
Debugging in the Context of Charm++

Rashmi Jyothi, Orion Sky Lawlor, L. V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
jyothi@uiuc.edu, olawlor@acm.org, kale@cs.uiuc.edu

Abstract

This paper mostly describes a parallel debugger and the
related debugging support implemented for CHARM++, a
data-driven parallel programming language. Though the
paper specifically talks about the debugging techniques
for CHARM++, it takes a generic stand by bringing into
focus the various challenges often faced during debugging
of parallel applications systems.

1 Introduction

Parallel programming introduces many additional chal-
lenges with respect to program correctness, robustness
and reliability. The challenges faced during the design
of efficient debugging tools for a parallel program include
portability of such tools and examining the dynamic state
information of a parallel program which is much more
than a sequential program. [1, 2, 3]

Traditional sequential debuggers offer state informa-
tion by allowing the programmer to set breakpoints and
view contents of variables and thereby examine the na-
ture of the program’s execution. These sequential debug-
gers are helpful in debugging the individual processes in a
parallel program. However, this approach does not allow
the user to examine the execution of the parallel program
across the parallel machine as if it were a single program
executing, which in effect it is. The other sequential de-
bugging method often used is the traditional method of
inserting output statements like printf in the program that
output specific variables or reflect the section of the code
executing. This method requires no tools or additional
software and is quite reliable. Nevertheless, the program-
mer must decide in advance which variables to print and
where to insert the output statements. Besides, incorporat-
ing new output statements translates to editing and com-
piling the program over again. Also, scouring through

large logs of output statements to gather required infor-
mation can become quite cumbersome. In the case of a
parallel program additional attention is to be given to the
fact that the events may not be written to the buffer in the
order of execution due to reasons like disparate processor
speeds.

Parallel debugging techniques aim at overcoming
the shortcomings of employing sequential debugging
schemes in conjunction with a parallel program. The pri-
mary goal of a parallel debugger is to provide an inte-
grated debugging environment which allows the program-
mer to examine the changing state of the parallel program
during the course of its execution.

2 Charm++ and Debugging Re-
quirements

CHARM++[4, 5] is an object oriented parallel program-
ming language based on C++ and is essentially a thin
wrapper on Converse [6] which is a framework for par-
allel programming that supports multi-lingual interoper-
ability. CHARM++ programs are portable and run with-
out change on all MIMD machines and thereby satisfy
the key requirement for large scale development of par-
allel software, portability. The runtime system also sup-
ports dynamic load balancing strategies which means that
dynamic creation of parallel work is allowed. Dynamic
load balancing is necessary when there are irregular par-
allel computations and load is unevenly distributed among
the processor elements.

The execution model of CHARM++ is message-driven
[7] wherein Converse treats the parallel machine as a col-
lection of nodes that communicate primarily via mes-
sages. Each node is comprised of a number of proces-
sors that share memory. When a message arrives at a pro-
cessor it triggers the execution of a handler function[8].

1



The handler function receives as an argument a pointer to
the message. The message itself specifies which handler
function to be called when the message arrives. The mes-
sage is a contiguous sequence of bytes and has two parts
- the header and the data. The header contains a handler
number which specifies which handler function is to be
executed when the message arrives. Converse maintains a
table mapping handler numbers to function pointers. Each
processor has its own copy of the mapping.

Communication primitives insert messages into the
scheduler queues at remote processors, where the sched-
uler thread finds them and processes them. The Converse
scheduler serves not only as a message receiver but also
as a central allocator of CPU time. There are two kinds
of messages in the system waiting to be scheduled - mes-
sages that have come from the network and those that are
locally generated. The scheduler’s job is to repeatedly de-
liver these messages to their respective handlers.

The parallel programming model of CHARM++ is
based on the concept of virtualization [9], where the pro-
grammer divides the work into a large number of chunks,
and lets the runtime system map these entities to proces-
sors. The system also has the capability to change the
mapping at runtime without the user program having to
specify it. The number of parts a computation is bro-
ken into is typically independent of the number of pro-
cessors N and is more often than not larger than N. The
CHARM++ programmer does not refer to processors in
their code but programs in terms of the interaction be-
tween the virtual entities. These virtual entities are called
chares. In other words, the basic unit of parallel com-
putation in CHARM++ programs is the chare, which can
be created on any available processor and the methods of
which can be invoked from remote processors.

