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1. INTRODUCTION

A rendering system with full global illumination can be a powerful tool for
designers who wish to visualize a complex object or space. The feedback
provided by such a simulation aids the designer in making intelligent
choices in materials, geometry, and lighting. To get a true feel for exactly
how a candidate building or car design will look, the user must be able to
walk around and view the design from every angle, checking out highlights,
shadows, and reflections as they move. (Figures 32 and 33 show a space
where reflected glare is particularly important.) Existing rendering sys-
tems do not provide this functionality. Conventional ray tracing cannot
support a mobile viewer at interactive rates because its view-dependent
calculation must start over at each new eye point. A radiosity solution
allows free movement, but only in diffuse environments. For accurate
visualizations of realistic environments, a system is needed that is both
interactive and progressive, exploiting all of the rendering and computing
power available to provide the fastest feedback possible to the designer.

Realistic interactive rendering is one of the long-standing goals in
computer graphics. Advances in specialized and general-purpose hardware
have brought us to where we can visualize complex environments in
real-time; shading, however,must either be precomputed or approximated
using local lighting models. Even when global illumination is precomputed
over surfaces, a diffuse reflection assumption is usually necessary to apply
the results in a walk-through or fly-through scenario [Cohen et al. 1988;
Sillion and Puech 1994]. Some recent techniques offer approximate solu-
tions to global illumination for specularly reflecting and refracting surfaces
in simple environments at interactive rates [Diefenbach 1996; Ofek and
Rappoport 1998]. Walter et al. [1997] used Phong shading and object-
specific local light sources to approximate the appearance of a nondiffuse
global illumination solution using hardware rendering. Although the re-
sults were not exact, especially for shadows, they produced some very
effective simulations of uncluttered environments. However, complicated
environments still present a serious challenge.

As geometry grows more complex and many surfaces are occluded, the
naive approach of rendering the entire scene into a depth-buffer becomes
too slow. Many approaches to improve depth-buffer rendering have
emerged over the years, including cell-based visibility precomputation,
hierarchical depth sorting, level of detail modeling, and billboarding.
Cell-based visibility algorithms work best when an environment can be
neatly partitioned into large cells connected by small portals [Airey 1990;
Teller and Séquin 1991]. Hierarchical depth buffers [Greene et al. 1993]
and depth sorting [Greene 1996] work better in open environments, but
offer little speed-up in scenes with few large occluders, such as forests.
Level of detail modeling addresses this problem, but automatic algorithms
for simplifying arbitrary three-dimensional objects are a challenge [Luebke
and Erikson 1997]. Billboarding takes advantage of texture-mapping hard-
ware by replacing complex objects with stand-up impostors, but these must
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be recomputed frequently to avoid artifacts [Schaufler 1998; Shade et al.
1996; Sillion et al. 1997]. None of these methods consider nondiffuse
illumination.

When geometric complexity is combined with complex lighting and shad-
ing, interactive rendering no longer seems possible. Hence some have
thought it best to forego geometry and sample the light field directly. The
image-based approach to interactive rendering has been explored by sev-
eral researchers in recent years [Ashdown 1993; Chen 1995; Levoy and
Hanrahan 1996; McMillan and Bishop 1995], including those who have
used simplified geometry in the process [Debevec et al. 1996; Gortler et al.
1996; Miller et al. 1998; Nimeroff et al. 1996; Pighin et al. 1997]. Lischinski
developed a method for interactive rendering that uses two ray-traced light
fields for diffuse and nondiffuse contributions [Lischinski and Rappoport
1998], and Bala developed a method for ray-traced walk-throughs with
guaranteed error bounds [Bala et al. 1999]. With the exception of Pighin’s
and Bala’s work, none of these methods make use of an online ray tracer or
other sample generator to refine the displayed image. Pighin’s method does
not reuse ray samples, and Bala’s technique does not display an image
until complete, leading to potentially long frame times and slow interac-
tion.

In this paper we present a new approach, which combines a holographic
scene representation with a parallel progressive ray calculation. The holo-
deck rendering system was first introduced in Larson [1998]. Our method
also resembles the recent work by Walter et al. [1999], where samples are
cached and displayed interactively in a continuous update cycle. However,
where Walter et al. keep no permanent record of computed rays, we assume
the ray computation is costly enough that persistent storage is worthwhile.
In our approach, rays are computed, cached, and eventually stored to disk
using a holodeck data structure—a spatial grid used to sort rays without
regard to sampling density. These rays are reused for subsequent views,
and additional rays may also be generated interactively. Each ray intersec-
tion distance is recorded along with the floating point color to enhance
display processing. This requires a total of 10 bytes per sample in our
implementation. Rays are clustered together into beams for efficient disk
access, so no intermediate processing or compression is required between
computing samples and using them. Typical holodeck files range from 50
Mbytes to 1 Gbyte, depending on resolution and the number of sections.
Although large, these data structures may be kept on CD-ROM or other
mass storage media for rapid access and rerendering, and do not need to be
kept in memory.

We start by describing our method, including the holodeck representa-
tion, the three-process program design, and basic display representations.
This is followed by an exposition of our results, where we give example
scenes, views, and timings. Finally, we conclude with some discussion of
the technique, and a few ideas for the future.
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2. METHOD

To assure optimal reuse of ray computations, we need a data structure that
allows us to rapidly store and retrieve ray samples in less time than it
would take to recompute them. We begin with the observation that,
although each ray has an origin point corresponding to the eye, its
computed radiance is valid anywhere along its length, and may be valid
behind the origin as well, so long as there are no obstructions.1 Since our
goal is to move about in a virtual environment, and motion happens most
naturally in unobstructed regions, we decided to combine the notion of a
hologram with an unobstructed region of free movement, which we call a
holodeck section. Rays will pass freely through such regions, and their
entry and exit points will be recorded along with their computed values.
Any view point within a region will access the rays that pass near it; thus
rays will be reused along their length to the greatest extent possible. This
is very similar to the light field and lumigraph constructs presented in
Levoy and Hanrahan [1996] and Gortler et al. [1996], except that there is
no “development” step needed between computation and display— rays are
stored and retrieved interactively.

Since only a portion of the environment is viewed at any one time, we can
greatly decrease our memory requirements by keeping beam samples on
disk when they are not being used and bringing them back into memory as
needed. Although we could leave this task to the operating system, we
found that the common algorithms for virtual memory management were
too expensive and inefficient for our application. We therefore created a
holodeck server process that manages one or more holodeck sections, keeping
the most recently used ray samples resident in a finite memory cache.

To compute ray samples, we use the Radiance rtrace program, which is
freely available, and does a good job computing global illumination in
complicated environments [Ward 1994]. This program also lends itself well
to parallel processing on multiprocessor and networked systems, which is
important for achieving good interactivity. Although we chose to use
Radiance, we could have picked any program that computes ray sample
values. Radiance evaluates specific view rays, but even a pure Monte Carlo
method, which generates random rays in an environment, could be used to
fill a holodeck. The end result captures the full light field, unlike density
estimation methods, which usually throw away directional information
[Shirley et al. 1995].

For each ray we trace, we store the computed radiance and the distance
from the entry point to the surface intersection, so that we can reproject
sample points onto our displayed image. This parallax correction minimizes
image blurring, which would otherwise be caused by rays not passing

1The physical unit of radiance is the quantity of light passing through a point in a given
direction, which is expressed in watts/steradian/meter-squared in Standard International (SI)
units. Radiance is constant along an unobstructed ray, which implies that there is no
participating medium. Although there are ways to overcome this limitation, we do not explore
them in this paper.
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exactly through our current view point. There will still be some problems
computing occlusion, but we can address these with some clever drawing
techniques, which are described in the section on display drivers (2.4).

Overall, our system normally consists of three logical processes: a holo-
deck server, a sample generator, and a display process. This arrangement
is diagrammed in Figure 1. The holodeck server controls access to the
holodeck file, and the display process controls access to the display,
keyboard, and mouse. One or more rtrace processes perform the actual ray
tracing, and interprocess communication flows through TCP/IP sockets.
The holodeck server may also be run without a sample generator if a
display-only function is desired, or without the display process for filling in
holodeck samples as a background calculation.

In this section, we first describe the holodeck data structure and how it is
set up in a scene. We then discuss the server process and how it handles
VM management and different calculation modes. Third, we discuss the
sample generator and describe its parallel processing and synchronization
methods. Fourth, we describe the display process and detail three varia-
tions that utilize different display representations. Finally, we discuss
coordination between the three logical processes.

2.1 The Holodeck Data Structure

The holodeck data structure stores information for all view rays that have
been computed for a particular scene. In its basic form, a holodeck section
is simply a gridded box, like the one shown in Figure 2.

Rays passing through a section will pass through two cells on two walls.
Distinct rays that pass through the same pair of cells in the same direction
are collected into an indexed beam. All rays for a particular beam are
stored and accessed together on disk, and a section directory records each
beam’s location and size. A holodeck file may contain multiple sections,
which represent different regions of free movement in the scene.2 These

2In an alternative interpretation, a section may enclose complicated objects for viewing from
the outside.

rtrace

Sample
Generator

(rtrace) Holodeck
Server

Display
Driver

Holodeck
File

Display &
Input

Fig. 1. Schematic diagram of holodeck-rendering system. Arrows show the flow of informa-
tion.
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section boundaries and grid resolutions are set up by the user based on
where the user wants to go and to see.

The total number of beams for an W 3 D 3 H gridded holodeck section is

N 5 2W 2D212W 2H 212D2H 218W 2DH 1 8WD2H 1 8WDH 2.

