Reduction of weight loss and tumour size in a cachexia model by a high fat diet.

Tisdale MJ, Brennan RA, Fearon KC
Br J Cancer 1987 Jul;56(1):39-43

An attempt has been made to reverse cachexia and to selectively deprive the tumour of metabolic substrates for energy production by feeding a ketogenic regime, since ketone bodies are considered important in maintaining homeostasis during starvation. As a model we have used a transplantable mouse adenocarcinoma of the colon (MAC 16) which produces extensive weight loss without a reduction in food intake. When mice bearing the MAC16 tumour were fed on diets in which up to 80% of the energy was supplied as medium chain triglycerides (MCT) with or without arginine 3-hydroxybutyrate host weight loss was reduced in proportion to the fat content of the diet, and there was also a reduction in the percentage contribution of the tumour to the final body weight. The increase in carcass weight in tumour-bearing mice fed high levels of MCT was attributable to an increase in both the fat and the non-fat carcass mass. Blood levels of free fatty acids (FFA) were significantly reduced by MCT addition. The levels of both acetoacetate and 3-hydroxybutyrate were elevated in mice fed the high fat diets, and tumour-bearing mice fed the normal diet did not show increased plasma levels of ketone bodies over the non-tumour-bearing group despite the loss of carcass lipids. Both blood glucose and plasma insulin levels were reduced in mice bearing the MAC16 tumour and this was not significantly altered by feeding the high fat diets. The elevation in ketone bodies may account for the retention of both the fat and the non-fat carcass mass. This is the first example of an attempt to reverse cachexia by a diet based on metabolic differences between tumour and host tissues, which aims to selectively feed the host at the expense of the tumour.