
c© 2008 Lukasz Wesolowski



AN APPLICATION PROGRAMMING INTERFACE FOR
GENERAL PURPOSE GRAPHICS PROCESSING UNITS

IN AN ASYNCHRONOUS RUNTIME SYSTEM

BY

LUKASZ WESOLOWSKI

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Adviser:

Professor Laxmikant V. Kalé



Abstract

Graphics processing units today are more than a hundred times faster at executing

floating point operations than the fastest available multicore processors. While

systems for general purpose programming on the GPU are becoming available, many

programming tasks on the GPU remain difficult today as a result of the relative

immaturity of these solutions. In particular, tools for using a large number of GPUs

as co-processors in clusters and supercomputers are lacking.

In this work we present an extension to NVIDIA’s Compute Unified Device

Architecture which enables writing parallel Charm++ applications for execution on

a large number of hybrid CPU/GPU nodes. We demonstrate effective usage of this

library by modifying ChaNGa, an existing Charm++ application for cosmological

simulations. We also propose an alernative methodology to allow for fine-grained

management of work on the GPU.

ii



Table of Contents

iii



1 Introduction

Despite a persistent exponential increase over time in the performance of CPUs,

the insatiable demand for fast calculation in areas such as physical and molecular

simulation, financial modeling, and weather forecasting continues to require the

use of supercomputers to speedup computation beyond what is attainable using

traditional PCs. System manufacturers have typically accomplished speedups of up

to a hundred thousand over the fastest available PCs by using racks of processing

nodes and complex interconnect systems. The IBM BlueGene series, one of the

most successful such system to date, allows for the use of hundreds of thousands of

processors concurrently. The largest BlueGene/L configuration to date has a peak

computational capability of almost 600 TFlops [reference].

Even with the success of supercomputing systems based on general purpose

CPUs, there exists a possibility to further push current technology limits and achieve

significantly more impressive performance. The key observation is that current gen-

eration CPUs do not represent the most efficient use of silicon area for floating point

computation. Traditionally, CPUs are general processing devices, which execute a

small number of different instructions concurrently, with large parts of the chip area

spent for cache and other optimizations used to hide memory latency [data for

The idea of using custom chips to speed-up floating point computation is not

a new one, but in the past it has been difficult to realize. Since custom chips are

generally built on older process technology, and development takes several years,

it has frequently occurred that by the time such chips were manufactured, general

CPUs could perform the same computation faster and at a fraction of the cost

1



[example]. The alternative to custom chips is to use existing computational devices,

possibly as co-processing units. The most attractive such option today is the general

purpose GPU.

The advent of powerful graphics processing units within the past decade has

provided consumers with devices having a hundred times higher peek floating point

performance than the fastest available CPUs [reference]. Until recently, it has been

difficult to use GPUs for anything other than graphics applications. Developers

trying to employ the GPU in a different problem area had to map the operations

performed by their algorithm into the small number of fast primitives for shading

and rasterization available in the API. In recent years, manufacturers of graphics

cards have begun promoting the use of GPUs for general purpose computation.

Towards this goal, they have added special hardware on the GPU die, along with

software tools that provide a clean general purpose programming interface.

The term general purpose GPU is somewhat misleading, since effectively using

the device requires a massive number of threads executing in single program, mul-

tiple datastream (SPMD) fashion and extensive data parallelism in the application.

Most applications written for supercomputers already satisfy the latter character-

istic; this fact potentially makes the GPGPU an interesting option for supercom-

puters. However, due to the inefficiency of the GPU in performing some types of

computation, it is unlikely that GPUs or similar devices will replace CPUs entirely

in future supercomputers. More likely is the use of GPUS in heterogeneous systems,

where they will be used as coprocessors, and possibly only in a fraction of the nodes.

Current, officially supported APIs for GPGPUs are not optimized for usage in

large-scale heterogeneous systems utilizing an asynchronous runtime system. The

first fundamental flaw of these software packages is that they do not provide a clean

interface to allow treating the streaming multiprocessors on the GPU as separate

devices. Instead, to get good performance on the GPU, a single GPU kernel needs

2



to have enough parallelism to allow all processing units to execute simultaneously

and hide memory latency overhead. There are no facilities for executing a piece of

code on a subset of the execution units, and allocating additional execution units

on demand as more work becomes available.

The second serious problem with the official programming APIs for GPUs is that

they provide only a rudimentary mechanism for managing execution of kernels on

the GPU. Kernels are spawned and GPU memory copies are initiated from the CPU,

so that the CPU is tightly involved in the process of executing code on the GPU. The

need to manage GPU kernels on the CPU is not a major nuisance when executing

GPU-bound programs which make minimal use of the CPU for computation. When

writing a large-scale application for a heterogenous supercomputer, on the other

hand, more sophisticated GPU management tools are desirable to simplify coding

and improve performance.

In this thesis we propose solutions built on top of CUDA to address the above

issues. Our implementation is embedded within the Charm++ asynchronous run-

time system to provide a comprehensive framework for programming large scale

supercomputing applications for hybrid CPU/GPU systems.