If the grid is too fine, the section directory becomes large and unwieldy,
taking too much room in memory and too long to update on disk. If the grid
is too coarse, ray bundles will not resolve visibility very well. Thus, it is
important to choose the grid dimensions wisely. We found grid sizes
between 4 and 24 on a side to work best, with a target N of 50,000 to
500,000. Note that the sample density is not related to the number of
beams in a section. Therefore, the holodeck places no limit on final image
resolution. The grid resolution only affects cache coherency and the initial
sample density.

Each section has a view class, interior or exterior, which dictates where
view rays originate and determines what geometry is visible. For an
interior section we wish to look out of, the rays originate at the exit wall.
Geometry outside such a section is freely visible from anywhere inside. It is
also possible to generate views from outside an interior section (or inside an
exterior one), and this is often done with no ill effects. Figure 3(a) shows
two possible views of an interior holodeck section. View A shows a typical
perspective, taken from the inside looking outward. View B, however, is
outside looking away from the section. So long as there is no intervening
geometry between the outer wall and the eye point to block the rays, the
beam samples taken from the holodeck will work fine.

For an exterior section we wish to look into, the rays originate at the
entry wall. Geometry inside such a section will be freely visible from
anywhere outside. Figure 3(b) shows two possible views of an exterior
section. View C is positioned inside the section, which is acceptable in this
case because there is no geometry behind it. View D is the only view shown
that misses samples, since part of its frustum does not intersect the

Fig. 2. A holodeck section as seen from inside. A ray passing from one grid cell to another is
stored together with other rays in the same beam. (A beam of three rays is shown.)
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section. If the viewer needs to see objects outside the section in that
direction, an additional section could be added nearby to cover these rays.

A holodeck consists of one or more sections, as described, which are
associated only by their locations in three-space. For example, multiple
interior sections might define regions of free movement in each room of a
house, as shown in Figure 4. The bottom of each section begins some
distance above the floor, so as to capture the geometry that is placed there.
By bringing the section walls in from the room geometry, we avoid
object-clipping problems with minimal restriction of movement. If an object
is unavoidably in our view space, we may either redefine our sections to
accommodate it, or render it directly as a local object using the method
described later in Section 2.4.6.

We find the described parameterization to be more natural in a walk-
through setting than light slabs [Levoy and Hanrahan 1996; Gortler et al.

C
B

A

D

Fig. 3. An interior holodeck section is shown in plain view (a) on the left, and an exterior
section (b) is shown on the right, with one example ray shown for each view.

Fig. 4. A cabin floor plan showing section grid placement and portals (portals are discussed
in Section 2.4.4).
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1996], which require six slabs to cover all views in a space,3 or spheres
[Camahort et al. 1998], which are awkward to place in most environments.
Because we adjust the sampling density on a per-beam basis in our method,
we are also less concerned about parameter uniformity.

If each holodeck beam contained the same number of rays, the angular
sample density would be highest in the section center and looking length-
wise down long sections (e.g., a building corridor), which corresponds well
to the natural viewing tendency during walk-throughs. However, the
number of rays for each beam need not be uniform, and the sampling
density can, and usually does, vary substantially over different parts of the
holodeck. In an interactive calculation, this density is driven by view
history, but may be assigned in any way desired during precalculation. We
typically use a beam’s volume as a base measure of its importance and
assign target ray densities proportionally, building up samples gradually
across all beams so that the density ratios are close to our targets no
matter when the precalculation is terminated.

In the holodeck cache, each view ray sample is encoded into ten bytes.
This encoding is detailed in Table I. The ray color is stored in the four-byte,
RGBE floating-point format native to Radiance [Ward 1991]. This format
covers a wide dynamic range, which enables us to compute an appropriate
tone mapping at display time [Larson et al. 1997]. We also record the ray
entry and exit points for our section grid cells, so we can compute the exact
origin and direction of each sample. Since each grid cell already has a fairly
specific location in the world, one byte per degree of freedom is enough to
get a very accurate ray specification. Together with the ray distance (as
measured from the entry cell), we can derive the surface intersection point
to reproject samples for any view.

To save space, the ray distance is stored as a 16-bit unsigned integer,
which encodes a linear value over a lower range (0 to 21121) and a
logarithmic value over an upper range (211 to 21621). The exact encoding
depends on the holodeck section size, whose diagonal length determines the
border between the lower and upper ranges. The step size for the logarith-
mic range is taken to match the linear step at the border, which is (1 1
2211). This gives a maximum encoded distance on the order of the section
diagonal times 1013, with an accuracy of 0.05%.

3 Assuming unidirectional rectangular slabs.

Table I. Ray Sample Encoding Requirements

Encoded Value Size

floating point color 4 bytes
position in starting cell 2 bytes
position in ending cell 2 bytes
ray distance 2 bytes
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A holodeck file consists of a global information header, followed by a file
offset for the next section directory, followed by the first directory. The last
section in the file is preceded by a zero offset pointer. A section directory
consists of the world coordinates for the section, grid dimensions, and a file
offset and sample count for each beam. After the first section, directories
may appear anywhere in the file, and beam data indexed by the directories
may be interspersed at random. If a holodeck file contains only one section,
the first offset will be zero, and all beam data will follow the section
directory. Figure 5 shows a holodeck file layout with three sections. For
clarity, only a few beam pointers are shown.

2.2 The Holodeck Server

The holodeck server is responsible for maintaining holodeck file consistency
and keeping a cache of the most recently accessed beams in memory. The
server also turns out to be the most convenient place to manage the ray
calculation and meet the demands of the display process, which is why it is
in the center of our system diagram (Figure 1). Most of the time, the server
does not require much of the CPU; it merely mediates display bundle
requests and keeps the ray tracing processes busy. There may be signifi-
cant time spent waiting for disk seeks and reads, however, which is why we
have to be clever about how samples are loaded and cached.

As we discussed earlier, holodeck beams are indexed based on grid cell
pairs for each section, and a directory marks the file location and number of
rays for each beam. A copy of this directory is kept resident in memory, and
is updated when new ray samples are written to the file. Initially, the
directory is empty. As ray samples are computed, beams are allocated from
the cache. In our implementation, between 1 and 21 rays are added to a
beam at a time, depending on how quickly rays are being computed.4 Once
the cache becomes full, beams are written to the holodeck file to free up
memory, in least-recently-used (LRU) order.

4 21 is the number of rays that fit into a 512-byte packet, which guarantees communication
flow.

ray 4
ray 3
ray 2
ray 1
ray 0

header

section 0
directory

section 1
directory

section 2
directory

 beam
bundles

Fig. 5. Holodeck file organization, showing section directories, which contain beam offsets
and sizes. Each beam consists of a set of contiguous ray records.
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The cache size is set appropriately for the host system, and is usually
between 8 and 24 Mbytes. When this limit is reached, beams are purged
from memory and written to disk as necessary. Deallocated disk slots are
tracked in a fragment list, which is coalesced and reused for other beams as
the calculation progresses. Nevertheless, the file may become fragmented,
and beams that are adjacent in the space of a section may end up nowhere
near each other on disk. Therefore, we run an optimizer after long precal-
culations to collate beams and eliminate fragments.

There are three basic server operation modes. In batch mode, rays are
calculated and stored to the holodeck file without display. The beam
computation order and density are determined by the world-volume of each
beam, since beams that cross greater distances and enclose greater vol-
umes of space are proportionately more likely to contain a randomly placed
view point. In display-only mode, sample values are read from the holodeck
file for display, but no ray calculation takes place. In interactive mode, ray
calculation and file access are driven by the display process, which tells the
server which beams it needs for its current view.

In all three modes, the server works from a list of requested beams, taken
either from the display process or derived from beam volumes in batch
mode. List entries specify the section, index, and desired number of
samples for each beam. The list is sorted in order of increasing computed/
desired sample counts. Since error is proportional to M 20.5 for M Monte
Carlo samples, this corresponds to a decreasing computed/desired error
ratio. On each iteration, one or more beam requests are removed from the
head of the list and a number of new samples is assigned to the sample
generator (assuming there is one). The number of rays assigned depends on
the average time required to compute each ray and the number of beams in
each queue, so that each ray queue can be emptied within about five
seconds. This was deemed important for system responsiveness—when
users move to new views, they should not have to wait more than a few
seconds for the computational focus to catch up. While the sample genera-
tor is catching up, the server sends the display process relevant rays from
the holodeck cache.

In batch mode, the holodeck is gradually filled at a density always
proportional to beam volume. Thus, there is no minimum time the calcula-
tion needs before useful information is put into the holodeck. The server
may be killed at any time and restarted in interactive mode without data
loss or compromise. This differs from most rendering computations, which
must proceed until they are done.

2.3 The Sample Generator

The holodeck sample generator evaluates view rays requested by the
holodeck server. These rays are computed in bundles of samples corre-
sponding to a particular beam, though the beams themselves are in no
predictable order. Ray origins and directions are sampled within each beam
by choosing 4 random variables [0–255] corresponding to the subgrid
coordinates. This algorithm is modified when we have an active display
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driver to restrict rays to pass within some specified distance of the view
origin. This improves the image convergence rate without unduly burden-
ing the holodeck server, which must derive sample locations very quickly in
order to feed multiple ray evaluation processes running in parallel. (See
Appendix A for a description of this modified sampling algorithm.) An
adaptive sampling technique could also be applied [Walter et al. 1999], though
this tends to bias the result [Kirk and Arvo 1991]. The lack of a nice 2-D image
plane to work with also makes adaptive sampling trickier, since none of the
more sophisticated interpolation techniques are applicable [Guo 1998].

Rays are evaluated by creating a two-way connection to the Radiance
rtrace program, which takes ray origins and directions on its standard
input and sends evaluated colors and distances to its standard output. In
our implementation, multiple rtrace processes may be invoked on a local
multiprocessor machine, with a separate duplex connection to each process.

