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1 Introduction

Supercomputing networks are designed to minimize message latency. The focus on low latency implies a best
effort attempt to deliver each message injected onto the network as soon as possible. Ostensibly, prioritizing
message latency is important, and there are numerous examples of applications that benefit from it, but
while this latency-centric view of a network seems logical, it often leads to unintended consequences.

It may at first appear surprising that one would find fault with the idea of trying to deliver messages
as soon as possible, but if we take a broader view of communication and consider modern world systems
for delivery and transportation, we will find that the micro-management of the latency-centric approach is
hardly the norm. As an example, consider an urban rail transit system. Traveling by train requires being
aware of the schedule and sharing travel space with other passengers. The time to reach the destination may
be higher on average than by car, as it involves waiting at the station and changing trains if the destination
does not happen to lie along the route of the initially boarded train. Unless one is traveling in a densely
populated area, a train may not even be an option. The various restrictions and limitations, which are a
source of inconvenience for the passengers, also allow trains to function more efficiently. In many ways a
public transit system is an example of a system that deemphasizes latency, that is each individual’s travel
time, to improve bandwidth, the number of people transported to their destination per unit time.

Compared to the bandwidth-centric approach of a rail system, roads and highways are decidedly latency-
centric. Driving a car involves few of the limitations of a public transit system, and under normal conditions
leads to significantly shorter travel times. Despite the higher convenience of cars, public transportation
remains an indispensable piece of infrastructure in large cities. Allowing large numbers of people to travel
using a minimal real estate footprint makes public transit systems a key prerequisite for supporting dense
population concentrations of large cities, where office and living space are stacked vertically, while trans-
portation is often limited to a fraction of the space along the two dimensions of the street level. If instead
of using public transportation, everyone chose to drive to work in these areas, traffic congestion would in-
crease travel times several fold, and other than the very earliest travelers, most people upon arrival at their
destination would find that they have nowhere to park.

As latency-optimized systems, supercomputing networks are designed like highways for the data traveling
between the increasingly densely populated computing resources of a large system. This work explores the
idea of reorganizing the network in software to act more like the public transportation system in order
to significantly improve the efficiency of handling a high volume of communication. Toward this goal, we
introduce the Topological Routing and Aggregation Module (TRAM), a software communication system
for efficiently handling high volume communication patterns, particularly ones involving a high volume of
fine-grained communication.

1



2 Related work

Aggregation and routing of messages over mesh topologies has been explored before in specific contexts.
With a simplified performance model and experimental results, [17] demonstrated improved performance of
all-to-all and many-to-many personalized communication using 2D and 3D virtual meshes for routing and
aggregation. Analysis of the reduction in the number of messages when 2D and 3D virtual topologies are
used to aggregate messages for all-to-all personalized communication was presented in [19]. For aggregation
of non-collective communication, [19] also described a library which used a two-step routing and aggregation
approach within a two dimensional virtual mesh mapped over the processors. The above work did not
consider the importance of a good match between virtual and physical network topologies, however. Another
example of aggregation and routing of messages using a library is [27], although here aggregation was done
by separately buffering the data for every destination and sending buffers that fill up directly. A more recent
effort by the same authors utilized virtual topologies to improve communication performance on infiniband
clusters [28]. In contrast to our approach, the latter work did not involve matching the virtual topology to the
physical network topology, and used a hypercube virtual topology, which on mesh and torus interconnection
networks such as on Blue Gene/P will lead to higher overhead and non-minimal routing.

Other efforts have focused on improving performance of specific benchmarks and libraries on systems
with topologically assigned job partitions. [9] demonstrated improved performance of the HPC Challenge
Random Access benchmark on a Blue Gene/L system. [21] used topological routing and aggregation to
improve performance of All-to-All and FFT on the Blue Gene/L.

In our performance analysis we consider the impact of network topology and congestion on communication
performance. Other research on communication over mesh and torus topologies which took into account
issues of network congestion includes work on MPI collectives [15], [24], topology-aware mapping [5], and
network saturation on Blue Gene/P [2]. Our approach to analyzing message aggregation and determining a
good message size also shares common elements with work on message strip-mining [14].