The rest of this work is organized as follows. Chapter 2 contains an overview of

current generation GPUs, both in terms of the hardware and the general-purpose

programming software packages. In Chapter 3 we review Charm++ and present

the features which make it fitting as a host system for our API. In Chapter 4 we

introduce Hybrid API and compare it to using CUDA directly. Chapter 5 examines

the overhead of using Hybrid API. Chapter 6 presents an example of using our

API to accelerate the cosmological simulator ChaNGa. Chapter 7 presents a set

of planned extensions to the API, and Chapter 8 contains future work and some

closing thoughts.

3



2 Graphics Processing Units

The first graphics processing units were developed in the early 1980s to acceler-

ate graphics rendering in workstations and personal computers. Early GPUs were

often modified versions of existing CPUs specialized for accelerating rendering of

2D bitmapped grapics. The situation changed in the mid 1990s, when the rise of

3D graphics applications, especially games, marked a return to specialized chips for

acceleration of 3D graphics. Since then, the demand for increasing levels of realism

in graphics has led graphics card manufacturers to design complex devices capa-

ble of fast floating point computation, albeit specialized for the types of operations

(shading, rasterization, filtering) required for graphics.

By 2003, GPUs became faster than CPUs at executing single-precision floating

point operations. The gap between GPU and CPU floating point computation rates

has been growing increasingly large since then. The fastest GPU today, the NVIDIA

GeForce GTX 280, computes up to 933 billion floating point operations per second

(GFLOPS), compared to 50 GFLOPS in the fastest available CPUs [reference].

2.1 GPU and CPU Fundmantals

There are several reasons for the disparity between GPU and CPU floating point

performance. First, CPUs and GPUs have very different application areas. CPUs

are general purpose units designed to perform computation and manage devices in

desktop, server, and notebook computers. Traditionally, fulfilling this purpose re-

quired efficient execution of one program thread at a time on a single execution core.

4



This model changed to some degree as computer usage patterns shifted to execution

of several desktop applications simultaneously on a single machine. CPU designs

thus moved first toward concurrent execution of multiple threads via simultaneous

multithreading, and, more recently, toward multicore designs. Even so, desktop

applications remain overwhelmingly single-threaded, and it is yet to be determined

whether typical users can make good use of 16 or 32 cores.

Regardless of the number of cores it has, a CPU must be able to execute a

single memory-intensive thread very fast. Today, this typically means allocating

large parts of the chip area for cache memory and optimization logic such as branch

prediction/resolution units.

Unlike CPUs, GPUs have until recently been developed with a single narrow

purpose in mind – the rendering of graphics. This task can be parallelized efficiently,

so that additional processing units can be readily utilized to accelerate execution.

The effectiveness of adding additional execution units on graphics chips has en-

couraged the design of increasingly large chips. As a result, GPUs quickly progressed

to become massively parallel machines. GPUs today have a significantly larger chip

area than CPUs. The latest GT200 GPU chip from NVIDIA has roughly 1.4 billion

transistors, as compared to about 400 million transistors in Penryn family quad-core

Intel CPUs. In addition, due to the particular nature of graphics rendering, GPUs

have no need for branch prediction and other types of optimization logic normally

found in CPUs.

If GPUs do not have the kind of hardware that allows CPUs to execute single-

threaded applications very fast, we may wonder what it means for a GPU to be

identified as “general purpose.” In order to answer that question, it is instructive

to take a look at how GPGPUs came to be.

5



2.2 The General Purpose GPU

Since the early days of GPUs, researchers have experimented with using the devices

for accelerating applications unrelated to graphics. These efforts intensified as GPUs

became faster than CPUs at performing single precision floating point operations

[references]. Writing general purpose GPU applications in those days amounted to

mapping the desired operations onto the data structures and functions available in

the graphics API. This kind of work, while very tedious, could lead to significantly

better performance than what could be achieved on the CPU.

Graphics card manufacturers soon realized that they could market and sell their

products as coprocessors for fast computation. In order to increase the adoption of

this approach, a user friendly general purpose programming interface was needed.

AMD and NVIDIA, who by this point controlled most of the market for GPUs,

developed separate software for this purpose. NVIDIA named its solution Compute

Unified Device Architecture, or CUDA, while AMD came up with a low-level in-

terface called Close to Metal (CTM), and more recently with Brook+, an extended

version of an existing high-level GPGPU language.

2.3 GPU Architecture

The GPU industry today is dominated by two players: ATI, currently a subsidiary

of AMD, and NVIDIA. Examining the chips produced by these two companies gives

one a good sense of the current state of GPU architecture.

At the heart of current generation NVIDIA GPUs are hundreds of simple ex-

ecution units for shading. These processing units are homogeneous and scalar, as

distinct from separate vertex and pixel shading units found in past generations of

GPUs. The unified shader design leads to better load balancing for graphics render-

ing, and the scalar nature of these units decreases scheduling complexity and allows

6



Figure 2.1: The Texture Processing Cluster in the GT200 GPU

for higher clock rates. This type of architecture, aside from being useful for graph-

ics, is also desirable for a general purpose API, since it removes the need to handle

multiple types of execution units in differing ways, along with the load balancing

issues which that would present.

The shader units in NVIDIA GPUs are called streaming processors (SPs). SPs

are organized into groups of eight known as streaming multiprocessors (SMs). Each

SM has its own register file, instruction/constant cache, and issue/control logic.

An interesting feature of the architecture is a small amount of shared memory per

SM apparently added to improve the performance of the device for general purpose

programming using CUDA. SMs are grouped along with texture addressing and

filtering hardware into units called texture processing clusters, or TPCs. Figure ??

shows a block diagram for a TPC. A group of raster operators provides the means

for outputting pixels, as well as an interface to the global memory on the graphics

card.