Multiple rtrace processes share memory and data using a system-
independent, coarse-grained technique. Static data, such as the global
scene geometry and materials, are shared by parallel processes running on
the same UNIX host. The first process invocation loads and initializes all
scene data, then makes fork system calls to create an appropriate number
of child processes. Since child processes created in this way share memory
on a copy-on-write basis, all memory pages created before the first call will
be shared so long as they are not altered. In most cases, shared scene data
comprises more than 90% of the total memory requirements, meaning each
additional rtrace invocation adds less than 10% to the single-process usage.

Of the data created during rtrace execution, only the indirect irradiance
values cached as part of the diffuse interreflection calculation [Ward et al.
1988] must be shared to maintain linear speedup (i.e., avoid redundancy in
the ray calculation). This is accomplished through a semaphore-locked
ambient file that holds all indirect irradiance values computed by rtrace
across multiple sequential and parallel invocations. Each process flushes
its newly computed values to this file periodically, using the following
routine:

ambsync() begin
obtain write lock on ambient file
if file has grown since last write

then load values added since last write
end if
write new values to file
record file size for next check
unlock file
end ambsync

So long as this routine is not called so frequently that it creates
contention for the file lock, it will not adversely affect the performance of
parallel execution. We have tested the use of shared memory and the
common indirect irradiance file with as many as 24 invocations and have
not found contention to be a problem. The global illumination and parallel
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computation algorithms employed in Radiance are described further in
Ward [1994] and Larson and Shakespeare [1998].5

For each rtrace process, the holodeck server tracks the queue of beam
packets submitted for processing. This queue has a maximum length,
determined by the system’s pipe buffer size. Typically, about 400 rays may
be queued at one time without risking deadlock.To compute maximum
queue length, we divide this number of rays by maximum packet size,
which is 21 in our implementation. The actual size of each packet may be
adjusted downward to maintain interactivity, as described in the previous
section. Buffered I/O is flushed automatically when the maximum packet
size has been reached, or manually by sending rtrace a zero direction
vector. (Coordinated flushing is also necessary to avoid deadlock.) The
server’s interface to the ray calculation is very simple. A single routine is
given a list of packets to queue up, and it returns a list of finished packets.
The total number of packets available for queuing is determined by the
pipe buffer size, the maximum packet size, and the number of processes.
We write packets to the shortest queues first, and after the last packet is
queued, we call the UNIX select function to wait for the first packet to be
finished by any of our rtrace processes. In many cases, we get back several
packets, possibly from more than one process, which are all put in the
returned list.

Through the input parameter VDISTANCE, the user can control not what
a ray sees, but how rtrace evaluates distance. If VDISTANCEis set to False,
then rtrace computes the distance to the first object that is intersected. If
VDISTANCE is set to True, then rtrace computes the virtual distance for
each ray. In the case of diffuse and curved surfaces, this is the same as the
first intersection distance. However, when there is a flat, specular surface,
such as a mirror or a pane of glass, then rtrace returns the distance to the
object reflected in or visible through the specular surface. When this
intersection point is later reprojected for display, it will give a sharper
image than the first intersection, especially if the section grid is coarse and
the program has little time to converge. The disadvantage of using virtual
distance is that edges of specular objects may break up, and some reprojec-
tions may not be exact, especially if the specular object has a lot of
refraction. (We show some effects of this in Figures 22 and 23.)

Due to the simplicity of our queuing model and the nominal demands we
place on our sample generator, it is straightforward to adapt this system to
different computation environments. We could substitute another ray trac-
ing system for Radiance, or use a distributed network of machines to
perform our calculations rather than a multiprocessor host. Alternatively,
we could employ a massively parallel computer and communicate over a
single network connection.

5We cannot allow the server process to block when it submits a new packet for processing,
since it would be unavailable to read the rtrace output, which is the only way to release the
block.
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2.4 The Display Process

The display process is the most important component of our system,
because it is responsible for what the user sees and how the user directs
the simulation. Our overall goal is to provide an interactive walk-through
of a realistic virtual environment. For its part, the display process must do
the following:
(1) Accept user input and view manipulation
(2) Tell the holodeck server which beams to compute
(3) Create a reasonable image from returned beam samples

Of these three tasks, only the second one is unaffected by the choice of
graphics hardware. User input and view manipulation vary with the
available input devices and the interaction model; a head-mounted display
is different from a CAVE, which is different from a monitor with a
spaceball or a mouse. Likewise, the visual representation changes from one
output device to the next, especially if a stereoscopic display is available.
One of the advantages of our system design is the great flexibility it offers
in selecting the ray calculation and display methods.

This section describes the implementation of these three tasks on two
common graphics configurations: a color X11 display and an OpenGL
platform, both with a standard mouse and keyboard. The input and view
manipulations for these two drivers are identical, so we first discuss the
common input model used for the first two tasks. We then discuss three
alternate image representations we have implemented for the third task.

2.4.1 Input Model. The mouse is used to direct view movement and the
keyboard to enter single-letter commands in the display window. The
process starts with a default view in the center of the first holodeck section
(or outside for an exterior section). From there, the user usually rotates the
view and starts heading in some direction. In forward motion, the view
advances 10% closer per frame to whatever object is under the mouse
cursor as long as the button is held down. The view direction is held
constant, and the view center is adjusted so that whatever started out
under the cursor stays there as the view moves. This is extremely helpful in
minimizing wild, unintentional view motions as the reference object under
the cursor changes from frame to frame. Similarly, backing away from or
orbiting an object keeps the point under the cursor fixed. View rotation,
which keeps the view origin where it is, does not require visible geometry.
Even if no geometry is visible, the display driver will draw each of the
holodeck section grids during view motion to keep the user oriented. Often,
only part of a new view is drawn, since the driver does not request new rays
from the server until motion has stopped. A cache of ray values may be kept
in the driver’s memory to reduce latency and allow movement outside the
current view. Two user commands are provided to facilitate interactive
scene changes. A command is provided to kill the rtrace process(es) and
another to restart it after some change to the scene description. The
corresponding changes in the image dissolve-fade into view as new ray
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values are entered into the holodeck data structure. A third command is
provided to clear the holodeck contents. This is needed for substantial
scene changes in which ray values change radically.

2.4.2 Beam Selection and Convergence. To retrieve the appropriate
samples from the holodeck, the driver must first relate the user’s desired
view to a collection of beams to request from the server. To accomplish this,
we sample jittered view rays at low density and intersect them with the
holodeck section grid(s). A holodeck intersection test tells us which beam
each view sample belongs to, and we accumulate beam counts as we go.
From this information, we compute target beam densities corresponding to
our view pixels, which allow the server to assign calculation priorities such
that our display is refined uniformly over time. The driver must also
handle image convergence as the number of samples begins to approach the
number of pixels, while the viewer is stationary. If the driver gets a ray
sample that maps to the same (or nearly the same) pixel as a previous
sample, it checks to see which sample ray passed closer to the view origin.
The ray that passed closer to the origin will be more accurate in terms of
specular component, and is therefore preferable. As more and more ray
samples come in, the driver begins to pick and choose among them to derive
the highest quality image. This optimization is performed in parallel with
the local sampling procedure described in Appendix A. Because the locally
sampled rays are chosen to pass close to the view origin, this method tends
to cull out ray samples generated in earlier views and batch runs.

2.4.3 Image Representation and Display. As the requested samples
come in from the server, the driver must quickly assemble them into a
coherent image. During progressive refinement, the driver receives on the
order of a thousand samples per second. Immediately following a view
change, however, the server grabs whatever beams it has in memory and
on file, and sends them to the display driver at interprocess transfer rates.
The faster the driver can load these new samples, the quicker it will be able
to update its display and the better interaction it will provide for the user.
Since the server informs the driver when it goes into this “immediate
transfer mode,” we can improve performance by batching sample additions
between display updates.

The most important determinant of rendering quality is the representa-
tion chosen to reconstruct the image for display. This is a special case of the
classic two-dimensional image resampling problem. In our case, the sam-
ples are randomly distributed at a density typically much lower than the
displayed pixel resolution. We must quickly come up with a coherent
display from a sparse set of samples or we lose the interactive nature of our
calculation. This is where we can take advantage of available graphics
acceleration hardware.

In this section we look at three display driver implementations, each
using a different image representation. We first introduce a simple X11
driver that does not require any 3D graphics acceleration hardware. We
next describe two drivers designed to exploit available rendering hardware
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using OpenGL. The first driver renders a subset of the scene geometry using
OpenGL during view motion and reads back the depth buffer to resolve object
silhouettes once motion has stopped. The second OpenGL driver builds a
triangle mesh from beam samples, displaying Gouraud-shaded triangles both
during motion and afterwards during progressive refinement.

Our X11 driver builds a quadtree on the image plane from the beam
samples sent by the holodeck server. Each leaf of the quadtree contains at
most one sample. To render the image, we fill the rectangle corresponding
to each leaf with the color of that leaf’s sample if it has one, or an average
of its three siblings if it does not. An empty leaf will always have at least
one sibling that either has a sample or has children with samples, which
are themselves averaged if necessary. The result of applying this simple
drawing algorithm on a sparsely sampled conference room is shown in
Figure 10.