Although MPI collectives are typically meticulously optimized, taking advantage of their performance
requires adhering to a rigid set of communication patterns. As a result, applications with sparse, irreg-
ular, or dynamic communication patterns are typically relegated to using point-to-point communication.
Non-traditional forms of collective communication have recently been gaining attention, including work on
dynamic sparse data exchange [13] and neigborhood collectives [12]. We believe TRAM can be used to
improve performance of both traditional and exotic classes of collectives.
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Preliminary Work and Results

3 TRAM

Topological Routing and Aggregation Module is a library for optimization of fine-grained units of com-
munication in parallel applications. The library performs topological routing and aggregation of network
communication in the context of a virtual mesh topology comprising the processes involved in the parallel
run. Currently, the choice of topology is limited to an N-dimensional mesh, where the number of dimensions
and their sizes are specified by the user when initializing an instance of the library.

3.1 Background Information

TRAM is implemented as a module of the Charm++ parallel runtime system for distributed object-oriented
parallel programming [18]. For simplicity of discussion, the runtime system can be assumed to consist of
a process on every core involved in the parallel run. These processes, called Processing Elements (PEs),
are globally ranked. Expressing parallelism in this system typically involves creating collections of globally
accessible objects called groups and arrays. Groups map a single runtime-system-managed object to every
core in a parallel run. Arrays, on the other hand, may contain an arbitrary number of such objects, which
are assigned to physical cores by the runtime system based on predefined or custom mappings. A parallel
program begins from one or more objects marked as being initial, which in turn create groups and arrays and
invoke methods on these objects to continue the parallel program. Functions on individual member objects
of groups and arrays can be invoked from any core using globally unique identifiers. If the invoked object is
not local to the core where the call is made, an asynchronous message is sent by the runtime system to the
appropriate destination, where the message is received by the scheduler for the local instance of the runtime
system. Functions invoked by the scheduler are non-preemptible. When a scheduler picks a message from its
queue and calls the corresponding function, it becomes inactive until the function it called returns. TRAM
is implemented as a group, so an instance of TRAM has one object on every PE used in the run. We use
the term local instance to denote a member of the TRAM group on a particular PE.

Collective communication patterns typically involve sending linear arrays of a single data type. In order
to more efficiently aggregate and process network data, TRAM restricts the data sent using the library to
a single data type specified by the user through a template parameter when initializing an instance of the
library. We use the term data item to denote a single object of this data type submitted to the library for
sending. While the library is active (i.e. after initialization and before termination), an arbitrary number of
data items can be submitted to the library at each PE.

Due to the underlying assumption of a mesh topology, the benefits of TRAM are most pronounced
on systems with a mesh or torus network topology, where the virtual mesh of PEs is made to match the
physical topology of the network. The latter can easily be accomplished using a separate module of the
runtime system called Topology Manager [6].

The next two sections explain the routing and aggregation techniques used in the library.
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3.2 Routing

Let the variables j and k denote PEs within an N-dimensional virtual topology of PEs and x denote a
dimension of the mesh. We represent the coordinates of j and k within the mesh as (j0, j1, . . . , jN−1) and
(k0, k1, . . . , kN−1). Also, let

f(x, j, k) =

{
0, if jx = kx

1, if jx 6= kx

j and k are peers if
N−1∑
d=0

f(d, j, k) = 1. (1)

When using TRAM, PEs communicate directly only with their peers. Sending to a PE which is not a peer
is handled inside the library by routing the data through one or more intermediate destinations along the
route to the final destination.

Suppose a data item destined for PE k is submitted to the library at PE j. If k is a peer of j, the data
item will be sent directly to k, possibly along with other data items for which k is the final or intermediate
destination. If k is not a peer of j, the data item will be sent to an intermediate destination m along the
route to k whose index is (j0, j1, . . . , ji−1, ki, ji+1, . . . , jN−1), where i is the greatest value of x for which
f(x, j, k) = 1.

