ensure that we
avoid as much as possible ineffective nodes while lessening
the overhead of the work-stealing approach, we use an amor-
tized policy: when a TakTuk instance receives the first steal
request from one of its children it gives it only one deploy-
ment task; then, whenever this child asks for more work it
gives it twice the previous tasks number (limited to half the
remaining tasks).

To tell all the truth, one question remains unresolved de-
spite the use of our work-stealing approach: how do we im-
plement the connection processes pipeline that should run
in all the TakTuk instances ? Inserting delays before pro-
cesses creation would require to guess the value of t, which
is not easy (as already mentioned). In TakTuk, we have cho-
sen instead to create a window of connection processes: at
any time, the number of concurrent connection initiations
is limited by the size of the window. Due to the contention

94



Work received

Connection initializer

Connector

Remote TakTuk instance

Connection initializer

Connector

Remote TakTuk instance

Connection initializer

Connector

Remote TakTuk instance

Commands and options parsing
Local command

Local command

Local commandActive messages Server

I/O management

Scheduler

Remote TakTuk father

Core events server

Tasks pool

Work sent

Figure 7: TakTuk Architecture.

on system resources, this results in a natural pipeline. But
to know the size of this window requires, once again, to
guess t and T . This is an important issue as a too small
size results in missing opportunities for local parallelization
and a too large size results in insufficient work distribution.
Currently, we do not have a good answer to this last ques-
tion. We investigated the local monitoring of system load
average indicator but it is not updated sufficiently often to
enable reactive window adaptation (the time scale required
is in the order of tens of milliseconds). We also investigated
direct measurements of already completed connections but
this tend to render TakTuk overreactive (this last effort is
included in TakTuk as an experimental feature). At the time
of this writing, the best compromise we have found is to fix
this size to 10, which is empirically suited to most platforms.
For a long term solution on a fixed platform, one can per-
form the experiments presented in section 2 to measure t
and T and fetch T/t as a window size to TakTuk.

From an architectural point of view, TakTuk is built on
top of a central communication server. This communica-
tion server implements the active messages paradigm [21]
and the TakTuk engine is mostly made of active message
handlers. New connections are performed by creating new
processes that execute the connector command. Once the
deployment is complete, new commands are executed by the
usual fork/exec idiom, and all their outputs are redirected
to the root node. All the interactions between involved en-
tities (local connection processes, local command processes)
are triggered by I/O events and are implemented using ac-
tive messages for communication. This global overview is
represented in figure 7.

perl

host
TakTuk
instance

New
TakTuk
instance

Initialization
complete

connection

TakTuk code

notification

notification

Time

Remote

Figure 8: TakTuk self propagation mechanism.

The current version of TakTuk is implemented in Perl,
which has been chosen for two main reasons. The first rea-
son is its portability, Perl is available on most computing
platforms. The second reason is its interpreted nature, this
enables us to transfer the TakTuk code to remote nodes for
children instances creation without requiring an installation
of the tool on all the nodes of the executing platform. The
drawback of using Perl is, of course, its inefficiency compared
to compiled languages such as C. As of today, TakTuk has
been used for the efficient deployment of real world appli-

95



cations on up to 4000 processor cores (see section 4) and
we do not think Perl caused any major performance issue.
Actually, TakTuk is mostly I/O intensive rather than com-
putationally intensive, this is the reason why the relative
inefficiency of Perl is not really hindering.

As we just mentioned, TakTuk does not require any in-
stallation on remote nodes on which it deploys itself. We call
this feature “self propagation”. It relies on the interpreted
nature of Perl (no compilation required) and the ability of
the interpreter to fetch code from the standard input. This
self propagation mechanism works in three steps: first it uses
a connector command to remotely send a notification and
execute a perl interpreter, second it fetches the TakTuk code
to the remote interpreter, third, upon reception of TakTuk
initialization notification, it adds the new remote instance
to the TakTuk network and continues the deployment. This
mechanism is summarized in figure 8. Of course this self
propagation mechanism slows down the remote TakTuk in-
stance initiation and the overall deployment time. On stable
production sites, it is possible to install TakTuk on all the
nodes of the execution platform and to use simple remote
TakTuk execution instead of self propagation.