Chares can create new chares and can send messages
to each other. In accord with the message-driven execu-
tion model of CHARM++ all computations are initiated in
response to messages being received. The system calls in
CHARM++ are non-blocking and therefore, asynchronous
[10]. CHARM++ entities can contain private data and
public methods like regular C++ objects. The significant
difference is that these methods can be invoked from re-
mote processors asynchronously. Asynchronous method
invocation implies that the caller does not wait for the
method to be executed or in other words does not wait for
the method to return a value. Such a method that can be
invoked remotely in CHARM++ is called an entry method
or an entry point. An entry method does not have a return
value and is always a part of a chare.

The other important programming entity available to a
CHARM++ programmer is the Chare Array [11]. A Chare

Array is a collection of chares and the size of the array is
not constrained by the underlying parallel machine such
as number of processors or nodes. Therefore, a chare ar-
ray can have any number of elements. Each array element
of a chare array has a globally unique index and messages
are addressed to that index. The dynamic load balancing
framework which kicks off when a CHARM++ program
starts, treats array elements as objects that can be migrated
across processors [11].

The state of a sequential program includes contents of
all its variables and registers whereas a parallel program in
addition contains data that is shared and in transit between
processors. There is a need for a way to examine this
data in whatever form the parallel programming model
presents it. Keeping in mind the language entities and the
programming model of CHARM++, a programmer who
wishes to debug their CHARM++ program or verify it for
its correctness would require means of inspecting the con-
tents of the parallel entities like the array elements during
program execution. The other informative entities are the
messages in the scheduler queues [12] on each of the pro-
cessors which represent the running state of the program.
The ability to examine the messages in the queues and
their contents would be very handy in the process of de-
bugging and in providing a clear picture of the running
state of the parallel program to the CHARM++ program-
mer. The debugging framework would have to provide
the programmer ability to freeze the program execution
at will, to examine the entities. Also, the programmer
would need to set breakpoints in terms of entry points as
entry points capture the true essence of control-flow in
a CHARM++ program. Also necessary is the ability to
debug in a parallel environment through a collection of
instances of sequential debuggers, each attached to a con-
stituent process in the parallel program.

Nondeterminism of a parallel program adds to the com-
plexity of the debugging process. Certain bugs manifest
themselves only due to a specific ordering of messages
and may not show up in a re-run of the program due to
a different ordering of messages in the re-run [13, 14].
Hence, provision to reproduce such bugs deterministically
by recording the states of the parallel program and replay-
ing the execution using the recorded data, is necessary for
a parallel programming model like CHARM++.

Taking into account the debugging requirements iden-
tified, the debugging support implemented for CHARM++
can be summarized as follows.

� Ability to use traditional sequential debugging meth-
ods in the context of a CHARM++ program.

� Making it possible for the programmer to freeze or

2



unfreeze the execution of the program.

� Provision to set and remove breakpoints at the entry
point [10] level in a CHARM++ program.

� Providing means to view the contents of entities like
array elements and messages in queues across the
parallel set-up during program execution.

� A flexible way of attaching specified processes of
the parallel program to the sequential debugger, dur-
ing the course of program execution. This is spe-
cially useful when the number of processor elements
is high and sequential debugging is sought on spe-
cific processors.

� A record-replay mechanism for reproducing bugs
which happen once in a while depending on the order
in which messages are processed.

3 Debugging Solutions

CHARM++ provides the user ways to debug a parallel
program using the traditional sequential debugging tech-
niques. The means of using a sequential debugger for de-
bugging a parallel program is resorted to in CHARM++
[4, 5, 7] in the form of the command-line run-time option
“++debug”, where each individual process of the paral-
lel program running on a processor element is attached
to an instance of a sequential debugger like gdb or dbx
and opened in separate terminal windows at the begin-
ning of program execution. The approach of logging is
also used for debugging by the way of CkPrintf state-
ments. CkPrintf is the parallelized version of the printf
function. Additionally, if the command-line parameter
“+syncprint” is passed to a CHARM++ program, the Ck-
Printf actually blocks until the output is queued, allowing
the logging to happen in causal order, at the cost of dra-
matically slowing down the output.