Note that in obtaining the coordinates of m from j, exactly one of the coordinates of j which differs from
the coordinates of k is made to agree with k. It follows that m is a peer of j, and that using this routing
process at m and every subsequent intermediate destination along the route eventually leads to the data
item being received at k. Consequently, the number of messages F (j, k) that will carry the data item to the
destination is

F (j, k) =

N−1∑
d=0

f(d, j, k). (2)

3.3 Aggregation

Communicating over the network of a parallel machine involves per message bandwidth and processing
overhead. TRAM amortizes this overhead by aggregating data items at the source and every intermediate
destination along the route to the final destination.

Every local instance of the TRAM group buffers the data items that have been submitted locally or
received from another PE for forwarding. Because only peers communicate directly in the virtual mesh, it
suffices to have a single buffer for every peer of a given PE. For a dimension d within the virtual topology,
let sd denote its size. Consequently, each local instance allocates up to sd − 1 buffers per dimension, for a
total of

∑N−1
d=0 (sd − 1) buffers. Buffers are of a constant size. The ability to specify this size gives the user

direct control over the maximum memory footprint of TRAM’s buffer space.
Sending with TRAM is done by submitting a data item and a destination identifier, either PE or array

index, using a function call to the local instance. If the index belongs to a peer, the library places the
data item in the buffer for the peer’s PE. Otherwise, the library calculates the index of the intermediate
destination using the previously described algorithm, and places the data item in the buffer for the resulting
PE, which by design is always a peer of the local PE. To prevent memory allocation of buffers for peers
which rarely or never communicate, TRAM allocates buffers on demand as soon as a data item is submitted
for a particular peer. Buffers are sent out immediately when they become full. When a message is received
at an intermediate destination, the data items comprising it are distributed into the appropriate buffers for
subsequent sending. In the process, if a data item is determined to have reached its final destination, it is
immediately returned to the user through a virtual function reserved for that purpose.

The user has the option of specifying a total buffering capacity, which may be reached even when no
single buffer is completely filled up. If that is the case, the buffer with the greatest number of buffered data
items is sent out.
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Figure 1 shows an example of aggregation of messages by TRAM in a 3D topology.

Figure 1: TRAM routes messages along the dimensions of a virtual topology, using intermediate destinations
for increased aggregation. The three separate messages in this example are combined at an intermediate
destination and delivered in a single message to the destination.

3.4 TRAM Usage Scenario

A typical usage scenario for TRAM involves a start-up phase followed by one or more communication steps.
Usage of the library normally follows these steps:

1. Start-up Creation of a TRAM group and set up of client arrays and groups
2. Initialization Calling an initialization function, which returns through a callback
3. Sending An arbitrary number of sends using the insertData function call on the local instance of the

library
4. Receiving Processing received data items through the virtual process function which serves as the

delivery interface for the library and must be defined by the user
5. Termination Termination of a communication step
6. Re-initialization Object migration, potentially followed by re-initialization of TRAM (step 2) for a

new communication step

3.5 Periodic Message Dispatch and Termination

Users of TRAM have the option of enabling a message dispatch mechanism which periodically checks for
progress in the library and sends all buffers out if no sending took place since the last time the check was
done. The period at which checks are performed is left up to the user, but typically it should be done
infrequently enough so that it does not impede aggregation performed by the library. A typical use case for
the periodic dispatch is when the submission of a data item A to TRAM from user code depends on the
delivery of another data item B sent using the same TRAM instance. If B is buffered inside the library and
insufficient data items are submitted to cause the buffer holding B to be sent out, a deadlock could arise.
With the periodic dispatch mechanism, the buffer holding B is guaranteed to be sent out eventually, and
deadlock is prevented.

Termination of a communication step occurs through an ordered dispatch of messages along dimensions
from highest to lowest. Termination requires each contributor to a communication step to specify that it has
finished submitting data items. The underlying runtime system can determine the number of contributors
that are present at each PE and activate the termination mechanism when all contributors at a given PE are
done. During termination, each local TRAM instance ensures that it has finished receiving messages along
a higher dimension before sending out its buffers for the next dimension. This check is made by comparing
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the number of messages received along a given dimension with the sum of the total message counts that
are sent out by the peers which finished sending along that dimension. These counts are a minor source of
overhead in TRAM messages.