The quality of the rendering in Figure 10 is limited by two factors. First,
since we draw each rectangle in a constant color, the image appears blocky.
Second, we see a side effect of reprojecting each ray sample, based on its
calculated world intersection point, to the expected position in this view.
This parallax correction step avoids the unwanted depth of field associated
with light field rendering, but brings with it the potential for multidepth
sampling errors near object silhouettes, as illustrated in Figure 6. Since
our sample rays do not pass exactly through the eye point, we may get a
sample that is actually behind a foreground object when we reproject its
location. Because our quadtree does not know how to resolve 3-D shapes,
this results in image artifacts, appearing as chunky or feathered object
boundaries, as can be seen at the top of the chair-back in Figure 10.
Another major problem with a 2-D representation is handling motion,
because all of the samples must be reprojected to each view in transit,
slowing the animation. The following sections describe two drivers that
overcome some of these problems through the appropriate use of 3-D
graphics hardware.

Fig. 6. Multidepth values are occasionally returned by the server because beam samples do
not pass exactly through the eye point. The dotted line shows that the intersected world
coordinate should be occluded from this position.
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2.4.4 Voronoi Representation. When 3-D rendering hardware is avail-
able, we can use it to improve both view motion and progressive rendering.
During view motion, we can use the hardware to draw some or all of the
scene geometry using a local lighting model, then overwrite the final view
with properly shaded Voronoi regions using ray samples sent by the
holodeck server. Figure 11 shows our conference room rendered in OpenGL
using a single light source positioned at eye point. This is what our driver
displays during view motion. Once motion has stopped, the driver reads
back the depth buffer and uses it to cull incoming samples from the server.
If a reprojected ray sample has a depth value more than 2% different from
that computed by OpenGL, it is discarded as a multidepth sample.6 The
depth buffer is further used to constrain Voronoi regions to improve the
appearance of silhouette edges.

A Voronoi cell contains all points that are closer to a given sample than
they are to any other sample. A simple way to create a Voronoi diagram in
2-D using 3-D graphics hardware is to draw cones, where each sample
defines the apex and color of a cone, which is rendered in an orthogonal
depth-buffered mode as illustrated in Figure 7(a) [Haeberli 1990]. This
method has the further advantage that it is progressive, so we can add
samples continuously without having to do any special processing or
ordering. To accelerate cone rendering, we sort our samples into a low-
resolution grid over the display image, so that we know the approximate
local sample density. The density is then used to constrain the maximum
radius and number of vertices for triangle fans that approximate different-
sized cones. Our maximum cone uses 32 triangles and covers about 10% of
the screen; our smallest uses 4 triangles and covers 0.01% of the screen.

6The algorithm is insensitive to the depth epsilon, as long as the OpenGL rendering meets this
accuracy.

Fig. 7. Drawing cones as seen from above results in a Voronoi region around each sample,
illustrated on the left. The diagram at the right shows how we constrain our approximated
cones along a depth discontinuity.
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This is our basic algorithm for drawing Voronoi regions, but, as we
mentioned, these regions are constrained further using discontinuities in
the depth buffer retrieved from the hardware. We trace each edge of our
triangle fan-out from the sample position, stopping short of the maximum
radius if we reach a place where the depth jumps by 2% or more, as shown
in Figure 7(b). In this way we preserve silhouette boundaries, which are
critical to human shape perception. A low-resolution prepass on the depth
buffer allows us to determine where such tests are needed. Color disconti-
nuities could be resolved similarly by reading back the OpenGL color
buffer. Figure 12 shows our conference room samples rendered using the
Voronoi representation. The edges are better defined and the samples are
less blocky than with the quadtree approach. The time required to draw
each sample is slightly longer, depending on the graphics hardware avail-
able, but it is still quite short compared to the time to compute a ray. When
the cones are large early on in the sampling process, the driver takes a
little longer due to pixel fill, but it quickly accelerates as sample density
goes up and cone size goes down.

A potential problem with rendering the scene geometry during motion is
that it may be too complex to allow for good interaction. We can avoid this
problem by specifying a small relevant subset of the geometry to load for
each section, thereby avoiding long redraw times. However, careless appli-
cation of this solution will undermine multidepth sample culling, since the
depth values will be wrong where the geometry is missing. We therefore
create a small set of invisible “portals” beyond which we do not draw the
geometry. After view motion, we render the portal geometry into the back
buffer and use it to determine where to clear our depth values. Using this
method, portions of the scene behind the portals are drawn, but without
multidepth culling, which results in feathered edges, as seen in the
background of Figure 13. We may also use portal geometry to turn off depth
checking on planar specular surfaces, allowing us to use virtual ray
distances to reproject samples more accurately. Portals placed over the
windows, mirrors, and doorways of the cabin scene are shown in Figure 4
as thick gray lines.

The strength of this display driver lies in its ability to fully exploit the
available resources to produce a coherent image from the sample data, both
during motion and refinement. The cone-drawing approach provides a
simple, fast, and progressive means of interpolating radiance values. This
driver makes efficient use of OpenGL hardware to place ray samples
accurately on local geometry and provide real-time feedback during view
motion, yielding clean object silhouettes and good interactivity. However,
the driver still uses piecewise constant shading, and since we switch
representations for view motion, we suffer an abrupt change in lighting
when we start to move. Finally, since we need geometric information to cull
multidepth samples, we only get clean silhouettes when this additional
information is available. Our second OpenGL driver makes a different set
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of trade-offs by creating a triangle mesh directly from our ray samples and
rendering it in hardware using Gouraud shading.

2.4.5 Triangle Mesh Representation. In this display driver implementa-
tion, the rendering representation is a dynamic, 3-D triangle mesh whose
vertices correspond to the world space sample points. Figure 14 shows the
conference room samples rendered with a triangle mesh. The advantage of
such a representation is threefold. First, triangles are rendered and
Gouraud-shaded by the graphics hardware, providing barycentric interpo-
lation of radiance between spatially adjacent samples. Second, since the
mesh explicitly contains the 3D information for each sample, and not just a
representation of the projections for a particular view, the rendering
representation can be reused for subsequent frames. Finally, this represen-
tation can be utilized in environments where scene geometry is not readily
available, as it is derived entirely from the sample data.

In the Voronoi representation, the boundaries of the cone regions in the
image plane form the Voronoi diagram of the sample point set. In this
representation, we utilize the straight-line dual of the Voronoi diagram: the
Delaunay triangulation. Given a single view, we can construct a two-
dimensional Delaunay triangulation of the projected samples on the image
plane [Darsa and Silva 1996; Pighin et al. 1997; Shirley et al. 1995]. While
this basic approach provides a better interpolation of the radiance values,
the samples must be reprojected and the mesh reconstructed each frame to
provide a coherent image during viewer motion. If we utilize the projected
points to determine the mesh topology in two dimensions, but retain the
original 3-D information in the vertices, the result is a 2.5-D mesh
representation, which can be rendered from alternate viewpoints [Sillion et
al. 1997; Darsa et al. 1997]. This allows only limited view motion; artifacts
appear as soon as the viewer moves enough to reveal new areas in the
scene. Figure 15 illustrates the 2.5-D nature of the resulting mesh.

From a fixed vantage point, there is a one-to-one mapping between
visible world space points and their projection onto a sphere centered at
that viewpoint. In the mesh representation, we further exploit this 2.5-D
nature of the data: a Delaunay triangulation constructed on the sphere
provides the mesh topology, with the vertices coming from the 3–D sample
coordinates. We maintain a Delaunay condition on the mesh to improve
image quality and robustness of the representation. In addition to provid-
ing a reasonable interpolation, such a triangulation has the property of
maximizing the minimum angle, and therefore minimizes rendering arti-
facts caused by long, thin triangles. Such triangles can also prove problem-
atic during the computation and manipulation of the mesh, as they are
prone to producing round-off errors and inconsistencies in the calculations.

Given the initial view, a unit sphere is centered at the eye point. This
initial point is called the “canonical view,” and may or may not coincide
with the current eye location as the simulation progresses. A base icosahe-
dral mesh is created that covers the surface of the sphere. Given a new
sample, we perform point location to find the existing spherical mesh
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triangle that its projection intersects. If the projection of the new sample
falls within some epsilon distance of an existing sample, the sample whose
direction passes closer to the current view direction is maintained to
improve convergence. We also perform a heuristic test based on the relative
depth of the nearest neighbors to reject possible multidepth samples that
could produce visibility errors if introduced into the mesh. If accepted, the
sample point is inserted into the triangle, creating three new triangles if
the new sample falls interior to an existing triangle, or four if it falls on an
edge. The Delaunay condition is tested and reasserted if necessary. The
algorithms we developed are designed to be as efficient as possible, while
still maintaining a good quality representation that is also robust. We
discuss the relevant steps below.

We maintain a separate quadtree data structure to accelerate point
location. Associated with the view sphere is an octahedron in canonical
form (origin at the canonical viewpoint, corners aligned with coordinate
axes) that subdivides the sphere surface into eight uniform spherical
triangles. A triangular quadtree is created on each octahedral face. Figure
8(a) shows a simple spherical mesh, and Figure 8(b) is a representation of
the corresponding quadtree. Each quadtree cell contains a list of the
samples that fall in that cell. Given a new sample point, we first convert it
into integer barycentric coordinates relative to the triangle forming the
quadtree root for the appropriate octant. The quadtree is then traversed
until the appropriate leaf is located. This operation is efficient, requiring
only integer shifts and adds at each level.