The latest GT200 GPU from NVIDIA contains 10 TPCs, each with three SMs,

7



for a total of 240 streaming processors. Each SM contains 16384 32-bit registers,

and 16 KB of shared memory. The chip contains 8 raster operators which provide a

512-bit wide path to the global memory on the graphics card. Up to 1 GB of global

memory is available in current generation cards. Peak memory bandwidth is 141.7

GB/s.

Since our API is built on top of CUDA, which is currently supported only in

NVIDIA cards, we won’t go into the details of GPUs manufactured by ATI. A

closer look at these chips would reveal that they contain similar components, with

some differences in the component organization. As an example, RV770, the latest

generation GPU from ATI, has 800 stream processors, but they are organized in

groups of 5 into superscalar units controlled by very long instruction word (VLIW)

commands. These units have about half the clock rate of the shader units in the

NVIDIA design, which follows from the greater complexity of the VLIW design.

A further consequence of the VLIW design is the necessity for a more complex

scheduler to ensure the superscalar units execute at peak capacity most of the time.

2.4 Memory Considerations for Efficient

Execution

There are several architecture-specific requirements which a piece of code executing

on the GPU must satisfy to yield good performance. First, the program needs to

have a high ratio of computation to memory access operations. This is a result of

the order of magnitude difference between the peak performance of the execution

units and the memory bandwidth. Furthermore, since the number of execution

units in GPU designs over time increases faster than the memory bandwidth, the

ratio of computation to communication in GPU applications needs to increase across

generations of GPUs to maintain good performance. This requirement is easily met

8



in graphics, where demand for higher levels of realism requires increasingly more

vertex and pixel shader processing.

Another memory consideration unique to GPUs is the advantage gained from

accessing memory sequentially. This is an optimization designed to improve render-

ing performance. Since rendering involves sequential processing of arrays of pixels

and vertices, GPUs contain special hardware which optimizes sequential streaming

of data to and from memory. While it may not always be possible to take advantage

of this feature in general purpose applications, the drastic improvement in memory

performance which it provides makes it a good feature to keep in mind for when an

opportunity arises to use it.

In subsequent sections we will see general purpose programming paradigms which

encourage writing code that takes advantage of the peculiarities in GPU memory

performance.

2.5 General Purpose Application Programming

Interfaces

Before the first general purpose APIs were developed for GPUs, those who were

eager to utilize GPUs for applications other than graphics had to use either as-

sembly level programming or special shading languages for this purpose. Shading

languages, including GLSL, Cg, and HLSL, were developed to abstract graphics

hardware and give developers of real-time graphics applications greater control over

the rendering process. Using shading languages for general-purpose work was an

arduous task which required packing data into textures and manipulating these via

shading operations.

While shading languages were making an impact in the industry, researchers

in academia were investigating high-level paradigms for general purpose computa-

9



tion. The most promising direction in these efforts was the streaming approach to

programming the GPU.

2.5.1 Stream Programming

The stream programming paradigm defines computation in terms of operations per-

formed on a set of data elements, or streams. In this context the set of performed

operations is called a kernel. The elements in the stream execute the kernel inde-

pendently, and the system writes the results to an output stream, with one output

element per input data element.

The streaming paradigm fits well with the GPU model of execution. A program

which uses the GPU for rendering graphics can be interpreted as a kernel executing

on streams of vertex and pixel data.

Streaming presents several advantages over other paradigms in the context of

GPU computing. Independent execution of the kernel allows the data elements to

be processed in parallel and simplifies control logic. If the number of elements in

the stream is much greater than the number of shader execution units on the chip,

this approach also allows hiding the memory latency by suspending elements which

are waiting for data to arrive from memory and allowing other elements to proceed

with computation.

Since streams will normally be organized linearly in memory, streaming encour-

ages sequential memory access, which, as described above, gives an order of magni-

tude improvement in performance compared to random memory access.

It is important to keep in mind the advantages and limitations of the streaming

approach for general purpose programming. On one hand stream computing allows

a programmer to harness the power of hundreds or thousands of execution units

concurrently while hiding memory latency costs. On the other hand, effective us-

age of the model requires large data domains with elements that can benefit from

10



concurrent independent execution.

2.5.2 Brook

Brook was one of the earliest and most influential GPU stream programming lan-

guages [reference]. In its original form it was a language for experimental streaming

computers. It was ported to the GPU as it became apparent that the programming

model was a good fit for the GPU. Brook formalized the notion of a stream into

a programming construct. Kernels in Brook are functions which operate on data

streams of three different types: in, out, and gather. In(put) streams are read-only.

For any instruction within a kernel involving an in stream, the system executes the

instruction on every element of the stream. Output is written to the stream spec-

ified with the keyword out, which could be the same as the input stream. Gather

streams allow arbitrary indexing of stream elements. While this improves the gen-

erality of the model, gather streams do not take advantage of the improvement in

bandwidth from sequential memory access. Other influential features provided by

Brook are reduction constructs for streams, variable output streams, and scatter,

gather operations.

One notable successor to Brook is Brook+, a new high-level API for GPUs

currently in development at AMD.