4 Theoretical Results

Network communication analysis is a challenging task. Attempts at high fidelity communication analysis
invariably require complexity which can only be managed through simulation. On the other hand, simplifying
the network model to manage complexity runs the risk of yielding analysis which fails to predict observations.
Our approach will be to use a simplified theoretical model, but to identify the assumptions of our analysis
at the outset to avoid misrepresenting our results.

4.1 Analysis of Aggregation for Nearest Neighbor Communication

In this section we aim to show that most of the improvement in performance due to message aggregation
can be explained by a combination of two effects:
• reduction in costs due to per message processing overhead as a consequence of decreased message

counts
• reduction in network bandwidth consumed due to message envelope data
We will use hop-bytes [5] as a metric of bandwidth consumption. Hop-bytes for a message are defined as

the product of the number of bytes injected onto a network and the number of network links traversed by
the message. A message consumes the bandwidth of each link it traverses along the route to its destination,
so hop-bytes are a more accurate measure of system bandwidth consumption than the size of the sent
buffer. Using hop-bytes will allow us to take into account the impact of network topology and contention in
our analysis. For example, hop-bytes capture the benefit of near-neighbor communication as compared to
communication between nodes which are several links apart.

We will use the following parameters for our analysis:
• l: number of links; the number of network hops between the source and destination
• m: payload, or size of application buffer to be sent
• e: constant per message data overhead in bytes (due to envelope, CRC, etc.)
• g: combining factor; the number of messages combined per send
• o: per-message overhead incurred by the runtime system and network
We begin with the simple case of a sequence of N messages sent from a source A to a neighboring node

B within the network topology, so that l = 1. Each message consists of m bytes of payload data and e bytes
of envelope data.

For simplicity, let us assume a fictitious system where per message data overhead is constant regardless of
message size, and no additional overhead due to packetization exists. We will later consider a more realistic
scenario.

The total hop-bytes when sending the messages individually are:

hindiv = N × (m + e). (3)

Combining the payload data of individual messages in groups of g, assuming for simplicity that g divides N
exactly, reduces the hop-bytes to:

haggr = N × (m + e/g). (4)

The above leads to several observations. First, messages with payloads that are small relative to the constant
envelope size drastically increase hop-bytes. Sending 8 bytes of payload in a message with a 72 byte envelope
leads to only 10% of the hop-bytes accounting for payload. If the number of such messages is large, combining
may lead to a reduction of close to 90% in hop-bytes.

The second observation is that while increasing g reduces hop-bytes, the effect is diminished as g increases.
Considering our example from above, a g of 9 yields a speedup of 5 over the original, a g of 36 a speedup
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of 8, and the overall speedup with further increases to g is bounded by 10. This implies that most of the
maximum benefit of small message-combining can be effectively exploited with a relatively small combining
factor. This works in favor of our approach. Messages which can potentially be combined are rarely sent
in close succession, so getting enough messages requires buffering individual payloads until g messages are
available. The effect is that in any practical application message combining will increase the latency of
individual messages. We will assume that performance is bandwidth-limited, but in practice, preventing
messages from being sent for too long could stall progress in the application, and without new data injected
onto the network, would invalidate the assumption of a bandwidth bottleneck. The fact that a relatively
small combining factor gives a substantial benefit implies that low values of g will suffice, limiting the time
messages are buffered and allowing the use of relatively little buffer space to good effect.

Equation 4 also shows us that large messages will not significantly benefit from this aspect of combining,
as the envelope will account for an insignificantly small fraction of total message size.

Finding a Good Aggregation Buffer Size Earlier we proposed that performance improvements due
to message aggregation could be explained through (1) lower overhead as a result of fewer messages, and
(2) conservation of network bandwidth. We set out to verify this conjecture, as well as to determine an
appropriate aggregation buffer size, using tests of point-to-point communication on a pair of neighboring
nodes of the Surveyor Blue Gene/P system at ALCF.

Communication performance sometimes benefits from pipelining, where the sending of messages in se-
quence leads to overlap between phases of transmission and processing of different messages. We decided to
incorporate pipelining into our test to show that the benefit due to pipelining does not significantly help to
improve poor performance of fine-grained communication.