A parallel debugger for CHARM++ is implemented
which transcends the sequential techniques by allow-
ing the programmer to perform various actions like set-
ting/removing break points in terms of entry points, freez-
ing/unfreezing the execution, examining entities in the
parallel program and attaching specific processes of the
parallel program to instances of a sequential debugger.
The prototype for the user interface of the parallel debug-
ger is implemented as a Java client. The successful func-
tioning of the parallel debugger is entirely dependent on

the debugging support incorporated into the CHARM++
runtime system or the Charm kernel.

The CHARM++ programmer starts the debugger client
from the command-line specifying the program to be de-
bugged, its parameters and the number of processor ele-
ments it should run on as command-line parameters. Al-
ternatively, the program and the parameters could be set
via a menu item provided by the debugger GUI. The menu
usage is shown in Figure 1.

Figure 1: Using the menu to set parameters for the
CHARM++ program being debugged

Once the debugger client’s GUI loads, the programmer
triggers the program execution by clicking the Start but-
ton. The program starts off displaying the user and sys-
tem entry points as a list of check boxes, freezing at the
onset. The system entry points are entry methods writ-
ten for the chares in the charm kernel while the user en-
try points are the entry methods in the application pro-
gram being debugged by the programmer. The program-
mer could choose to set or remove breakpoints by check-
ing or unchecking the checkboxes corresponding to the
entry points and kick off execution by clicking the Con-
tinue Button. The program freezes when a breakpoint is
reached. Figure 2 shows a snapshot of the debugger when
a breakpoint is reached.

Clicking the Freeze button during the execution of the

3



Figure 2: Parallel debugger when a break point is reached

program freezes execution, while Continue button re-
sumes execution. Quit button can be used to suspend ex-
ecution at any point of time. Entities (for instance, ar-
ray elements) and their contents on any processor can be
viewed at any point in time during execution as illustrated
in Figure 3. Every array element inherits a virtual debug-
ging function used by the debugging framework in the
Charm kernel. The programmer could choose to over-
ride this virtual function for an array element which it
inherits from the array element prototype in the Charm
kernel and thereby control the information displayed by
the debugger for the array elements. The programmer
could make the data more readable by specifically choos-
ing what contents of the array element should be dis-
played and by inserting appropriate comments. In case
this debugging function is not implemented, by default,
the regular pack/unpack function of the array element as
part of Charm’s PUP framework (Sec. 4) is used to re-
trieve its contents. The Converse scheduler which is the
core of the charm kernel interacts with a pool of messages,
placed in queues on each of the processors. These mes-
sages could be generated locally or could be from remote
processors. In CHARM++, a message could be due to an
entry method invocation, a ready thread, a message sent to
a ready thread or a handler posted previously. A message
is a chunk of memory with a header and data. The de-
bugger allows the user to freeze the program and inspect
the messages in the queues. From the data part of the

CHARM++ message the debugging framework encodes
the destination object, the method being invoked and the
parameters for the user to interpret.

Figure 3: Freezing program execution and viewing the
contents of an array element using the Parallel Debugger

Specific individual processes of the CHARM++ pro-
gram can be attached to instances of gdb during the course
of program execution as shown in Figure 4. This is spe-
cially useful when the number of processor elements is
high and sequential debugging is sought on specific pro-
cessors. Using the runtime “++debug” option in such a
situation is cumbersome as it becomes very difficult to
keep track of the large number of xterm windows opened
at the onset of execution for each instance of the sequen-
tial debugger attached to every process in the parallel pro-
gram.

The record and replay mechanism allows a user to re-
produce a program’s execution and thereby catch bugs
which occur due to order of message execution. The key
idea here is to identify atomic events and record their or-
der of occurrence in the execution. The execution can
be replayed by re-executing the atomic events in their
recorded order of occurrence.