2.5.3 CUDA

Brook also influenced the development of NVIDIA’s Compute Unified Device Archi-

tecture(CUDA), perhaps the most popular langugage for general purpose program-

ming on GPUs currently in use. Only NVIDIA graphics cards currently support

CUDA.

CUDA borrows many features from Brook, but there are also significant differ-

11



ences between the two systems. One of the main goals in the design of CUDA was

to make its syntax appear as close to C as possible. As a result, CUDA does not

include special constructs for streams. Instead, in CUDA the programmer passes

arrays as input to the kernel. Device arrays in CUDA can be accessed via arbitrary

indexing, making them similar to gather streams in Brook.

In place of streams, CUDA introduces the notion of threads and blocks. Threads

are single units within the larger structure of a kernel instance. A block is a 2 or

3 dimensional array of threads. A kernel instance consists of an array of blocks.

Every thread in a kernel executes the body of the kernel. Each thread contains an

index within its block, and every block contains an index within the kernel - these

values are available inside the kernel to allow each thread to perform operations on

different data. A group of 32 consecutive threads is called a warp.

When a kernel is executed, the system assigns full blocks of threads to each

streaming multiprocessor. There is a limit both in terms of the maximum number

of blocks and threads that can be assigned to an SM. Any remaining unassigned

blocks are assigned later on as previous blocks finish execution.

CUDA does not provide any guarantees about which blocks will execute simul-

taenously, and which blocks will occupy the same SM. In fact, threads in different

blocks cannot be synchronized, and the only synchronization call synchronizes all

threads in a block.

Within each SM there are 8 streaming processors. The execution model involves

iterating over the warps residing on each streaming processor, and executing the

kernel on the warp exclusively before switching to a different warp in the same

block. Since a warp consists of 32 threads, this is done by executing consecutive

groups of 8 threads every cycle. Eventually, the system switches to executing a

different block.

Since up to 768 threads may reside on an SM at any given time, the above

12



mechanism allows for tolerating memory latency overhead by swapping out warps

having threads with pending memory loads/stores, and alloowing other warps to

execute on the streaming processors in the meanwhile. It is instructive to compare

this approach to CPUs, where memory latencies are hidden primarily by using

caching. The advantage of the GPU approach is that it allows the usage of more

chip area for execution units. The disadvantage is that it requires massive data

parallelism.

To utilize the improved bandwidth of sequential memory access in CUDA, a

programmer needs to write his code so that data in arrays is accessed sequentially.

One common scenario uses the thread id of each thread as an index into the input

and output arrays. This essentially mirrors the streams in Brook. In applications

where memory bandwidth becomes a limitation, the programmer can try utilizing

the special on-chip shared memory. Shared memory is about as fast as the register

file, but there are several caveats the programmer needs to be aware of to ensure

good performance. First, shared memory is very small (only 16 KB on the G80),

so its scope is limited when it is being shared by hundreds of threads in a block.

Secondly, shared memory is banked (16-way on G80), so to get good performance,

each thread in a half-warp needs to access data in a different bank.

CUDA requires the programmer to be aware of many architectural details. As

an example, every thread consumes a set of registers in the register file. Registers

are occupied on the granularity level of a block. When a block is swapped out and

control is transferred to a new block, the register file is saved for later execution. If

too many threads are assigned per block, it may be that the register file will not

be capable of holding all the required data, and the program will crash. It is the

programmer’s responsibility to ensure this does not happen.

Branches are handled by creating a mask representing the threads which take

the branch, and then executing both directions in the branch on the whole warp

13



using the mask. The only way to avoid this behavior is to write applications in such

a way that all threads in a warp follow the same direction in the branch. This is

why programs with complicated control flow will usually give poor performance in

CUDA.

In chapter 4 we will demonstrate extensions to make CUDA more applicable for

use in Charm++, a parallel C++ library with an asynchronous runtime system. We

will now look at Charm++ and its features.

14



3 Charm++

Charm++ [reference] is an object-oriented parallel language based on C++ and

the idea of object-based virtualization. In Charm++ we view the program as

a collection of objects which execute code in response to messages received from

other objects, and in turn send messages of their own. It is the programmer’s

responsibility to partition the application in this fashion. The Charm++ runtime

system takes the virtual representation of the application and maps the objects to

physical processors. If there are more objects than physical processors, the runtime

system will map multiple objects per processor. Charm++ supports grouping

objects into indexed collections of multiple dimensions.

Objects in Charm++ communicate through asynchronous method invocations,

or messages for short. The runtime system handles transmitting messages between

objects by keeping track of the location of each object. The runtime system enqueues

messages on the destination processor. When a processor becomes idle, the runtime

system executes a method by taking a message from the front of its queue. Typically

the method executes without interruption until it finishes, although if the method

is labelled by the programmer as threaded, the runtime system is free to interrupt

it and schedule it for later execution. Messages which need to be executed as soon

as possible can be prioritized to avoid long delays in the queue. Other than simple

point-to-point messages, Charm++ supports collective communication operations,

including broadcasts, reductions and multicasts.

Charm++ applications are typically written to have significantly more objects

than the number of physical processors used during execution. The presence of mul-

15



tiple objects on a single processor allows for automatic overlap between computation

and communication. If one object is waiting for a message, another object can exe-

cute in the meanwhile, ensuring the CPU does not become idle. It is instructive to

notice that this is the same basic mechanism that allows GPU threads in CUDA to

overlap computation with memory access

Charm++ provides an intricate load balancing framework. The runtime sys-

tem includes an instrumentation mechanism which records the computation and

communication loads for each object based on transmitted massages. Since parallel

applications are typically iterative, the runtime system can use this information to

re-map the objects to processors in such a way as to achieve better load balancing.