For our first test, we compared the time for sending a buffer of data using a single message to the time
for sending an equivalent amount of data using a sequence of smaller-sized messages, effectively pipelining
the communication. Each sequence of sending was immediately followed by an identical sequence in the
reverse direction to obtain a “round-trip time.” By dividing twice the buffer size by the round-trip time, we
obtained an effective bandwidth - the rate of delivery of data when taking into account all overhead. Figure
2a plots the effective bandwidth relative to maximum link bandwidth for this experiment (425 MB/s).

The first thing to notice from the figure is the effect of short messages on bandwidth utilization. Sends
of 32 byte buffers utilize at most 2.6% of the network bandwidth, even when multiple messages are sent in
sequence to benefit from pipelining. Messages of at least 2KB are required to achieve 50% of the theoretical
link bandwidth. The effective bandwidth peaks at around 82% of the maximum link bandwidth, due to
message processing costs and runtime system overhead as well as communication overhead incurred on the
network.

Sending short messages clearly has a large detrimental effect on communication performance on this
system, but this leaves the question of what message size is large enough for good performance, and whether
there is a threshold at which pipelining helps rather than hurts performance compared to using a single send.
Figure 2b shows the results of the experiment when pipelining in chunks of 8 KB or more. Results show that
on Blue Gene/P, sends in chunks of 16 KB or more come within 1% of the peak observed bandwidth for a
particular message size. Compared to sending a single message, pipelining helps only for messages of 1 MB
or more, and even then the benefit is limited. Also, due to the small decrease in performance of individual
sends of buffers over 1 MB, using chunks of 1 MB or more slightly degrades performance.

For the purposes of our library then, the experiment shows 8 or 16 KB to be a good value for the size of
TRAM’s aggregation buffers. While using larger chunk sizes yields a small additional increase in bandwidth,
we don’t believe this benefit would justify the cost of significantly increased latency for buffered messages.

Predicting the Impact of Aggregation Figures 2a and 2b also provide evidence for the mechanisms
responsible for performance improvement due to message aggregation. Based on the results we can rule out
that one or the other mechanism we identified at the beginning of this section is the sole determining factor for
performance improvement due to aggregation. Given the envelope size of 88 bytes for our runtime system, if
bandwidth consumption due to envelope data could explain poor performance of fine-grained communication,
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Figure 2: (a) A plot showing effective bandwidth of nearest-neighbor communication on Blue Gene/P when
sending data using chunks of small size. Results show that fine-grained communication can only utilize a few
percent of the available network bandwidth. (b) Effective bandwidth of pipelined sends on the Blue Gene/P
when using chunks of medium to large size. Messages between 16 KB and 512 KB lead to good bandwidth
utilization. Sends of 1 MB or more suffer from a slight performance degradation.

32-byte sends should not slow down execution time by more than a factor of (32+88)/32 = 3.75. In fact, the
effective bandwidth when sending in chunks of 32 bytes is more than 30 times lower than our observed peak.
We will soon see that network implementation details further increase data-related overhead of sending, but
certainly not by enough to explain a factor of 30 difference in performance of fine-grained communication
compared to sends of medium-sized messages.

Similarly, one should not expect constant overhead due to message processing in the runtime system and
network to fully explain the performance difference between single and chunk sends, as it ignores any impact
that message size has on performance, which is clearly unrealistic.

To establish the combination of the two factors as a good indicator of messaging performance, we used
linear regression analysis, with the number of sent messages and hop-bytes as independent variables for
predicting round-trip time. As our model does not take into account pipelining, we did not expect a perfect
match between the model and data, but due to the limited effects of pipelining we had observed, we felt the
model should do well enough to be usable.

We soon realized, however, that our approach to calculating hop-bytes required refinement. The issue
at hand is that fine-grained communication is sensitive to additional sources of overhead due to network
communication. We have already seen envelope cost as a significant source of overhead. In addition to the
envelope attached to a message by the runtime system, the communication interface for the network uses
its own headers for routing and error checking, and there are other significant sources of overhead due to
packetization [1].