Overall, TakTuk has been designed with versatility in
mind. The deployment tree it constructs might be com-
pletely static and given at launch time, dynamically deter-
mined during deployment, or a mix of both. Its outputs are
customizable using very general templates. Its options (con-
nector command, self propagation, connections window, tree
topology,...) can be changed in any part of the deployment
tree. Thanks to all these features, TakTuk is completely
suited to applications deployment on highly heterogeneous
platforms (Grids, P2P networks, ...). It is distributed under
the terms of the GPL license and is available in the Debian
GNU/Linux distribution or downloadable at [20].

4. EXPERIMENTS
In this section, we evaluate the real wold performance of

TakTuk. It is made of the following parts: the presentation
of the experimental platform we use, the evaluation of the
TakTuk engine overhead, the comparison between TakTuk
and flat deployment tools, the comparison between TakTuk
and distributed deployment tools, and finally the presenta-
tion of some experiments on grid platforms.

4.1 Experimental setup
In the remaining of this section, we use two distributed

platforms to analyze the behavior of TakTuk and other de-
ployment tools. The first platform, the single cluster plat-
form, is constituted of 100 nodes of the grelon cluster which
is part of the Grid5000 platform [14]. This cluster is made of
bi-processors nodes that contain two Intel Xeon 5110 (dual-
core 2.4 Ghz) and 2GB of RAM. Nodes are interconnected
using a switched Gigabit Ethernet network. The second
platform, the multi cluster platform, is constituted by 484
real nodes of Grid5000 (respectively 112, 47, 48, 70, 17, 25,
27, 60, 57, 7 and 14 nodes of the grelon, grillon, capri-
corne, sagittaire, chti, chicon, pastel, paravent, paraquad,
paramount and bordereau clusters). These nodes are made of
either one or two dual-core processors (clocked in the range
of 2.0 GHz to 2.6 GHz) and at least 2 GB of RAM. Distinct
cluster sites are connected by a 10Gb/s backbone provided
by RENATER (the French national network for research
and education). To scale to 2000 nodes, we virtualize these

real nodes: we use them several time as remote host in a
round-robin manner.

In all the experiments, nodes are configured with a clean
Debian GNU/Linux OS installation (unstable branch, Linux
kernel 2.6.24) that does not make use of any external server
(such as NFS, LDAP, DNS, etc.). This ensure that no
contention can occur due to external source. To measure
deployment time, we remotely execute the command true

which has a negligible execution time. All the scripts writ-
ten to run experiments and all the raw data we obtained
can be downloaded from the svn repository of the TakTuk
developers website, see [20].

4.2 Evaluation of the TakTuk engine overhead
In this section we compare the cost of contacting remote

hosts using TakTuk to the raw cost of the connectors used
(rsh or ssh). The overhead induced by TakTuk is due to:
the remote execution of a TakTuk instance, the internal me-
chanics for communication and I/Os redirections, and the
possible “self propagation” (when in use). This overhead can
be deduced from the comparison of a flat deployment using
TakTuk (work-stealing disabled) with the raw parallel exe-
cution of connection commands (as presented in section 2).
The figure 9 presents the time to complete the execution of
the command true on remote hosts with TakTuk depending
on the connector used (rsh or ssh) and the use of self prop-
agation or not. This experiment has been performed on the
single cluster platform presented in section 4.1.

taktuk rsh & self−propagation

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  10  20  30  40  50  60  70  80  90  100

Ex
ec

ut
io

n 
tim

e 
(in

 se
cs

)

Number of nodes

taktuk ssh
taktuk ssh & self−propagation

taktuk rsh

 0

Figure 9: TakTuk flat deployment cost depending
on connector and use of self propagation.