A number of strategies are available to determine how the runtime system will per-

form the remapping. Which strategy works best is highly application-dependent.

As a result, the choice of the strategy is left to the user. Instrumentation can be

disabled by the user for a slight improvement in performance in applications which

do not require load balancing.

16



4 Hybrid API

In this section we present the Hybrid Application Programming Interface, an ex-

tension to CUDA which provides a convenient mechanism for using CUDA-enabled

GPU to write hybrid CPU/GPU parallel applications. While using CUDA directly

in Charm++ is possible, our API provides abstractions to automatically manage

the execution of multiple kernels, freeing the programmer from the responsibility to

synchronize after every kernel.

4.1 Using CUDA in Charm++

To motivate the need for a kernel management API, we first present a discussion

of the difficulties of using CUDA in standalone mode in Charm++. For the sake

of simplicity, we frame our discussion in terms of a fictional Charm++ application.

We expect actual applications to follow the same patterns.

Our example application consists of a large number of parallel objects executing

on a group of hybrid CPU/GPU nodes. For this discussion, we focus on the objects

assigned to a single processor p. Some of the objects on processor p can benefit

from executing on the GPU. For the sake of generality, we assume that the GPU-

bound part of the computation for these objects consists of several kernels. Using

multiple kernels executing in sequence is in fact a common technique to overcome

the inability to communicate between threads in different blocks of a kernel grid.

Suppose we are assigned the task of writing this application, using CUDA li-

braries for kernel management. Before executing each kernel, we will need to copy

17



a set of input arrays from CPU memory to GPU memory. Secondly, we will need to

manage the execution of each kernel. CUDA allows two methods of doing this. The

first method blocks on the CPU, waiting for the GPU kernel to finish. Using this

operation, we could simply execute the kernels in sequence one after another. Fur-

thermore, we could perform the necessary memory transfer operations before and

after each kernel with ease, since presumably we would be operating from within a

method of the object which has access to the required data.

(Consider putting figure here showing the execution of the kernels)

The problem with the above approach is that the CPU is left idle every time the

GPU executes a kernel. This may not be an issue for GPU-bound applications which

use the CPU solely to control the device, but for hybrid CPU-GPU applications it

is imperative that the two devices be able to execute concurrently as long as there

are no dependencies in the code they execute.

This leads us to the second method for synchronizing kernel execution - polling

for kernel completion. In this approach, we can execute CPU code immediately

after making a kernel call. Subsequently, we can use CUDA’s polling function to

periodically check if the GPU kernel has completed execution. Once we detect kernel

completion, we can then perform the necessary memory transfers and start the

execution of a new kernel. This approach leads to much better hardware utilization

in hybrid applications. As long as we have work for both the CPU and the GPU,

the two devices will execute concurrently most of the time.

There are two caveats to the polling approach. First, the GPU will be idle in

the time after a kernel completes execution and before this is detected by polling on

the CPU. This suggests that to minimize GPU idle time, one should poll frequently.

On the other hand, polling too frequently decreases readability of the code, and the

polling operation itself carries an overhead which wastes CPU time every time we

poll while the GPU kernel is still running.

18



The second problem with polling in this context is specific to object oriented

designs. After calling a kernel from one object A, the CPU code we subsequently

execute may be in the context of a different object B. If we detect kernel completion

from within one of B ’s functions, we will need to transfer control to A, possibly

with a callback mechanism to allow returning the control back to the place where

our CPU work was interrupted. This kind of design would muddle the control

flow of the application and lead to confusing, difficult to understand code. In a

parallel Charm++ application where objects may reside on different processors, the

situation is even worse, as invoking B ’s method from A will likely require sending a

message. This will lead to the additional overhead of handling the message in the

runtime system, and likely, transmitting the message to a different processor.

Another difficulty in using the above approach with Charm++ is that control

flow is often imprecise in Charm++ applications, so that it may be difficult to

tell which object will execute after A. The difficulty of using the polling approach

directly makes it an unlikely choice for complex hybrid applications.

4.2 A Simpler Approach to Kernel Management

So far we have looked at two methods of writing a parallel hybrid application. The

first, synchronous, method is easy to program and produces lucid code, but gives

poor performance. The second method can give good performance, but is tedious

to program and produces confusing, difficult to maintain code.

The synchronous method is easy to use, because it allows the programmer to

perform all GPU operations at once from within a method of the appropriate object.

By the time we exit the scope of this object, the whole of the GPU computation for

that object is complete, and we need not worry about it anymore.

To provide similar functionality in an asynchronous setting, Hybrid API provides

19



a mechanism to schedule kernel requests for future execution. This allows the pro-

grammer to schedule multiple kernels for a particular object. As in the synchronous

approach, the programmer need not be concerned about these kernels outside the

scope of the object.

Along with each kernel request, the user needs to specify a pointer to a call-

back function which the system will invoke once the kernel finishes execution. This

function, implemented by the user, will copy data back to the CPU. If needed, the

function can then schedule another kernel on the GPU or even call a CPU function

dependent on the GPU output.