Once the leaf is located and before the new sample is inserted, we take
the first sample stored in that leaf’s set and from that vertex begin a walk
along the mesh surface in search of the spherical triangle containing the
new sample. In the case where the leaf cell contains no samples, the search
recursively pops back up in the quadtree traversal until an occupied leaf is
found (see Figure 8(b)). Each mesh sample contains a pointer to one of its
adjacent triangles. This triangle is retrieved and tested to see if it encloses
the new sample. The position of the point is compared against the planes of
the great circles forming the spherical triangle. If the point lies inside of all
three planes, it is accepted as being inside the triangle. If any one of the
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Fig. 8. (a) Spherical mesh and (b) quadtree structure. The projection of a sample point onto
these two structures is shown. The sample from the highlighted quadtree cell is chosen for the
walk, since the intersected cell is empty. (c) Delaunay point-in-cone test: TRUE if ~f , u! i.e.
s3 is interior to cone defined by vp, s0, s1 and s2.
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tests fail, the search traverses to the triangle that is adjacent across the
plane for which the test failed. We are guaranteed that there will be an
enclosing triangle because the surface of the view sphere is completely tiled
with spherical triangles and, similarly, due to the 2D nature of the
topology, we are guaranteed to converge upon the correct triangle, without
revisiting any triangles along the way.

After any change to the mesh topology, we check to see if the Delaunay
condition still holds. A triangle satisfies the Delaunay condition if the
circumcircle of the triangle contains no other sample points [Preparata and
Shamos 1985]. In two dimensions, this condition can be verified with a
point-in-circle test; in the spherical environment, we utilize a point-in-cone
test. Given a triangle with vertices v0, v1, v2 and its adjacent neighbor
with vertices v2, v1, v3, the test is whether v3 lies within the cone formed
by the canonical view point vp and v0, v1, v2. The triangle vertices are
projected onto the view sphere, yielding points s0, s1, s2, s3 (see Figure
8(c)). A point lies in the cone if the angle between the cone center ray r and
s3 is less than the angle between r and one (any) of the vertices s0, s1, s2.
The ray defining the cone center is equivalent to the normal to the plane
passing through s0, s1, s2. After the addition of each new sample, the
point-in-cone test is performed against the sample point and all adjacent
triangles. If the test fails, an edge swap is performed in the quadrilateral
formed by the two adjacent triangles [Guibas and Stolfi 1985; Lischinski
1994]. The worst case for swaps performed at insertion is O~n!, where n is
number of samples in the mesh. On average, we have found the number of
edge swaps per insertion to be around 2.8, independent of the number of
samples. Sample points may also be deleted from the mesh when a better
sample is found for the same image location. In this case, the sample is
removed, as well as all of its adjacent triangles. The resulting hole is
retriangulated, with the Delaunay condition reasserted for all new triangles.

One of the advantages of this representation is that it is a valid 3-D
triangle mesh that can be transformed with new views and rendered
directly by the hardware. After each view change, the current mesh is first
rendered. To optimize the rendering, we utilize software view frustum
culling and OpenGL display lists. Both techniques make use of the spheri-
cal quadtree data structure. To perform culling, each of the 6 faces of the
current view frustum is projected onto the spherical quadtree. All of the
samples stored in each cell intersected by one of the frustum faces, and all
triangles adjacent to those samples, are marked as potentially visible. This
produces approximate visibility: it will include triangles that are not visible
and may leave out visible triangles, but only small triangles around the
periphery of the view frustum. We have not noticed any visible artifacts
from omitted triangles in practice, and therefore employ the relatively
inexpensive culling to optimize the rendering.

For each of the visible cells, the associated triangles are rendered into an
OpenGL display list. As the view changes, the display lists for previously
seen portions are reused, and new display lists are rendered and stored for
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subsequent use as new cells become visible. For lower-end machines, we
have also implemented an approximate rendering scheme based on the
quadtree, which is invoked if the frame rate drops below a specified rate.
The approximation traverses the quadtree to a specified level and renders
the triangles forming the quadtree cells, using an average of the samples
stored in the cell as an approximation for the vertex depth and color. The
level is chosen dynamically to give as much detail as possible while
maintaining a minimum frame rate.

When the view is static, the mesh and the display are incrementally
updated as more sample points are received for the same view. Each batch
of new triangles overwrite the image of the triangles that they are replac-
ing. We utilize a painter’s approach in the incremental display algorithm:
the depth buffer is disabled, the new triangles are depth-sorted, then
rendered back-to-front. When the canonical viewpoint corresponds to the
current eye point, depth testing is unnecessary, but these two points do not
always coincide. The mesh constructed from a canonical viewpoint is valid
for all viewing configurations with the same eye position. For small view
motions, relative to the distance to the viewed sample points, the mesh is
reused. With this approximation, errors appear in the image where por-
tions of the environment are occluded relative to the canonical viewpoint,
but visible to the current eye point (or vice versa). We minimize these
errors by reconstructing the mesh once the viewer moves a substantial
distance away from the canonical viewpoint. This process can be slow if there
are many samples, and therefore we first cull the samples to the new view
frustum and only reinsert those samples that are relevant to the current view.

The mesh representation provides a reasonable interpolation of the
sparse sample set available at start-up and the image is progressively
refined as more information is received. In the limit, the image converges
to the screen resolution as the mesh triangles refine to subpixel size. The
most notable artifact in the resulting images is the lack of sharp edges,
which is noticeable even in higher resolution images. Running on an SGI
O2 workstation, about 10,000 samples can be added to the mesh per second.
This rate is sufficient to keep up with a single ray-trace process during
progressive refinement, but is not able to update the display and represen-
tation as fast as the server can deliver samples in the case of cached rays,
or multiple ray-tracing processes.

Compared to the Voronoi version of the display driver, the triangle mesh
gives us a smoother and more consistent representation, especially during
view motion, and avoids the need for separate scene geometry. On the other
hand, the triangle mesh construction can become a performance bottleneck,
especially after large view motions. The appropriate choice of driver de-
pends on the needs of the application.

2.4.6 Display Options. Each driver supports an option for tone mapping
based on human color and contrast sensitivity, so that the display corre-
sponds more closely to what a person would be able to see in a real
environment. The Voronoi and triangle mesh drivers also support options
for stereo display and local, dynamic objects. Before it writes to the display,
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the driver must map the original floating point colors it gets from the
server into RGB coordinates. This is a dynamic version of the image
tone-mapping problem [Tumblin and Rushmeier 1993]. For the sake of
speed, and because it can account for human visual response and extremes
of dynamic range, we apply the histogram adjustment procedure of [Larson
et al. 1997] in our drivers. In camera mode, we use an optimized brightness
mapping that attempts to make all luminance levels visible over the
current image, regardless of whether or not they would be visible in reality.
We gather the requisite brightness histogram as samples come in from the
server and update the computed tone mapping at the user’s request/
convenience (e.g., on full-screen redraws). In human tone-mapping mode,
our method takes into account human color and contrast sensitivity,
presenting a display that roughly corresponds to the real-world visibility a
human observer would experience in the environment being simulated.

Stereo display requires adding a second eye point to the computation of
beam requests and handling the returned samples appropriately. In the
case of the Voronoi representation, the samples are inserted into two lists,
one for the left eye and one for the right eye. Most samples go into both
lists, but the different left and right depth maps affect which samples are
used and how they are drawn near silhouettes. In the triangle mesh driver,
the returned samples are all treated the same and used to build a single
mesh, which is then rendered in stereo. It is relatively straightforward to
extend these algorithms to handle CAVEs and other multiview environ-
ments [Cruz-Neira et al. 1993].

One drawback of our holodeck implementation is that the ray cache is
only valid if the scene is static. However, we can partially overcome this
limitation by implementing local dynamic objects in the drivers themselves.
These objects are rendered directly in OpenGL, using local lighting derived
from the holodeck environment, similar to Walter et al. [1997]. For each
object in an interior section, we query the server for all precomputed beams
that pass through the object’s center, then average and group the brightest
of these beams into as many as 8 light sources, putting the rest into an
ambient component. Since each position gets its own local lighting, the
rendered objects will exhibit the appropriate brightness distribution. By
caching this information at each distinct object position, we can quickly
handle small object motions or rotations without having to requery the
server. The objects do not cast shadows, either back on themselves or into
the holodeck environment, but they otherwise appear consistent with the
rendered samples from our static scene.

Figure 16 shows a wastebasket thrown into a cabin scene and illumi-
nated by local light sources approximated from holodeck samples. Since all
the light in this scene enters through the windows, the sides facing away
from the window are darker. We can rotate this object in place using the
computed lighting, but if we translate it significantly, we must recalculate
the lighting from the holodeck based on its new position. For specular
materials, we could also compute a sphere map or cube map from the relevant
holodeck samples to further improve realism [Voorhies and Foran 1994].
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2.5 Process Coordination

Good coordination among the holodeck server, the sample generator, and
the display process is needed to keep everything running smoothly. We
could easily deadlock by waiting for a process that is waiting for us. To
insure against this, we use the following process model:

(1) The server waits for ray values to come back from rtrace and checks
the display process for any requests using a nonblocking read once new
rays have been delivered. If there are no further beams to compute, the
server waits for input from the display process.

(2) The display process waits for input from the holodeck server and the
user with equal priority, updating the image before each call to select.

(3) The display process is permitted to send short intermittent requests to
the server. If the display process has a long request to make, it first
puts in a request for the server’s attention. While waiting for an
acknowledgment, the display process continues to load packets sent by
the server.

(4) The display process may request a shut down, but the server makes the
final decision. Once the display process receives a order to shut down, it
must quit immediately.

The above rules are modified if there is no calculation process or no
display process. If there is no ray calculation, the server waits on the
display process alone, sending it whatever relevant rays it finds in the
holodeck file. If there is no display process, the server creates its own list
based on beam volumes. While the user is changing views with the mouse,
the server process may stall because its socket to the display backs up. This
is not a problem, though, because the display process will get back to
reading from the server once motion has ceased, and there may be no need
for the old beams in the new view, anyway. A typical interactive calculation
with all three logical processes is detailed in Appendix B.