Compared to rsh, the total connection time T (calculated
as in section 2) is increased from roughly 10ms to almost
210ms and the part t, which cannot be overlapped, from less
than 1ms to 2ms. As T is a fixed cost in the deployment,
only t is relevant for asymptotic comparison. Thus, TakTuk
induces an overhead of roughly 100% with the rsh connector.
When using self propagation, T remains roughly the same
and t increases to 4ms, a 300% overhead compared to raw
rsh. Overall, because rsh is very light and efficient, TakTuk
overhead is comparatively significant.

Compared to ssh, the total connection time T is increased
from roughly 120ms to almost 250ms. For the part which
cannot be overlapped, we can notice that the beginning of
the curve is almost flat: the computations related to the
connections is hidden, overlapped with TakTuk execution.
For a fair evaluation of t, we should only consider a number
of connections above 20. This results in an increase of t

96



from 5ms to almost 7ms: a 40% overhead. When using self
propagation, T remains roughly the same and t increases to
more than 10ms, a 100% overhead compared to raw ssh.
Overall, the relative overhead induced by TakTuk is less
significant for computationally intensive connectors.

Regarding self propagation, the overhead of its use is very
reasonable considering that it enables distributed deploy-
ment without any installation of a TakTuk executable or
daemon on the remote nodes. In all the following experi-
ments, we do not use self propagation.

4.3 Comparison with flat deployment
In this section, we compare TakTuk with pdsh [3] on the

multi cluster platform. pdsh is a free clone of the dsh com-
mand included in the software suite of IBM clusters. pdsh

is a highly efficient tool that can perform flat deployment
of remote executions. It is written in C and uses a window
of parallel connection threads. As a flat deployment engine,
it requires neither the remote launch of subdeployment en-
gines nor any installation on the remote nodes. Connectors
used by pdsh are developed as plugin modules and develop-
ing a new one require little effort. rsh and ssh connectors
are included in the pdsh distribution. pdsh is available in
the Debian GNU/Linux distribution and is widely used in
clusters as an administration tool.

taktuk, window 15

 0.5

 1

 1.5

 2

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of nodes

pdsh, window 64
pdsh, window 128

 0

Figure 10: TakTuk compared to pdsh using rsh.

When using a fast connector such as rsh, the optimal de-
ployment is likely to be very close to a flat tree, and the
overhead of deploying the engine in TakTuk will be more
hindering than helpful. This is confirmed by the experiment
presented in figure 10, which reports the respective execu-
tion time of TakTuk and pdsh (using two different sizes for
the window) depending on the number of nodes. The per-
formance irregularities in this experiment are due to the het-
erogeneous nature of the multi cluster platform: the almost
flat parts match the addition of new nodes of the same clus-
ter, while the discontinuities match the addition of nodes in
a different cluster (contacted using the Grid5000 backbone).
The same pattern is then repeated as we use the same 480
nodes sequence for the virtualization.

We can notice that the performance of pdsh is highly de-
pendent on the window size, 128 is the best we have found.
This is less relevant for TakTuk, for which we observe around
10% of degradation for less appropriate window size (for this
slightly heterogeneous platform, a window size of 15 was bet-
ter than the default). As expected in this context, TakTuk
is outperformed by pdsh by roughly 350ms provided that

we use the correct window size for pdsh. We expect that
for a sufficiently large number of nodes, the asymptotically
logarithmic execution time of TakTuk will eventually give
better results than pdsh. Notice also that choosing an inap-
propriate window size for pdsh makes TakTuk become more
efficient much quicker.

taktuk, window 15

 5

 10

 15

 20

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of nodes

pdsh, window 64

 0

Figure 11: TakTuk compared to pdsh using ssh.

But the real targets of TakTuk are grids and heteroge-
neous platforms for which the available connection methods
often reduce to ssh (this is the case in Grid5000 which en-
forces either ssh or its own variant oarsh). In this context,
the connector requires significant computational power and
the optimal solution is far from a flat tree. This is confirmed
by the experiment presented in figure 11: in this experiment,
the performance of pdsh (with a window size of 64, the best
we have found) is badly hurt by its linear nature. Above
100 nodes, TakTuk is clearly faster, and the gap linearly
increases with the number of nodes.

