Technical Studies about Ketones and their Function in the Body

These studies are studies which revealed a lot about what ketones are for, and what they do inside on the body.



Effects of unbalanced diets on cerebral glucose metabolism in the adult rat.

al-Mudallal AS, Levin BE, Lust WD, Harik SI. Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
Neurology 1995 Dec;45(12):2261-2265

We measured regional cerebral metabolic rates for glucose and selected cerebral metabolites in rats fed one of the following diets for 6 to 7 weeks: (1) regular laboratory chow; (2) high-fat, carbohydrate-free ketogenic diet deriving 10% of its caloric value from proteins and 90% from fat; and (3) high-carbohydrate diet deriving 10% of its caloric value from proteins, 78% from carbohydrates, and 12% from fat. In preliminary experiments, we found that moderate ketosis could not be achieved by diets deriving less than about 90% of their caloric value from fat. Rats maintained on the ketogenic diet had moderately elevated blood beta-hydroxybutyrate (O.4 mM) and acetoacetate (0.2 mM), and a five- to 10-fold increase in their cerebral beta-hydroxybutyrate level. Cerebral levels of glucose, glycogen, lactate, and citrate were similar in all groups. 2-Deoxyglucose studies showed that the ketogenic diet did not significantly alter regional brain glucose utilization. However, rats maintained on the high-carbohydrate diet had a marked decrease in their brain glucose utilization and increased cerebral concentrations of glucose 6-phosphate. These findings indicate that long-term moderate ketonemia does not significantly alter brain glucose phosphorylation. However, even marginal protein dietary deficiency, when coupled with a carbohydrate-rich diet, depresses cerebral glucose utilization to a degree often seen in metabolic encephalopathies. Our results support the clinical contention that protein dietary deficiency coupled with increased carbohydrate intake can lead to CNS dysfunction.

Comments: too complex... read the abstract.



The regulation of ketogenesis.

Foster DW, McGarry JD
Ciba Found Symp 1982;87:120-131

Ketone bodies accumulate in the plasma in conditions of fasting and uncontrolled diabetes. The initiating event is a change in the molar ratio of glucagon:insulin. Insulin deficiency triggers the lipolytic process in adipose tissue with the result that free fatty acids pass into the plasma for uptake by liver and other tissues. Glucagon appears to be the primary hormone involved in the induction of fatty acid oxidation and ketogenesis in the liver. It acts by acutely dropping hepatic malonyl-CoA concentrations as a consequence of inhibitory effects exerted in the glycolytic pathway and on acetyl-CoA carboxylase (EC 6.4.1.2). The fall in malonyl-CoA concentration activates carnitine acyltransferase I (EC 2.3.1.21) such that long-chain fatty acids can be transported through the inner mitochondrial membrane to the enzymes of fatty acid oxidation and ketogenesis. The latter are high-capacity systems assuring that fatty acids entering the mitochondria are rapidly oxidized to ketone bodies. Thus, the rate-controlling step for ketogenesis is carnitine acyltransferase I. Administration of food after a fast, or of insulin to the diabetic subject, reduces plasma free fatty acid concentrations, increases the liver concentration of malonyl-CoA, inhibits carnitine acyltransferase I and reverses the ketogenic process.

Comments: too complex... read the abstract.



Possible interrelationship between gluconeogenesis and ketogenesis in the liver.

Kummel L
Biosci Rep 1983 Jul;3(7):643-646

Effects of various ketogenic substrates on gluconeogenesis from lactate were examined. D,L-3-Hydroxybutyrate (5 mM) stimulated gluconeogenesis by 41%, the effect being the same as that of 5 mM acetate (49%). No stimulating effect of acetoacetate was observed; conversely, acetoacetate (up to 40 mM) partially or completely abolished the observed stimulating effects of acetate, oleate, and 3-hydroxybutyrate. The results suggest that, in intact liver cells, pyruvate is transported into mitochondria in exchange for acetoacetate and that an interrelationship between gluconeogenesis and ketogenesis at the level of mitochondrial pyruvate carrier may exist in the liver.

Comments: too complex... read the abstract.