3. RESULTS

Figure 17 shows the grid for an exterior holodeck section surrounding a
3-dimensional chess game. What is enclosed by the section grid is visible
from the outside, since the section type is set to exterior. Figure 18 shows a
view of the holodeck using the Voronoi driver, generated from scratch on a
single processor SGI Octane in about ten seconds. Figure 19 shows the
same view after a minute. A model such as the virtual sculpture in Figure
20 simply cannot be rendered using radiosity or multipass methods [Dief-
enbach 1996] because it contains curved refracting surfaces, and most of
the detail we are interested in is inside a solid block of glass. This image
was rendered from scratch in a few minutes on an SGI O2 workstation. The
same rendering can be produced in this time by the Radiance rview
program; but as soon as the view changes even slightly, the rendering must
be started over completely. The holodeck reuses rays whenever and wher-
ever possible, providing interactive movement and realistic feedback. Thus,
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the user does not hesitate to move about freely and explore the space. This
combination of accuracy and free movement is not provided by any other
rendering method.

In Figure 16, the scenery outside the window is difficult to render
directly even on the most advanced graphics hardware, because it contains
over 500 million triangles. Because we only need to draw the visible
samples returned by the holodeck server, displaying this image takes only
a few seconds on an entry-level system.

Figure 21 shows what happens with the holodeck when we take a
vantage point that is outside all sections using the quadtree driver. Here
we see our cabin model from a position over and between the living room
section and the bedroom section. We see the result of rays that begin at the
top or outside of each section and intersect the wall or floor below. Because
the sections are within the room boundaries, the walls and ceiling are
invisible, giving us a kind of X-ray vision. The geometry between sections is
also invisible, so we see nothing of the wall and doorway that lie between
the two rooms.

Figure 22 shows a low resolution view of the bathroom mirror with the
VDISTANCEvariable set to False. Because the ray distance to the mirror
itself is returned by rtrace, our display driver reprojects points on the
mirror, regardless of what they reflect. By setting VDISTANCEto True, the
distance to reflected objects is returned by rtrace instead, and we get the
sharper reflection shown in Figure 23. In cases where the reflecting objects
are very small, silhouettes may break up due to multidepth samples at the
mirror edges as described in Section 2.4.3. This is one reason we might
want to set VDISTANCE to False, especially with the quadtree and mesh
drivers, which are more sensitive to this problem.

Figure 24 shows multiple interior section grids in a proposed redesign of
the Office of Environmental Policy at the White House. Note how the
section walls intersect geometry and extend into the hallway. In the
hallway itself, the user can move from one office section to the next,
possibly passing between sections. Because we can draw from sections
behind as well as in front of us, this works fine. Figure 25 shows an image
taken from the hallway, where samples are being retrieved from a holodeck
section lying just behind our view point. Because this scene contains
specular surfaces and an indirect lighting system, it would be extremely
difficult to render it in hardware, and although the geometry is not very
solid at this early stage, the lighting and overall feel of the space are
beginning to emerge.

Figure 26 shows a terminal in the end office with a poor task-lighting
arrangement. We cannot really tell how bad it is, though, until we shift our
view point to that shown in Figure 27, where the specular reflection
becomes more visible. For a rotation this large (above 20 degrees), the
quadtree and mesh drivers ignore their locally cached samples and use only
new ones sent by the holodeck server. For smaller moves, the display
process gradually updates the image with new rays sent by the server, and
the view-dependent highlight dissolves out of its old position and into its
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new one. (The Voronoi driver shown in this image always gets new samples
from the server, since it has no local cache.)

Most of the figures shown in this paper were generated on a single-
processor workstation with low-end graphics. Using a multiprocessor plat-
form with faster graphics hardware, we can achieve better interactivity in
more challenging environments. For example, we employed a 16-processor
Onyx2 to compute a daytime holodeck of the same OEP office space. To
resolve the complicated interreflections, we ran 14 copies of rtrace for 20
hours to calculate about 83 million view rays, which went into an 820
Mbyte holodeck file. In all, over 1.4 billion rays were traced to compute the
light field, and 235 thousand indirect irradiance values were recorded-
[Ward et al. 1988; Ward 1994]. Viewing the holodeck interactively, our
server accessed an average of 41,000 view rays per second from the
holodeck for each new view, and computed 1200 rays/second continuously
from its 14 rtrace processes. In both batch and interactive mode, CPU
utilization was over 99% for each running copy of rtrace. In interactive
mode, the free processors got light duty from the holodeck server and
display process, except during and immediately after view changes, when
the display process was quite busy.

Figures 28–31 show an interactive sequence taken from a walk-through
of the daylight OEP office using the triangle mesh driver. Figure 28 uses
samples taken from the precomputed holodeck. Figure 29 was captured
during movement to a new view. Figure 30 is what we see immediately
after releasing the mouse; since the view has rotated more than 20 degrees,
the mesh driver ignores much of its local cache. Half a second later, the
server has retrieved some better samples from the holodeck file; the
resulting image is shown in Figure 31.

The air-traffic control tower shown in Figures 32 and 33 was rendered
using the Voronoi driver on a 24-processor SGI Onyx2 with IR graphics. In
a precalculation that achieved 96% linear speedup running 24 rtrace
processes over 2 hours, we produced a 300 Mbyte holodeck file that
contains as much detail as shown Figure 32 at every eye point within the
interior section, covering most of the control room. Each new view takes 3
seconds to retrieve and display 100,000 precalculated samples, and given
another 30 seconds, improves to the resolution shown in Figure 33. Al-
though this model is fairly complex, with 650,000 surfaces and many large
textures, the real problem for traditional hardware rendering is its scale.
The mountains on the horizon are eight miles away, and we want to render
them with foreground objects closer than a foot. That is a ratio of 50,000:1,
which is more than most depth buffer hardware can handle without serious
errors. Because the holodeck samples have a depth complexity near 1, this
problem is avoided. However, the most important benefit for this particular
design application is the accurate prediction of lighting and contrast
visibility as provided by our global illumination and tone-mapping meth-
ods. These features enable the user to make important design decisions
regarding tower equipment and window shades, which could ultimately
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affect air-traffic safety. Table II shows interactive display rates for various
hardware, drivers, and scenes. From these numbers, we see that the
holodeck recall rate is not strongly affected by scene complexity or the
presence of a progressive ray calculation. However, there is a cost associ-
ated with improving the display representation, as we move from drawing
quadtrees to Voronoi regions to a Gouraud-shaded mesh.

4. CONCLUSIONS

The holodeck ray cache provides an interactive framework for progressive,
view-independent ray tracing with hardware rerendering. By decoupling
the sampling method from the display method, we can take full advantage
of the available processor, graphics, and display hardware. Global illumina-
tion is computed by a physically-based ray tracer and cached for quick
rerendering, providing an accurate impression of lighting from any view point.

Using the holodeck, a designer can interactively navigate a scene, evalu-
ate the lighting, look for sources of glare, and make design decisions with
confidence that the displayed image is a reliable predictor of reality. Unlike
progressive radiosity, we are not limited to simple, diffuse models, and
unlike light field rendering, we do not need to compute the entire holodeck
before viewing it. The user spends only as much time rendering as they
need to make their evaluations, and they can always go back for more.
Other rendering methods do not offer this combination of physical accuracy
and user convenience.

Due to the modularity of our system, it is easy to add or improve the
different components. We intend to further refine the triangle mesh driver
to make it faster, provide mesh segmentation and layering to improve
object silhouettes, and extend it to handle continuous motion for head-
mounted displays. We would also like to run the holodeck on a massively
parallel machine, such as the Cray T3E, to tackle some currently intracta-
ble lighting problems. Finally, we plan to experiment with captured rather
than ray-traced holodeck samples, and mix synthetic and real worlds with
mutual illumination.

Table II. Holodeck Performance for Different Configurations and Scenes. (See conf. in
Figure 10, cabin in Figure 13, tower in Figures 32–33.) Interactive rendering and recall

rates are in samples/second. Rendering rates include ray-tracing and display time.
Precomputed sample recall rates are averaged over many view motions, and include disk,

cache and interprocess transfer time.

Machine Driver Scene #proc Render Recall

O2 QTree Conf 0 0 15,000
O2 QTree Conf 1 140 13,000
O2 Vor Conf 1 130 6,500
O2 Mesh Conf 1 112 3,200
O2 Vor Cabin 1 410 5,900
O2 Vor Tower 1 180 9,200
Onyx2 Vor Tower 1 360 30,000
Onyx2 Vor Tower 21 6500 35,000
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APPENDIX

A. VIEWPOINT PROXIMITY SAMPLING

During batch holodeck calculation, rays are generated randomly within a
beam by choosing uniformly distributed points on the entry and exit cells
and taking the ray that passes between them. This is a quick initialization
requiring essentially four calls to the random library function per ray.
During an interactive calculation, however, we need a sampling algorithm
that keeps rays within a desirable distance of the eye point to accelerate
image convergence. The simplest such algorithm is rejection sampling, where
we reject any candidate ray that does not pass within the specified distance.

Unfortunately, rejection sampling can be quite expensive for certain
viewpoints that have a relatively small allowed cell intersection area, such
as the one shown in Figure 9. If we have to sample many rays to come up
with one valid candidate, we will spend longer determining which rays to
trace than we spend tracing them. This is in fact what happened when we
first tried this technique. We decided that a more intelligent direct sam-
pling method was needed.

Ideally, we would like to know the convex hull of all rays that intersect
the entry and exit cells and also pass through a specified sphere around the
eye point. We might then be able to sample rays restricted to lie within this
convex hull. Unfortunately, neither the determination of such a hull or the
sampling of rays within it are tractable problems, so we employ an
approximation. Our compromise sampling algorithm proceeds as follows:

(1) Intersect a cone defined by one corner of the exit cell and the sphere
around the eye point with the entry wall.