4.4 Comparison with distributed deployment
In this section, we compare TakTuk with the only tool we

know which uses distributed deployment, gexec [8], on the
multi cluster platform. This tool requires the installation
of a daemon, gexecd, on all the remote nodes with admin-
istrative privileges. gexec uses its own connection protocol
that performs ssl authentication but does not encrypt data.
Thus, this is a protocol in between rsh and ssh. gexec is
part of the Ganglia toolbox for clusters [17].

taktuk, rsh, window 15

 0.5

 1

 1.5

 2

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of nodes

gexec, arity 2
taktuk, ssh, window 15

 0

Figure 12: TakTuk compared to gexec.

The deployment in gexec uses an n-ary tree determined
at launch from the list of remote hosts to contact. Knowing

97



in addition that gexec is written in C, it should outperform
TakTuk on homogeneous machines. The experiment pre-
sented in figure 12 reports the comparison between gexec

and TakTuk using rsh and ssh connectors. As expected,
gexec clearly outperforms TakTuk on the first 150 nodes
which belong to the same cluster. Above this number, the
platform starts being slightly heterogeneous and the perfor-
mance of gexec degrades: it ranges between the two TakTuk
variants (rsh and ssh). This constitutes a fairly good result
knowing that TakTuk is written in Perl and does not rely
on remote TakTuk daemons to perform its deployment. We
should also mention that, contrary to TakTuk, gexec fails
on a large number of virtualized nodes (4000 and more). We
do not know if the problem comes from gexec or from the
virtualization, but the lack of issue with TakTuk suggests
the former.

4.5 Deployment with failing nodes
Node failures often occur on very large platforms such as

grids. This is due to hardware and software failure rates
which translate into a non null number of crashed machines
for a sufficiently large number of nodes. It is therefore im-
portant, for a deployment tool targeted at grids, to handle
nicely nodes failure. This is the case for pdsh which reports
unresponsive nodes as connection timeouts occur. This is
not the case for gexec which cancels the whole deployment
whenever any connection fails, making it even more inap-
propriate for grids.

taktuk, tcp timeout, window 15

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  10  20  30  40  50  60  70  80  90  100

Ex
ec

ut
io

n 
tim

e 
(s

)

Number of nodes

taktuk, timeout 1s, window 15

 0

Figure 13: TakTuk in presence of faulty nodes.

Unresponsive nodes are simply excluded from deployment
by TakTuk which naturally adapts its deployment tree to re-
active nodes. By default, a node is considered faulty upon
termination of the connector before TakTuk initialization
(caused by built-in TCP timeout for rsh and ssh). Nev-
ertheless this default behavior can be overridden by using
TakTuk internal timers to cancel connection to unrespon-
sive nodes earlier. This is summarized by figure 13 which
reports TakTuk execution on a group of nodes including 10%
faulty nodes (rounded up uniformly distributed). The de-
ployment time is mostly dominated by the timeout value:
the responsive nodes perform the deployment flawlessly and
the failing nodes are the last ones that TakTuk waits in order
to complete its execution.

4.6 Large deployment on a hierarchical grid
The GRIDS@WORK plugtest [19] is an annual event or-

ganized by ETSI in collaboration with other international

Grid initiatives and several sponsors. The objective of this
event is to gather international teams competing for the res-
olution of a large computationally intensive problem. We
have been participating to this event for three consecutive
years (since 2006), using TakTuk to deploy a KAAPI [12]
parallel application. Each of our participation ended up with
a victory of our team thanks to KAAPI/TakTuk efficiency.