Before a message can be sent on the Blue Gene/P torus network, it is split into packets, each consisting
of 1 to 8 chunks of 32 bytes each. The first eight bytes of a packet are reserved for link-level protocol
information such as routing and destination information, and the last 4 bytes of every packet are used for
error correction through a cyclic redundancy check (CRC) and an indicator of validity. There are several
performance implications of this packetization for fine-grained communication. First, it leads to at least 12
bytes of overhead in every 256 bytes sent (4.7% overhead). Secondly, a chunk is the smallest unit of data
that can be injected onto the network, so short messages for which the last chunk of a packet is not filled
completely with data will suffer additional overhead. Third, each packet requires processing overhead due
to routing and other network-level processing. Crossing a message size threshold which requires injection of
two rather than one packet can noticeably affect performance.

Based on the details of Blue Gene/P network implementation, we calculated the number of packets and
chunks that would be required for sending an 8 MB buffer using messages of various sizes. We picked a large
buffer size so that pipelining could be expected to affect execution time, as we wanted to see how well our
model could match the results in the presence of pipelining effects.
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Figure 3: Latency of a pipelined send of 8 MB on the Blue Gene/P. Increasing the size of the messages
used for sending markedly improves performance up to a message size of 2 KB, beyond which bandwidth
saturation limits further improvements. The observed results show non-regularities, such as at 256 bytes.
Using a least-squares regression model with the number of messages, number of packets, and hop-bytes as
the independent variables, we were able to closely match the observed results, showing that together these
variables are good predictors of communication time.

Msg Size #Msgs #Packets Hop Bytes 1
2 RTT (ms)

8 1M 1M 128M 4030
16 512K 512K 64M 1945
32 256K 256K 40M 960
64 128K 128K 24M 450
128 64K 64K 16M 232
256 32K 64K 12M 146
512 16K 48K 10M 74
1K 8K 40K 9.25M 45.3
2K 4K 36K 8.89M 25.2
4K 2K 36K 9.13M 24.2
8K 1K 34K 8.5M 23.4
16K 512 34K 8.45M 23.0
32K 256 33.8K 8.42M 22.8
64K 128 33.6K 8.41M 23.1

Table 1: Packet and hop-byte counts for pipelined sends of 8 MB using various numbers of equal-sized
messages. The hop-bytes represent the actual number of bytes injected onto the network based on calculations
taking into account Blue Gene/P network implementation.

Table 1 presents total packet counts, hop bytes, and execution time when sending the buffer using a set
number of equal sized messages. Hop bytes represent the total number of bytes injected onto the network.
We did not include the number of chunks, as these are simply equal to the hop bytes divided by 32. We also
plotted the execution time, representing half of the round-trip time, in Figure 3.

A first look at the figure implies a range of exponential decrease in execution time for fragment message
sizes from 8 bytes to 2 KB, followed by only relatively minor further decrease in time for higher message
sizes. Nonetheless, one can see from the curve and the table, particularly for messages of size 256 bytes,
that the exponential decrease is non-uniform. Our calculations of the number of packets required to perform
the sends were able to clarify much of the non-uniformity. For example, sending a message of size 256 bytes
requires 2 packets, while 128 byte messages can be sent using a single packet. As a result, using messages of
size either 256 bytes or 128 bytes leads to an injection of an equivalent number of packets onto the network
when sending the full 8 MB buffer. 1 Packets represent a considerable source of overhead on the network
due to routing. We believe that the equivalent packet counts for 128 and 256 byte messages are responsible
for the relatively low speedup when using 256 byte messages.

Figure 3 also shows the time predictions of our regression model, which estimates execution time based

1Note that the hop byte counts are not equivalent for the two cases. The total overhead due to the runtime system envelope
is two times higher when using 128 byte messages.
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on a linear combination of three variables: number of messages, number of packets, and number of hop
bytes. The regression coefficient of .99995 for our model indicates that overall it represent a good fit for
the experimental data. As such, we think this experiment provides strong evidence that the performance
impact of message aggregation can be predicted based on the two factors we identified at the beginning of
this section.

4.2 Virtual to Physical Topology Mapping

While the choice of a virtual topology to be used for TRAM is left to the user of the library, we believe that
matching the physical topology typically leads to the best performance. In this section, we explain why this
is the case.