(2) Find the minimum and maximum extents of the resulting ellipse within
the bounds of the entry cell.

(3) Repeat step 1 using the opposite corner of the exit cell.

Exit

Entry

A

B

Eye

Fig. 9. Extremal rays showing for a cell pair corresponding to a beam, the region where legal
rays might originate within the entry cell (thickest line segment). A single example sample ray
is shown.
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(4) Find the minimum and maximum extents of the second ellipse and use
them to extend the region found in step 2.

(5) If the above results in a null region, default to uniform beam sampling.

(6) Choose a ray origin within the determined entry region (point A in our
figure).

(7) Intersect the cone defined by this entry point and the eye sphere with
the exit wall.

(8) If the resulting ellipse does not share area with the exit cell, increment
a counter and loop back to step 6 if counter is less than N; otherwise
default to uniform sampling.

(9) Choose an exit point within the determined region; this defines our ray
(A 3 B in our figure).

The breaks in steps 5 and 8 are required because this algorithm is
imperfect, beginning with step 1. We only use two corners of the exit cell
when in fact we should use a continuous sampling along all four edges to
determine the exact candidate entry area. However, two corners are
usually enough, and much cheaper than a large number of ellipse sample
calculations. The failure to include the whole area sometimes results in
failure at step 5, in which case we fall back on the original uniform
sampling algorithm, which does not guarantee the ray will pass within the
desired radius of the eye point.

Because we are usually sampling several rays at a time within the same
beam, we do not need to repeat steps 1–5 for each ray, but can use our
region computed in step 4 to run repeatedly through steps 6–9. When step
8 fails for a given ray, we iterate rather than giving up right away, as there
is still a good chance of getting our sample the next time around. We set the
iteration limit (N) to the number of desired sample rays plus 2 for the
entire beam packet to ensure that we do not waste too much time resam-
pling when failure dominates.

B. PROCESS COORDINATION EXAMPLE

The startup sequence for a typical interactive session with the three logical
processes, holodeck server, sample generator, and display, proceeds as follows:

(1) The user starts the program, specifying two rtrace processes and the
desired driver.

(2) The holodeck server opens the holodeck file, opens the display driver,
and starts two rtrace processes.

(3) The first rtrace process loads all of its scene files and octree and
initializes its data structure, then forks itself.

(4) The second rtrace process attaches its i/o descriptors to the child of
the first rtrace, so the processes effectively share memory on a
copy-on-write basis.
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(5) The display driver gets the holodeck section grids from the server and
sets up a default view. It computes the relevant beams for this view
and prepares a long request for the server.

(6) The server, having no beams to work on yet, has been waiting on the
display process for input.

(7) The display process requests the servers attention and the server
sends an acknowledgment.

(8) The display process gets the acknowledgment and sends its list of
beams.

(9) The server gets the list of beams and checks to see what it can satisfy
from the holodeck file. It sorts the beams in file order to minimize disk
access time and sends rays to the display process as it loads them from
the file into memory.

(10) The display process loads rays from the server and puts them into its
quadtree, updating the displayed image every 50,000 samples (if there
are that many).

(11) Once the server has exhausted the supply in the holodeck file, it
flushes the data to the display process and assigns beams to rtrace on
a least-filled/most-requested priority basis.

(12) After it has read all the beams sent immediately by the server, the
display process updates the displayed image and calls select to wait for
user input or more server packets.

(13) The server, meanwhile, has called select to wait for one of the rtrace
processes to send it some results.

(14) One of the rtrace processes finishes a beam packet and flushes it to
the server.

(15) The server stores the beam packet in memory, freeing memory as
necessary by writing beams to disk using an LRU scheme.

(16) The server flushes the computed samples on to the display process and
checks it for input.

(17) If there is no request from the display, the server queues a new beam
packet to rtrace and calls select again.

The server continues in this manner, interrupting its tending of rtrace
only to fill display requests and manage holodeck file caching. The display
process continues handling input from the server and the user and updat-
ing the displayed image. When the display process makes a shut-down
request, the server flushes its queue and closes rtrace, then flushes data to
the holodeck file and sends a final shut-down directive to the display. It
then waits for the display process to finish before exiting itself.
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Fig. 10. A low-resolution, rectangle-filled
quadtree rendering of a conference room.

Fig. 11. An OpenGL rendering of the confer-
ence room geometry using a hardware lighting
model.

Fig. 12. The same conference room samples
drawn with the Voronoi driver using the geom-
etry of Figure 11 to clarify objects.

Fig. 13. An invisible portal separates the loaded
geometry in this room’s section to the unloaded
geometry in the next. We see the effect in the
sharp silhouettes in the foreground versus the
fuzzy ones in the next room.
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Fig. 14. The same conference room samples
drawn with the triangle mesh driver.

Fig. 15. The top image shows an example
view produced by the mesh driver. The inset
image shows the representation from the side,
illustrating its 2.5–D nature.

Fig. 16. A local dynamic object inserted into our
scene and rendered using OpenGL lights approx-
imated from holodeck beam samples (Voronoi
driver).

Fig. 17. A grid for a holodeck section that is
meant to be viewed from the exterior.
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Fig. 18. An interactive rendering of the chess
scene after 10 seconds on an SGI Octane
(Voronoi driver).

Fig. 19. The same view after 1 minute.

Fig. 20. A solid glass sculpture with whales
and bubbles carved out of air and rendered
using the holodeck (Voronoi driver).

Fig. 21. A view from above and between two
holodeck sections, with invisible regions
(quadtree driver).
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Fig. 22. A low-resolution rendering of a bath-
room mirror with VDISTANCE5False, showing
the resulting lack of definition in the reflection
(Voronoi driver).

Fig. 23. By setting VDISTANCE5True, we get
a sharper image in our mirror.

Fig. 24. An overview of the OEP office space
with multiple holodeck sections.

Fig. 25. A low-resolution view of the OEP hall-
way, taken from between two sections (Voronoi
driver).
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Fig. 26. A close-up of a workspace terminal
with poor task lighting (Voronoi driver).

Fig. 27. From another view, we can better see the
problem with specular reflection off the screen.

Fig. 28. A daylight version of the space pre-
computed in 20 hours on an Onyx2 using 14
processors (mesh driver).

Fig. 29. The low-resolution display and section
grid are drawn for feedback during mouse-con-
trolled view movement.

Fig. 30. The image displayed immediately after
releasing the mouse. We have moved so much that
the display cache is missing some samples.

Fig. 31. The same view after half a second,
during which the server has retrieved some more
relevant samples from the holodeck file.
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Fig. 32. An air-traffic control tower cab displayed from a precalculated holodeck file (Voronoi driver).

Fig. 33. The same simulation after 30 seconds of progressive ray tracing on 21 processors.

The Holodeck Ray Cache • 395

ACM Transactions on Graphics, Vol. 18, No. 4, October 1999.



ACKNOWLEDGMENTS

The authors thank Dan Baum, Celeste Fowler, Sara McMains, Eddie Saxe,
and Carlo Séquin for their helpful comments. Thanks to SGI and UCB for
funding this work, and permitting us to make the software available as an
add-on to LBNL’s Radiance rendering package. To get the latest copy of
Radiance go to http://radsite.lbl.gov/radiance and follow the link
for the holodeck overlay.

REFERENCES

AIREY, J. M. 1990. Increasing update rates in the building walkthrough system with
automatic model-space subdivision and potentially visible set calculations. Ph.D.
Dissertation. University of North Carolina at Chapel Hill, Chapel Hill, NC.

ASHDOWN, I. 1993. Near-field photometry: a new approach. J. Illuminating Eng. Soc. 22, 1,
163–180.

BALA, K., DORSEY, J., AND TELLER, S. 1998. Bounded-error interactive ray tracing. TR-748.
MIT Laboratory for Computer Science, Cambridge, MA.

CAMAHORT, E., LERIOS, A., AND FUSSELL, D. 1998. Uniformly sampled light fields. In
Proceedings of the 1998 Eurographics Workshop on Rendering Techniques, G. Drettakis and
N. Max, Eds.

CHEN, S. E. 1995. QuickTime VR: An image-based approach to virtual environment
navigation. In Proceedings of the 22nd Annual ACM Conference on Computer Graphics
(SIGGRAPH ’95, Los Angeles, CA, Aug. 9–11), S. G. Mair and R. Cook, Eds. Annual
conference series ACM Press, New York, NY, 29–38.

COHEN, M. F., CHEN, S. E., WALLACE, J. R., AND GREENBERG, D. P. 1988. A progressive
refinement approach to fast radiosity image generation. In Proceedings of the 15th Annual
Conference on Computer Graphics (SIGGRAPH ’88, Atlanta, GA, Aug. 1-5), R. J. Beach, Ed.
ACM Press, New York, NY, 75–84.

CRUZ-NEIRA, C., SANDIN, D. J., AND DEFANTI, T. A. 1993. Surround-screen projection-based
virtual reality: the design and implementation of the CAVE. In Proceedings of the ACM
Conference on Computer Graphics (SIGGRAPH ’93, Anaheim, CA, Aug. 1–6, 1993), M. C.
Whitton, Ed. ACM Press, New York, NY, 135–142.

DARSA, L., COSTA SILVA, B., AND VARSHNEY, A. 1997. Navigating static environments using
image-space simplification and morphing. In Proceedings of the 1997 Symposium on
Interactive 3D Graphics (SI3D ’97, Providence, RI, Apr. 27–30, 1997), A. van Dam, Ed. ACM
Press, New York, NY, 25ff.

DARSA, L. AND SILVA, B. C. 1996. Multi-resolution representation and reconstruction of
adaptively sampled images. In Proceedings of the Conference on SIBGRAPI ’96, 321–328.