Note that with this approach we get a reasonably clean control flow and good

performance. The user no longer needs to poll to check for kernel completion, leading

to cleaner code. Likewise, in situations where multiple kernels can be scheduled si-

multaneously or through kernel callback functions, there is no need to send messages

later on to invoke these kernels, since the system will take care of this. The sys-

tem also minimizes GPU idle time by polling for kernel completion at semi-regular

intervals. This will further be explained in the implementation section.

4.3 Work Requests

From the user’s point of view, Hybrid API consists of work requests to define units

of execution on the GPU, and a queue for scheduling these requests. A work request

contains the necessary paremeters for CUDA kernel execution along with some ad-

ditional members for automating data transfer between the CPU and GPU. A work

request consists of the following data members:

• dim3 dimGrid - a triple which defines the grid structure for the kernel;

dimGrid.x and gimGrid.y specify the number of blocks in two dimensions,

dimGrid.z is unused

20



• dim3 dimBlock - a triple defining each block’s structure; specifies the number

of threads in up to three dimensions

• int smemSize - the number of bytes in shared memory to be dynamically

allocated per block for kernel execution

• void *readWriteHostPtr - a pointer to a buffer containing user data needed

for GPU execution; the system will copy the buffer to GPU global memory

prior to execution of the kernel; upon completion of the kernel, this buffer will

be overwritten by the buffer in readWriteDevicePtr

• void *readWriteDevicePtr - the corresponding pointer in device (GPU)

memory; allocated and defined by the system prior to kernel execution

• int readWriteLen - the size of each read/write buffer in bytes

• void *readOnlyHostPtr - analogous to *readWriteHostPtr, but with the

difference that this buffer is not overwritten upon kernel completion

• void *readOnlyDevicePtr - analogous to *readWriteDevicePtr, but does

not get copied to CPU memory after kernel is finished

• int readonlyLen

• void *writeOnlyHostPtr - allocated by the user prior to submitting a work

request; upon kernel completion, system will write data from writeOnlyDevi-

cePtr here

• void *writeOnlyDevicePtr - an output buffer on the GPU

• int writeOnlyLen

• void (*callbackFn)() - a callback function specified by the user; executed

after the kernel and memory transfers have finished

21



• int executing - a flag to help the system keep track of whether a work request

has started executing

• int id - a kernel identifier supplied by the user to allow the system to call the

correct kernel

• cudaEvent t completionEvent - the mechanism for polling in CUDA; al-

lows the system to determine when a kernel finishes execution

Two items in the above list, id and completionEvent, deserve further discussion.

CUDA events and completionEvent in particular will be described in the implemen-

tation section. But first, we focus on id and the mechanism for kernel definition in

Hybrid API.

4.4 Kernels

Kernels in Hybrid API are defined as in CUDA, with a few specific rules which the

user needs to follow to allow the automatic buffer transfer performed by the system

to work correctly. The first thing the user needs to keep in mind is that parameters

to kernels are limited to the data members of the work request corresponding to a

kernel. While this may lead to some inconvenience, it is a necessary consequence

of the automatic nature of kernel managemement in Hybrid API. Automatic buffer

transfer performed by the system is limited to the buffers defined in the work request,

and follows the behavior outlined above.

As part of the work request preparation step, the user will need to organize input

data into read-only and read-write arrays. The kernel can also write to a third,

write-only array. All these arrays have sizes specified by the user when setting up

the work request.

To schedule a work request for execution, the user enqueues it to a system GPU

22



queue. The queue is part of the Charm++ runtime system instance, and so there is

one queue for every processor running the Charm++ application. The user needs

to declare the queue as an extern variable in the CUDA-specific code. This is done

with the command

extern workRequestQueue* wrQueue;

The user also needs to define the function void kernelSelect(workRequest *wr),

which the system calls to execute the kernel for a particular work request. A stan-

dard implementation of the function uses a switch statement controlled by the id

data member of a work request. The kernel calls itself follows for each case of the

switch statement, and follows the typical CUDA kernel call syntax.

4.5 Compilation

While it would be convenient to be able to write CUDA and Charm++ code within

the same source file, this feature is not currently supported. CUDA and Charm++

require different compilers, making it non-trivial to provide this feature. As a result,

the user needs to organize CUDA and Charm++ code in separate files. Naturally,

the user also needs to keep in mind peculiarities of the CUDA programming model,

such as its lack of support for C++ features, including objects.

4.6 Implementation

Apart from the work request structure presented before, the source code for Hybrid

API consists of a queue data structure , functions to manage kernel execution,

and an interface into the Charm++ runtime system. The work request queue is a

straight-forward C implementation of a first-in-first-out (FIFO) queue.

23



One aspect of the implementation which warrants some discussion is the interface

to the Charm++ runtime system. Recall that Charm++ employs a message-driven

programming model, with a runtime system scheduler which gets invoked on a pro-

cessor every time a method finishes execution. Under typical CPU-only execution,

the scheduler examines the queue of incoming messages and selects one based on

location in the queue and priority. In our implementation, the scheduler is also

programmed to call a GPU progress function. Since querying for kernel completion

may be a high-latency operation, the GPU progress function is normally invoked

periodically after a set number of scheduler invocations. The exception is when the

scheduler determines that there are no messages to process on the CPU. In that

case the GPU progress function is called every time, since the CPU will likely be

idle anyway.