The first execution run or the record run is used to
collect minimum trace data for every message processed
in the CHARM++ program. Since messages are atomic
events in a Charm program this information is sufficient
for replay. This trace is used to replay the program ex-

4



Figure 4: Parallel debugger showing instances of gdb
open for the selected processor elements

ecution by re-executing each message on each processor
as recorded in the trace. The only information needed to
replay a CHARM++ program is the order of processing of
events on each processor. An event can be uniquely iden-
tified by a tuple consisting the following pair (i) message-
sequence-id (ii) processor-id. The trace data necessary for
replay is an ordered set of such tuples where the ordering
is imposed by the order in which events occurred on that
processor. To enable the required tracing for record and
replay, a CHARM++ program has to be linked with the ap-
priopriate trace module, which is made possible via a link-
time option “-tracemode recordreplay”. A “+record” op-
tion provided at runtime to a CHARM++ program writes
such a trace to a file, which is later read when the “+re-
play” runtime option is provided to ensure messages are
processed in the same order as the recorded run. These
runtime options are passed as parameters to the parallel
program and used in conjunction with the parallel debug-
ger, when the bugs need to be reproduced deterministi-
cally in the program.

4 Implementation

Implementation of debugging solutions for CHARM++
is two-fold - (i) incorporating the required support into
the CHARM++ core or the Charm kernel and (ii) Build-
ing the user interface. While the implementation of de-
bugging support in the Charm Kernel relies heavily on

the pack/unpack or PUP framework available in the core,
the debugger’s user interface is modelled as a client in
the Converse Client-Server (CCS) Interface provided by
CHARM++.

The pack/unpack framework or the “PUP” framework
is a generic way provided by CHARM++ to describe the
data in an object. It is a suite of classes that enables
objects in CHARM++ (for example, array elements) to
migrate from one processor to another. In a nutshell,
the framework provides services to any operation that re-
quires a traversal of the object state in terms of its data
members. The CHARM++ system uses the generic de-
scription of an object, provided by the PUP framework, to
pack the particular object into a message and later unpack
the message into a new object on another processor. Thus
the name, pack/unpack framework. Besides being used
in transporting objects intact across processors during mi-
gration, the PUP framework can also be used to serialize
an object’s data to disk. The framework can also be used
to retrieve an object’s data in some interpretable form and
this functionality is used in the implementation of the de-
bugger. The PUP framework requires the programmer of
a particular class to implement a single method, called the
pup routine. A significant part of the debugging frame-
work is the introspection API which allows the debugger
to retrieve the contents of parallel entities during program
execution using the PUP framework. This API is used to
register a list of items with pup routines and retrieve the
items’ data out in a readable format.

The Converse Client-Server (CCS) module enables
Converse [6] programs to act as parallel servers, respond-
ing to requests from non-Converse programs. The CCS
module is split into two parts - client and server. The
server side is used by a Converse program while the client
side is used by arbitrary non-Converse programs. A CCS
client accesses a running Converse program by talking to
CCS server side which receives the CCS requests and re-
lays them to the appropriate processor. These CCS re-
quests trigger the invocation of appropriate pre-registered
handlers in the Charm kernel, which perform the required
actions. The parallel debugger acts as the CCS client
and sends messages to the CHARM++ program being de-
bugged which is started as a parallel server in the CCS
model and carries out the appropriate debugging actions.

5 Conclusions and Future Work

In devising debugging solutions for CHARM++ many of
the challenges posed by a data-driven parallel program-

5



ming paradigm had to be got around. The parallel de-
bugger allows the CHARM++ programmer to inspect the
state of the parallel program during execution, keep track
of the control flow in the parallel program by setting break
points at entry points and retrieve contents of entities like
array elements nd the messages in the queues on each
processor . In this way, via the debugger, the program-
mer is provided a means of examining the dynamic state
of the program. The implemented support also provides
the programmer a way of going about sequential debug-
ging on selected processors on the fly. The record and
replay mechanism allows the programmer to determinis-
tically reproduce a program’s behavior.