Consider a data item sent over an N-dimensional mesh or torus using TRAM, and let a = F(j,k) from eq. 2
be the number of messages required to deliver it to its destination. As noted in Section 3, every intermediate
message along the route makes positive progress toward the destination along a single dimension of the
virtual topology. If the virtual topology is identical to the physical topology, then as long as the network’s
dynamic routing mechanism does not make an intermediate message take a non-minimal path, the route to
the destination determined by intermediate messages will travel over the least number of hops between the
source and the destination.

It is also possible to reduce the number of dimensions in the virtual topology as compared to the physical
topology while preserving minimal routing. The key is to notice that any two dimensions that are “adjacent”
(within the ordering of dimensions used for determining ranks in the topology) can be joined into a single
dimension while maintaining minimal routing. For example, a 4 x 4 x 8 topology can be reduced to a 16 x 8
topology by joining the first two dimensions. Compared to a virtual topology that is an exact replica of the
physical topology, a data item sent within the reduced topology obtained in this way will follow the same route
as in the full topology while skipping over some intermediate destinations. Each intermediate destination
leads to processing overhead and the need to re-inject the data onto the network. In return, intermediate
destinations allow aggregation of messages which would otherwise be sent separately. It is conceivable, then,
that in cases where messages are sufficiently large so that extensive aggregation is not strictly necessary for
performance, a lower-dimensional virtual topology may be better than a higher dimensional one.

On the other hand, assume a random mapping between the nodes in the virtual topology and the physical
topology, and let sd be the size of dimension d in the physical topology. On average, each intermediate
message will travel the average distance between pairs of nodes in the physical topology, which is

∑N−1
d=0 sd/4

for a torus and
∑N−1

d=0 sd/3 for a mesh. This is clearly undesirable, and leads to a significant increase in
congestion. Note that this congestion grows not just in proportion to the size of the physical topology, which
affects the number of hops traveled by each intermediate message, but also in proportion to the number of
dimensions in the virtual topology, which affects the average number of intermediate messages required to
deliver a data item. In fact, an intermediate message when using a random mapping will on average travel
as many hops as a full route would when using a virtual topology that matches the physical topology.

5 Experimental Results

There is a common misconception that fine-grained communication is always the result of poorly written
parallel code. According to this school of thought, it is the programmer’s responsibility to ensure a proper
grain size such that messages are of a large enough size to yield good performance. While there are certainly
cases where grain size control in an application can lead to good results, sometimes this becomes very
tedious, and at other times difficult. In particular, for a distributed object-oriented system like Charm++,
one would like to be able to have objects in the parallel program represent the players and entities of a parallel
simulation, rather than collections of these items which bear no similarity to any physical or abstract entity.
Using a library like TRAM allows a programmer to maintain the illusion of direct communication between
fine-grained entities, which may lead to a cleaner expression of a given algorithm.
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Figure 4: All-to-all benchmark: (a) Blue Gene/P with and without TRAM. (b,c) Effect of various parameters
on Blue Gene/Q with TRAM.

A second reason to take fine-grained communication seriously is that there are situations which require
its use. Small control messages and acknowledgements are very common in a parallel setting and rarely
lend themselves to grain control. Further, improving parallel application performance for a given data
set typically requires increasing the number of cores on which the application is executed, which typically
leads to partitioning of the data set into increasingly fine pieces. By improving fine-grained communication
performance, TRAM may allow for increased scaling of some classes of parallel applications. We next take
a look at some example benchmarks and applications whose performance improved from using TRAM to
aggregate fine-grained communication.

The results presented in this section demonstrate the effectiveness of TRAM in improving performance
of both clear-cut and subtle sources of fine-grained communication in benchmarks and applications.