During the fifth edition of this event that occurred in 2008,
the challenge consisted of the computation of a financial
math computation problem. This problem is embarrass-
ingly parallel and the difficulty lies in deployment, nodes
performance heterogeneity, and network topology. The ex-
ecution platform consisted of Grid5000 and Intrigger [16]
(a Japanese hierarchical grid made of a cluster of clusters).
Connections to computing nodes had to be performed using
ssh on InTrigger and oarsh on Grid5000. Direct commu-
nication between nodes of InTrigger and nodes of Grid5000
was impossible (deployment on the whole platform had to
be subdivided into two subdeployments). During this event,
TakTuk successfully deployed a single KAAPI application on
more than 3600 distinct processor cores belonging to both
platforms. Of course the deployment were not hindered by
faulty nodes (several hundred of nodes were down due to
maintenance) and the application terminated successfully
despite two node failures during its one hour time slot. This
experiment assesses TakTuk scalability despite connectors
heterogeneity and partial network connectivity.

4.7 Features comparison
Our target, grids and large scale heterogeneous platforms

in general, is often constituted of several clusters with dis-
tinct administrative domains. Thus, installing executables
or daemons on remote nodes is not always possible. The
connection method to remote nodes should not be limited
to rsh or ssh but rather be easily extensible. Furthermore,
different parts of the target platform might require differ-
ent connection methods: a deployment tool for grids should
be able to mix several connectors in the same deployment.
Because of their large scale, target platforms always include
unresponsive nodes, this should not hinder the deployment
tool which is still expected to deploy on the subset of func-
tional nodes. Also, because of this large scale, the deploy-
ment should be distributed: this is the only way to scale to
thousands of nodes whatever the connection method in use.
All these important characteristics are compiled in table 1
for main deployment tools.

5. RELATED WORKS
In this section, we reference tools that also perform de-

ployment but are less relevant to this article and project
that use TakTuk to solve specific problems.

5.1 Comparable tools
Beside the tools specifically designed for remote execu-

tions deployment mentioned in the introduction (section 1),
there exists some systems, developed for other purposes,
that include deployment as a part of their functionalities.
This is the case of Slurm [23] which is a resources man-
agement system that is also able to perform deployment.
As we can expect, the deployment part in this tool does
not implement a very elaborated algorithm: this is a locally
parallelized deployment that connects to slurm daemons in-
stalled on all the remote nodes. As in the case of gexec,

98



No remote New Can mix Insensitive Distributed Compiled
installation connector several to nodes deployment engine

required plugin connectors failure
TakTuk [20] Yes Immediate Yes Yes Yes No
pdsh [3]/dsh Yes Simple Yes Yes No Yes
gexec [8] No No No No Yes Yes

Table 1: Features comparison table for several deployment tools.

we do not believe that such system are suited to grids and
heterogeneous platforms. Furthermore, its performance is
certainly similar to the performance of pdsh. The same ar-
guments hold for mpirun, the deployment command of MPI
applications [22].

Some deployment system alleviate the overhead of con-
nection process initiation by integrating it deeply into the
kernel code. This the case of GLUNIX [13] or Bproc [15].
These systems remind of single system image cluster op-
erating systems, they integrate the management of remote
processes directly into the kernel code. The deployment is
still linear, but the overhead is reduced to a bare minimum.
Nevertheless, these systems are so intrusive that we con-
sider them completely unsuited to grids and heterogeneous
machines. For this reason, we have chosen to compare Tak-
Tuk to pdsh which is less performant but also less intrusive.
There even exists tools that rely on hardware capabilities
to solve the issues related to deployment. This is the case
of the Storm project [11] which rely on Quadrics broadcast
facilities [18] to deploy in constant time. Because of this
hardware requirement, this project is obviously out of the
scope of this article.

5.2 Projects using TakTuk
TakTuk is used in several projects regarding distributed

platforms and parallel programming. In this section, we
present briefly the most relevant of these projects and the
problem TakTuk solves for them.

• KAAPI [12] is a parallel programming environment. It
proposes a programming model that abstracts paral-
lel tasks and the data they share. Using this model,
KAAPI then automatizes the creation and scheduling
of parallel tasks as well as the communications between
them. TakTuk is used as the basis of the KAAPI ap-
plication launcher: karun.