The GPU progress function gpuProgressFn has a simple structure. If the queue

is non-empty, it determines whether the work request at the front of the queue

is executing. If it is not, gpuProgressFn invokes a function for setting up the data

buffers on the GPU, and then executes the kernel by making a call to the kernelSelect

function, which we have described previously. The function also sets the executing

flag for the request.

If the executing flag is set for the work request at the front of the queue, gpuPro-

gressFn queries the GPU checking if the kernel is indeed still executing. If the result

of the query indicates that the kernel is finished, we invoke a function for buffer

transfer to the CPU, and then call the user-specified callback function for the work

request. Since the GPU is now idle, we then take the next work request in the

queue, set it up for execution on the GPU, and then start the kernel.

24



5 Asynchronous API

While Hybrid API allows combining Charm++ with CUDA to create applications

for hybrid CPU/GPU systems, using the GPU effectively with Charm++ applica-

tions may be a challenge due to granularity differences between kernels and CPU

functions. Typical Charm++ functions execute for up to several microseconds and

involve a single thread running on a single CPU core. GPU kernels, on the other

hand, typically involve thousands of threads running on hundreds of execution units.

The GPU kernel invocation overhead itself is on the order of tens of microseconds.

Finding enough work in a Charm++ object to make GPU execution worthwhile may

thus be a challenge. On the other hand, if the work requests of multiple objects

could be combined to execute simultaneously on the GPU, the GPU could become

a much better fit for the hybrid model.

Simultaneous execution of multiple kernels is not currently supported in CUDA.

As a result, we have to be creative to express concurrency of work requests. One

solution is to keep the programming model the same, but encourage users to be more

clever in the application design. The user could, for example, write code to collect

data from multiple parallel objects in order to create a work request with enough

data parallelism to utilize the GPU more effectively. The callback function for this

kernel could then send messages to the contributing objects with the results of the

computation. The effectiveness of this approach is highly application dependent. If

the objects are instances of the same class, as is often the case in Charm++, or if they

are similar in some way so that their input data can be effectively combined for the

GPU kernel, then this approach should be relatively straight forward. The greater

25



the difference between the objects contributing toward the kernel, however, the more

effort and ingenuity the programmer would need to put in to make this work. Since

one of our main goals is to keep the already complex CUDA programming model

from getting any worse in a hybrid setting, it is undesirable to have this as the only

available solution.

Another possible solution is to have the system combine work requests dynam-

ically to form larger kernels. This approach would be difficult to implement, and

would most likely require some help from the user in terms of additional information

submitted with the work request. It is also questionable how well the system could

perform this type of work, at least in the general case where different work requests

may have little in common. A specialized solution for cases with large numbers

of similar (or preferably identical) work requests would probably be reasonable to

implement and could in practice yield good results.

5.1 A Model for Asynchronous Execution

Of the two methods examined thus far, the first one is too demanding of the user,

and the second is difficult to generalize effectively. We can arrive at a potentially

more effective solution by taking a fresh look at GPU architecture. Most GPU

programming models and CUDA in particular treat the device as a single computing

engine, but GPUs today are composed of hundreds of execution units, grouped into

structures containing register files and special purpose memory units. Processing

units in NVIDIA GPUs, for example, are organized in groups of eight in this fashion

into Streaming Multiprocessors (SMs). If we could provide an interface to allow

treating the SMs as separate devices, we would greatly reduce the granularity gap

between CUDA kernels and Charm++ functions.

Another advantage of this approach is to reduce the amount of time work requests

26



spend in the queue. Under this scheme, as long as some of the GPU streaming

processors are available, the scheduler could initiate the execution of additional

work requests. This can lead to significant performance improvements in hybrid

Charm++ applications. In a message-driven model like Charm++, objects execute

fuctions in response to messages received from other objects. If a function which

sends a large number of messages is held up from executing, then the functions

which execute in response to messages sent by this function are effectively held

up as well. Suppose, for example, that we have two GPU work requests in the

queue, one heavy work request which will take significant time to execute, and a

second much shorter one which lies on the longest control path in the application.

The standard implementation of Hybrid API will execute these work requests in

separate kernels, significantly delaying the shorter, more important work request.

With the asynchronous approach, on the other hand, both work requests would

execute simultaneously, ensuring progress on the limiting path in the application.

This model of execution can also reduce overhead due to kernel startup. If work

requests are combined to execute in the same kernel, then kernel startup overhead

is incurred just once. In fact, we will present a method which could allow executing

all work requests in the whole application within the same kernel.

5.2 Interface

In addition to the attributes in Hybrid API, work requests in the Asynchronous

API require a parameter to indicate the number of SMs which the work request

will occupy. This decision is left to the user. The choice depends on the number of

blocks used by the work request and the relative importance of the work request in

the application. As an example, we may want to dedicate more execution units for

work requests which lie on the longest control path in the application.

27



5.3 Implementation

In this section we describe the implementation of Asynchronous API. While defi-

ciencies in the CUDA programming model do not currently allow this approach to

work, we believe it is instructive to present this technique of general purpose GPU

programming which may become feasible with new hardware and programming

models.

The key feature of Asynchronous API is dynamic assignment of work requests to

the execution units on the GPU. Since kernels are serialized in CUDA, this has to be

accomplished by using a single kernel executing for the duration of the application.