The functionality of the parallel debugger can be ex-
tended such that it could be used in conjunction with the
existing performance analysis tool for CHARM++, Pro-
jections [15]. There is scope for enhancement of the
debugging support to make use of the huge amounts of
trace data produced by Projections. It would also be very
useful to incorporate methods to access network statistics
into the existing debugging support. These are just a few
of the many possible extensions. The topic of debugging
in CHARM++ is a green area and there is lots of scope for
future work.

References

[1] J. Cunha, J. Lourenco, and T. Antao. A debugging
engine for parallel and distributed environment. In
Proceedings of 1st Austrian-Hungarian Workshop
on Distributed and Parallel Systems, pages 111–
118, Miskolc, Hungary, 1996.

[2] John May and Francine Berman. Panorama: A
portable, extensible parallel debugger. In Proceed-
ings of ACM/ONR Workshop on Parallel and Dis-
tributed Debugging, pages 96–106, San Diego, Cal-
ifornia, 1993.

[3] John May and Francine Berman. Designing a par-
allel debugger for portability. In Proceedings of
the Eighth International Parallel Processing Sympo-
sium, pages 909–915, 1994.

[4] L. V. Kalé, B. Ramkumar, A. B. Sinha, and A. Gur-
soy. The CHARM Parallel Programming Language
and System: Part I – Description of Language Fea-
tures. IEEE Transactions on Parallel and Dis-
tributed Systems, 1994.

[5] L. V. Kalé, B. Ramkumar, A. B. Sinha, and V. A.
Saletore. The CHARM Parallel Programming Lan-
guage and System: Part II – The Runtime system.
IEEE Transactions on Parallel and Distributed Sys-
tems, 1994.

[6] L. V. Kale, Milind Bhandarkar, Narain Jagathesan,
Sanjeev Krishnan, and Joshua Yelon. Converse: An
Interoperable Framework for Parallel Programming.
In Proceedings of the 10th International Parallel
Processing Symposium, pages 212–217, April 1996.

[7] L.V. Kalé and S. Krishnan. CHARM++: A Portable
Concurrent Object Oriented System Based on C++.
In A. Paepcke, editor, Proceedings of OOPSLA’93,
pages 91–108. ACM Press, September 1993.

[8] Parallel Programming Laboratory, University of Illi-
nois, Urbana-Champaign. Converse Programming
Manual, Jan 1999.

[9] Laxmikant V. Kalé. The virtualization model of par-
allel programming : Runtime optimizations and the
state of art. In LACSI 2002, Albuquerque, October
2002.

[10] Parallel Programming Laboratory, University of Illi-
nois, Urbana-Champaign. The Charm++ Program-
ming Language Manual, Version 5.0, April 1999.

[11] O. Lawlor and L. V. Kalé. Supporting dynamic
parallel object arrays. In Proceedings of ACM
2001 Java Grande/ISCOPE Conference, pages 21–
29, Stanford, CA, Jun 2001.

[12] Parthasarathy Ramachandran and L. V. Kalé.
Mulitlingual debugging support for data-driven and
thread-based parallel languages. Technical Report
99-04, Parallel Programming Laboratory, Depart-
ment of Computer Science, University of Illinois at
Urbana-Champaign, August 1999. To appear in the
Proc. of 12th International Workshop on Languages
and Compilers for Parallel Computing (LCPC ’99).

[13] A.B. Sinha. Performance Analysis of Object Based
and Message Driven Programs. PhD thesis, Depart-
ment of Computer Science, University of Illinois,
Urbana-Champaign, January 1995.

[14] Thomas J. Blanc and John M. Mellor-Crummey.
Debugging parallel programs with instant replay.
IEEE Transactions on Computers, C-36(4):471–
482, April 1987.

6



[15] L.V. Kalé and Amitabh Sinha. Projections : A scal-
able performance tool. In Parallel Systems Fair, In-
ternational Parallel Processing Sympos ium, pages
108–114, April 1993.

7