• OAR [6] is a batch scheduler for clusters. It is able to
manage “best effort” jobs as well as precise resources
cleaning and it performs resources matching using a
very elaborated selection scheme. TakTuk is used in
OAR as a monitoring tool: it is launched periodically
to check nodes availability.

6. CONCLUSION
In this article, we have presented the remote executions

deployment problem which is of utter importance in the con-
text of large distributed platforms administration and ex-
ploitation. We proposed a realistic communication model
for remote connections that we validated with experiments.
Thanks to this model and to well known results from the net-
work communications community, we derived an optimal al-
gorithm for optimal deployment on homogeneous machines.

Unfortunately, this algorithm does not adapt to heterogene-
ity and requires informations about the platform that are
difficult to compute.

Then, we presented TakTuk: a tool for large scale remote
executions deployment. This tool has been designed from
start to scale to grids and huge clusters. It relies on standard
point-to-point connection tools available on any high perfor-
mance computing platform, which makes it very portable.
It implements a dynamic adaptation mechanism based on
work-stealing that balances deployment tasks between local
parallelization and remote distribution. In principle, on ho-
mogeneous platforms, this algorithm should have the same
behavior as the optimal algorithm. Thanks to this dynamic
adaptation mechanism and to the resulting efficiency and
scalability, TakTuk is perfectly suited to interactive parallel
tasks (such as cluster administration, or parallel application
debugging and tuning) on both homogeneous and heteroge-
neous machines.

TakTuk is currently integrated in the software stack of
several project related to experimental grid (Grid5000 [14])
or parallel programing environments (KAAPI [12]). Com-
pared to other tools performing deployment tasks, TakTuk
exhibits a performance which is among the best. Furhter-
more, it is the only one to combine local parallelization and
distribution using an adaptive algorithm, which makes it in-
sensitive to platform heterogeneities or nodes failures. The
closest tool we have found, gexec [8] uses a fixed n-ary tree.
But because its tree is fixed, gexec is unable to cope with
heterogeneity and missing nodes. It also requires an instal-
lation on all the remote nodes and is restricted to its own
connection method. For all these characteristics, it is un-
suited to deployment on grids.

Nevertheless, as we mentioned in section 3, some investi-
gation are still required regarding the adaptation mechanism
used in TakTuk. To reach the perfect balance between lo-
cal parallelization and remote distribution, TakTuk needs to
evaluate the available computing power of its execution ma-
chine at a rate which is in the milliseconds timescale. In the
absence of such precise estimation, the adaptation mecha-
nism only results in a coarse approximation of the optimal
algorithm.

Another issue we noticed when using TakTuk is its behav-
ior regarding centralized services. When performing large
scale deployment, TakTuk might badly load centralized servers
such as ldap or nfs. Such servers are not necessarily designed
to handle massive requests bursts. For this issue, we fore-
see two solutions: avoiding using the service (this is easy
with nfs for instance) or taking this external contention into
account. Future work will also focus on this last option.

6.1 Acknowledgements
Experiments presented in this paper were carried out us-

ing the Grid’5000 experimental testbed, an initiative from

99



the French Ministry of Research through the ACI GRID
incentive action, INRIA, CNRS and RENATER and other
contributing partners (see https://www.grid5000.fr).

Special acknowledgements to Cyrille Martin who laid the
basis of adaptive deployment, implemented former (and now
obsolete) TakTuk engine and contributed to several ideas
presented in this article.

7. REFERENCES
[1] A. Bar-Nov and S. Kipnis. Designing broadcasting

algorithms in the postal model for message passing
systems. In ACM Symposium on Parallelism in
Algorithms and Architectures, pages 13–22, 1992.

[2] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. In
Proceedings of the 35th Symposium on Foundations of
Computer Science, pages 356–368, 1994.