In early versions of CUDA, it was not possible to communicate between the CPU

and GPU during the execution of a kernel, which would make such an approach

infeasible. More recently, CUDA allows asynchronous data transfers between the

CPU and GPU while a kernel is executing. This feature was added to allow overlap-

ping the execution of one kernel with the data transfer for a subsequent kernel. Our

plan was to use this feature for a different purpose, as a communication mechanism

between the CPU and the executing kernel on the GPU.

In Asynchronous API, the sole kernel is spawned by the system during the ini-

tiation of the runtime system. The kernel consists of at least as many blocks as

there are SMs on the device. Having more blocks than SMs is possible, but it also

presents some difficulties which we will discuss later.

A small portion of the global GPU memory in this approach is reserved for

GPU/CPU control communication. Here, the main data structure is an array with

one value per block of threads, via which the CPU communicates the work requests

to the GPU. Initially, all values in the array are set to indicate no work has been

assigned. Threads in the kernel spin on the array location for their block, waiting

for the value to change, which indicates a work request assignment by the CPU.

28



When the value changes, the threads execute the appropriate kernel by evaluating

a switch on the value in the array. This is similar to the mechanism in Hybrid API

for the execution of a kernel based on the id stored in the work request, but here the

control switch is performed inside the kernel on the GPU. Once the threads finish

execution, one of the threads marks the work request as finished in the control array,

and the threads in the block once again spin on that location, waiting for a new

work request. The CPU system code will periodically read the status of the control

array in GPU global memory, keeping track of which blocks are executing and which

have finished. As in Hybrid API, the runtime system transfers data arrays to and

from the GPU.

5.3.1 Synchronization

The above description, in the interest of clarity, avoided details regarding synchro-

nization operations required to make the scheme work. Let us now take another

look at the process, focusing on the steps where synchronization is required. (1)

Before a work request executes, the system transfers the data required for execution

to GPU memory. The CPU can perform this step during kernel execution only

via an asynchronous memory transfer call. This operation must be synchronized

to ensure the data transfer is complete by the time the work request executes. (2)

Next, the system assigns the work request to a block of threads by writing an en-

try in the control array on the GPU. Since the array entries are written one at a

time, and blocks are assigned no more than a single work request to execute, this

step does not require synchronization. (3) By periodically monitoring the control

array, the system can recognize when a work request is finished. (4) Before data can

be transferred back to CPU memory, we need a way to ensure that GPU memory

writes performed by the work request have committed. (5) The system copies data

to CPU memory via asynchronous memory transfer. As in step (1), this needs to

29



be synchronized.

As we can see, steps (1), (4), and (5) require synchronization. The synchro-

nization after CPU-GPU data transfers should technically be possible through the

stream feature in CUDA. Note that a stream in this context is not the same as the

streams discussed in Chapter 2. The CUDA stream construct exists as a way to

introduce concurrency of memory transfers and kernel execution into the language.

CUDA streams are integer inputs to kernels and memory transfers, and thus exist

only in the context of the CPU section of a CUDA program. The semantics is that

within a stream, operations execute sequentially, but that different streams can ex-

ecute concurrently when the model allows it. A synchronization call performed on

a stream should synchronize just the operations within that stream, and have no

effect on other streams. We tried using this feature to implement memory transfer

synchronization by running the transfers for each block in a different stream. We

found that in the current implementation of CUDA, synchronizing on a stream waits

not just for operations in that stream to commit, but also waits for any currently

executing kernel, regardless of the strem. As a result of this behavior, we were

unable to implement Asynchronous API in CUDA.

It should be noted that the synchronization required in step (4) is of a different

kind than the data transfer synchronizations just described, as it involves synchro-

nizing memory transfers from the GPU to the CPU with memory writes performed

locally on the GPU. While CUDA provides a barrier function to synchronize all

threads in a block, it is unclear whether this has the effect of waiting for all memory

writes to commit.

Overall, our approach broke some generally accepted rules about CUDA pro-

gramming by trying to communicate between the CPU and the GPU during kernel

execution. While it may thus not be surprising that it was not possible to implement

Asynchronous API in CUDA, we believe our work shows how a more generalized

30



version of CUDA could allow for new applications and a shift in granularity consid-

erations on the GPU.

5.3.2 Grid Structure

One of the aspects of the implementation which has been glossed over so far is the

structure of the grid for the kernel executing on the GPU. In the simplest approach

we could have the number of blocks equal the number of SMs on the GPU. This

should in practice ensure that each block gets assigned to a different SM. Sending a

work request to a block would then be equivalent to assigning work to one SM. The

CUDA programming model encourages having more blocks than there are SMs in

order to increase the number of threads per SM and allow for greater potential for

overlap between computation and memory access. It would be tricky to make this

work for Asynchronous API, however. If we have more blocks than there are SMs,

CUDA gives no guarantees about how the blocks will be assigned to the SMs. This

could lead to imprecise behavior, as the system would be unable to tell exactly how

many SMs will be used for a particular work request. In practice, having blocks

with a large number of threads (i.e. 256 or 512) should provide for a high enough

degree of overlap between computation and memory access when we only have a

single block per SM.

5.3.3 Load Balancing

different block sizes

31



5.4 Asynchronous Memory Transfer

5.5 Power Considerations

It should be noted that our approach keeps the GPU busy throughout the duration

of the execution for the application by busy waiting with the threads which are not

executing. When executing, GPUs consume more power than in idle mode.

32