DEBEVEC, P. E., TAYLOR, C. J., AND MALIK, J. 1996. Modeling and rendering architecture from
photographs: A hybrid geometry- and image-based approach. In Proceedings of the 23rd
Annual Conference on Computer Graphics (SIGGRAPH ’96, New Orleans, LA, Aug. 4–9,
1996), J. Fujii, Ed. Annual conference series ACM Press, New York, NY, 11–20.

DIEFENBACH, P. J. 1996. ipeline rendering: Interaction and realism through hardware-based
multi-pass rendering. Ph.D. Dissertation. University of Pennsylvania, Philadelphia, PA.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. 1996. The Lumigraph. In
Proceedings of the 23rd Annual Conference on Computer Graphics (SIGGRAPH ’96, New
Orleans, LA, Aug. 4–9, 1996), J. Fujii, Ed. Annual conference series ACM Press, New York,
NY, 43–54.

GREENE, N. 1996. Hierarchical polygon tiling with coverage masks. In Proceedings of the
23rd Annual Conference on Computer Graphics (SIGGRAPH ’96, New Orleans, LA, Aug.
4–9, 1996), J. Fujii, Ed. Annual conference series ACM Press, New York, NY, 65–74.

GREENE, N., KASS, M., AND MILLER, G. 1993. Hierarchical Z-buffer visibility. In Proceedings of
the ACM Conference on Computer Graphics (SIGGRAPH ’93, Anaheim, CA, Aug. 1–6, 1993),
M. C. Whitton, Ed. ACM Press, New York, NY, 231–238.

396 • G. Ward and M. Simmons

ACM Transactions on Graphics, Vol. 18, No. 4, October 1999.



GUIBAS, L. AND STOLFI, J. 1985. Primitives for the manipulation of general subdivisions and
the computation of Voronoi. ACM Trans. Graph. 4, 2, 74–123.

GUO, B. 1998. Progressive radiance evaluation using directional coherence maps. In
Proceedings of the 25th Annual Conference on Computer Graphics (SIGGRAPH ’98, Orlando,
FL, July 19–24, 1998), S. Cunningham, W. Bransford, and M. F. Cohen, Eds. ACM Press,
New York, NY, 255–266.

HAEBERLI, P. 1990. Paint by numbers: Abstract image representations. SIGGRAPH Comput.
Graph. 24, 4 (Aug. 1990), 207–214.

KIRK, D. AND ARVO, J. 1991. Unbiased sampling techniques for image synthesis. SIGGRAPH
Comput. Graph. 25, 4 (July 1991), 153–156.

LARSON, G. W. 1988. The holodeck: A parallel ray-caching rendering system (Unpublished
presentation). In Proceedings of the 2nd Eurographics Workshop on Parallel Graphics and
Visualization (Rennes, France, Sept. 1988),

LARSON, G. W., RUSHMEIER, H., AND PIATKO, C. 1997. Visibility matching tone reproduction.
IEEE Trans. Visual. Comput. Graph. 25, 4, 291–306.

LARSON, G. W. AND SHAKESPEARE, R. 1998. Rendering with Radiance: the Art and Science of
Lighting Visualization. Morgan Kaufmann computer graphics and geometric modeling
series. Morgan Kaufmann Publishers Inc., San Francisco, CA.

LEVOY, M. AND HANRAHAN, P. 1996. Light field rendering. In Proceedings of the 23rd Annual
Conference on Computer Graphics (SIGGRAPH ’96, New Orleans, LA, Aug. 4–9, 1996), J.
Fujii, Ed. Annual conference series ACM Press, New York, NY, 31–42.

LISCHINSKI, D. 1994. Incremental Delaunay triangulation. In Graphics Gems IV, P. S.
Heckbert, Ed. Academic Press Graphics Gems series. Academic Press Prof., Inc., San
Diego, CA, 47–59.

LISCHINSKI, D. AND RAPPOPORT, A. 1998. Image-based rendering for non-diffuse synthetic
scenes. In Proceedings of the 9th Eurographics Workshop on Rendering (Vienna, Austria,
June 1998), 301–314.

LUEBKE, D. AND ERIKSON, C. 1997. View-dependent simplification of arbitrary polygonal
environments. In Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’97, Los Angeles, CA, Aug. 3–8), G. S. Owen, T.
Whitted, and B. Mones-Hattal, Eds. ACM Press/Addison-Wesley Publ. Co., New York, NY,
199–208.

MCMILLAN, L. AND BISHOP, G. 1995. Plenoptic modeling: An image-based rendering system.
In Proceedings of the 22nd Annual ACM Conference on Computer Graphics (SIGGRAPH ’95,
Los Angeles, CA, Aug. 9–11), S. G. Mair and R. Cook, Eds. Annual conference series ACM
Press, New York, NY, 39–46.

MILLER, G., RUBIN, S., AND PONCELEN, D. 1998. Lazy decompression of surface light fields for
pre-computed global illumination. In Proceedings of the 9th Eurographics Workshop on
Rendering (Vienna, Austria, June 1998),

NIMEROFF, J., DORSEY, J., AND RUSHMEIER, H. 1996. Implementation and analysis of a global
illumination framework for animated environments. IEEE Trans. Visual. Comput. Graph.
2, 3, 283–298.

OFEK, E. AND RAPPOPORT, A. 1998. Interactive reflections on curved objects. In Proceedings of
the 25th Annual Conference on Computer Graphics (SIGGRAPH ’98, Orlando, FL, July
19–24, 1998), S. Cunningham, W. Bransford, and M. F. Cohen, Eds. ACM Press, New York,
NY, 333–342.

PIGHIN, F., LISCHINSKI, D., AND SALESIN, D. 1997. Progressive previewing of ray-traced images
using image-plane discontinuity meshing. In Proceedings of the 8th Eurographics Workshop
on Rendering (June 1997), 115–124.

PREPARATA, F. P. AND SHAMOS, M. 1985. Proximity: Fundamental Algorithms.
Springer-Verlag, New York, NY.

SCHAUFLER, G. 1998. Per-object image warping with layered imposters. In Proceedings of the
1998 Eurographics Workshop on Rendering Techniques, G. Drettakis and N. Max, Eds.

SHADE, J., LISCHINSKI, D., SALESIN, D. H., DEROSE, T., AND SNYDER, J. 1996. Hierarchical
image caching for accelerated walkthroughs of complex environments. In Proceedings of the

The Holodeck Ray Cache • 397

ACM Transactions on Graphics, Vol. 18, No. 4, October 1999.



23rd Annual Conference on Computer Graphics (SIGGRAPH ’96, New Orleans, LA, Aug.
4–9, 1996), J. Fujii, Ed. Annual conference series ACM Press, New York, NY, 75–82.

SHIRLEY, P., WADE, B., HUBBARD, P., ZARESKI, D., WALTER, B., AND GREENBERG, D. 1995. Global
illumination via density estimation. In Proceedings of the 1995 Eurographics Workshop on
Rendering Techniques, 219–230.

SILLION, F., DRETTAKIS, G., AND BODELET, B. 1997. Efficient imposter manipulation for
real-time visualization of urban scenery. In Proceedings of the 1997 Eurographics Forum on
Computer Graphics, 207–218.

SILLION, F. AND PUECH, C. 1994. Radiosity and Global Illumination. Morgan Kaufmann
Publishers Inc., San Francisco, CA.

TELLER, S. J. AND SÉQUIN, C. H. 1991. Visibility preprocessing for interactive
walkthroughs. SIGGRAPH Comput. Graph. 25, 4 (July 1991), 61–70.

TUMBLIN, J. AND RUSHMEIER, H. 1993. Tone reproduction for realistic images. IEEE Comput.
Graph. Appl. 13, 6, 42–48.

VOORHIES, D. AND FORAN, J. 1994. Reflection vector shading hardware. In Proceedings of the
ACM Conference on Computer Graphics (SIGGRAPH ’94, Orlando, FL, July 24–29, 1994), D.
Schweitzer, A. Glassner, and M. Keeler, Eds. ACM Press, New York, NY, 163–166.

WALTER, B., ALPPAY, G., LAFORTUNE, E., FERNANDEZ, S., AND GREENBERG, D. P. 1997. Fitting
virtual lights for non-diffuse walkthroughs. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’97, Los Angeles, CA, Aug.
3–8), G. S. Owen, T. Whitted, and B. Mones-Hattal, Eds. ACM Press/Addison-Wesley Publ.
Co., New York, NY, 45–48.

WALTER, B., DRETTAKIS, G., AND PARKER, S. 1999. Interactive rendering using the render
cache. In Proceedings of the 10th Eurographics Workshop on Rendering (June), 27–38.

WARD, G. 1991. Real Pixels. Academic Press Prof., Inc., San Diego, CA.
WARD, G. J. 1994. The RADIANCE lighting simulation and rendering system. In Proceedings

of the ACM Conference on Computer Graphics (SIGGRAPH ’94, Orlando, FL, July 24–29,
1994), D. Schweitzer, A. Glassner, and M. Keeler, Eds. ACM Press, New York, NY,
459–472.

WARD, G. J., RUBINSTEIN, F. M., AND CLEAR, R. D. 1988. A ray tracing solution for diffuse
interreflection. In Proceedings of the 15th Annual Conference on Computer Graphics
(SIGGRAPH ’88, Atlanta, GA, Aug. 1-5), R. J. Beach, Ed. ACM Press, New York, NY, 85–92.

Received: March 1999; revised: September 1999; accepted: September 1999

398 • G. Ward and M. Simmons

ACM Transactions on Graphics, Vol. 18, No. 4, October 1999.