[3] R. L. Braby, J. E. Garlick, and R. J. Goldstone.
Achieving Order through CHAOS: the LLNL HPC
Linux Cluster Experience. Technical Report
UCRL-JC-153559, Lawrence Livermore National
Laboratory, 2003.

[4] R. Brightwell and L. A. Fisk. Scalable Parallel
Application Launch on Cplant. In Proceedings of the
IEEE/ACM International Conference on
Supercomputing, pages 40–40, 2001.

[5] M. Brim, R. Flanery, A. Geist, B. Luethke, and
S. Scott. Cluster Command and Control (C3) Tool
Suite. In Proceedings of 3rd Austrian-Hungarian
Workship on Distributed and Parallel Systems in
conjunction with EuroPVM/MPI, 2000.

[6] N. Capit, G. Da-Costa, Y. Georgiou, G. Huard,
C. Martin, G. Mounier, P. Neyron, and O. Richard. A
batch scheduler with high level components. In Cluster
Computing and Grid 2005 Proceedings, 2005.

[7] T. Casavant and J. Khul. A taxonomy of scheduling in
general-purpose distributed computing systems. IEEE
Transactions on Software Engineering, 14:141–154,
1988.

[8] B. N. Chun. GEXEC, Scalable Cluster Remote
Execution System. http://www.theether.org/gexec.

[9] B. N. Chun. PSSH. http://www.theether.org/pssh.

[10] B. N. Chun and D. E. Culler. REXEC: A
Decentralized, Secure Remote Execution Environment
for Clusters. In Proceedings of 4th Workshop on
Communication, Architecture, and Applications for
Network-based Parallel Computing, 2000.

[11] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin,
and S. Coll. STORM: Lightning-Fast Resource
Management. In Proceedings of the IEEE/ACM
International Conference on Supercomputing, pages
1–26, 2002.

[12] T. Gautier, X. Besseron, and L. Pigeon. KAAPI: A
thread scheduling runtime system for data flow
computations on cluster of multi-processors. In
Proceedings of the 2007 international workshop on
Parallel symbolic computation, pages 15–23, 2007.

[13] D. P. Ghormley, D. Petrou, S. H. Rodrigues, A. M.
Vahdat, and T. E. Anderson. GLUnix: A Global
Layer Unix for a Network of Workstations. Software
Practice and Experience, 28(9):929–961, 1998.

[14] Grid’5000, An infrastructure distributed in 9 sites
around France, for research in large-scale parallel and
distributed systems. https://www.grid5000.fr.

[15] E. Hendriks. BProc: the Beowulf distributed process
space. In Proceedings of the IEEE/ACM International
Conference on Supercomputing, pages 129–136, 2002.

[16] InTrigger, a distributed platform for information
technology research for Information Explosion Era.
https://www.intrigger.jp/wiki/index.php/InTrigger.

[17] M. L. Massie, B. N. Chun, and D. E. Culler. The
Ganglia Distributed Monitoring System: Design,
Implementation, and Experience. Parallel Computing,
30(7):817–840, 2004.

[18] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.
Performance Evaluation of the Quadrics
Interconnection Network. Journal of Cluster
Computing, 6(2):125–142, 2003.

[19] Fifth GRIDS@WORK.
http://www.etsi.org/plugtests/GRID2008/GRID.htm.

[20] TakTuk, Large Scale Remote Executions Deployment.
general - http://taktuk.gforge.inria.fr, developpers -
https://gforge.inria.fr/projects/taktuk.

[21] T. von Eicken, D. E. Culler, S. C. Goldstein, and
K. E. Schauser. Active Messages: A Mechanism for
Integrated Communication and Computation. In 19th
International Symposium on Computer Architecture,
pages 256–266, 1992.

[22] J. W. W. Yu and D. K. Panda. Scalable Startup of
Parallel Programs over InfiniBand. In International
Conference on High Performance Computing, 2004.

[23] A. B. Yoo, M. A. Jette, and M. Grondona. SLURM:
Simple Linux Utility for Resource Management, pages
44–60. Springer Berlin / Heidelberg, 2003.

100