5.1 Benchmarks

All-to-All

We ran tests of an all-to-all benchmark on four different partition sizes of the ALCF Intrepid Blue Gene/P
system:
• 8 x 8 x 8 = 512 nodes
• 8 x 16 x 32 = 4096 nodes
• 16 x 32 x 32 = 16384 nodes
• 32 x 32 x 32 = 32768 nodes
For these tests, we used a single process per node of Blue Gene/P. The TRAM version of the benchmark

used data items of size 32 bytes, while the version without TRAM used point to point sends of 32 bytes.
For TRAM runs we set the size of aggregation buffers to 2 KB. To lessen communication bottlenecks, we
used a standard optimization of randomizing the order in which sends are performed for both versions of the
benchmark. All-to-all of more than 32 bytes per destination was performed in rounds (for both versions of
the benchmark) by looping over all the destinations and sending 32 bytes to each destination in each round.

Results are shown in figure 4a. Using TRAM led to speedups of between 3.5 and 6.25. The speedups for
the 512 node run show the most variability with the amount of bytes sent per destination. Speedup compared
to not using TRAM for that run was 3.65 when sending 32 bytes per destination, and increased gradually
to 6.25 for sends of 16KB per destination. For the other runs, speedup was more uniform, at around 5 to 6
x, with the exception of the outlier for the 128-byte data point at 32K nodes, for which speedup was 3.59.
Overall, the results indicate a clear performance advantage to using TRAM for fine-grained communication.

We ran further tests using this benchmark on the Vesta Blue Gene/Q system at ALCF, with the focus
of showing the impact of varying the size of the aggregation buffers and the number of dimensions in the
virtual topology. The 5D network topology on Blue Gene/Q made it a particularly suitable system for the
latter tests. The Blue Gene/Q tests were carried out by Yanhua Sun.
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Figure 4b shows the results of the all-to-all benchmark using TRAM on 64 nodes using various aggre-
gation buffer sizes, with a 3D virtual topology. Results confirm our prior observations for nearest-neighbor
communication. Smaller buffer sizes, representing less aggregation, produce significantly higher total execu-
tion time, even in the case when the payload per destination is just 32 bytes. With increased buffer size,
performance improves sharply up to a buffer size of 1 KB, and more slowly up to at least 8 KB. Beyond
that, any additional improvements are minor.

Our second Blue Gene/Q experiment, the results of which are presented in Figure 4c, involved comparing
the performance when varying the number of dimensions in the virtual topology using the approach described
in Section 4.2. The runs were done on a 64 node partition. The difference in execution time between the
best and worst topology for a given byte count can be as high as 4.4x, demonstrating the importance of
taking some care in selecting a virtual topology when using TRAM. Results show a 3D virtual topology
being best for low total payload sizes, and a 2D virtual topology being better for higher total payload size.
As explained in Section 4.2, intermediate destinations are a source of overhead in terms of processing and
injection bandwidth. At higher payload sizes, there is sufficient data available for aggregation when using
lower dimensional virtual topologies, so that a 3D or higher topology is not worth the additional overhead of
additional intermediate destinations. The 6D topology, obtained by using the five dimensions of the network
topology and cores per node as the sixth dimension, further reinforces this conclusion, as it always leads to
worse performance than the 3D topology at this node count.

HPCC Random Access

The HPC Challenge Random Access benchmark measures the rate of processing updates to a distributed
table. Each process issues updates to random locations in the table. The small size of individual update
messages in this benchmark makes it prohibitively expensive to send each item as a separate message. This
makes the benchmark an ideal scenario for using TRAM.

For testing on the Intrepid Blue Gene/P system, we used a 3-dimensional virtual topology comprising
the processing elements (PEs) involved in the run. Using the Charm++ Topology Manager library, we made
the virtual topology match the physical topology of the nodes in the partition for the run, except that we
dilated the lowest dimension of the virtual mesh by a factor of 4 to account for the separate cores within a
node. Random Access specifications dictate a buffer limit of 1024 items per process. To adhere to this limit,
we set the TRAM buffering capacity at 1024 items per local instance of the library.

On the Vesta Blue Gene/Q system, where the network is a 5D mesh, we found that a 5 or 6-dimensional
virtual topology works best, where two of the dimensions comprise the 64 processes within a node (8 x 8),
and the remaining dimensions are obtained by reducing the mesh dimensions through combining of some
individual dimensions according to the scheme presented in Section 4.2. We found that combining the first
and second dimensions of the physical partition into a single dimension in the virtual mesh made the most
sense, and likewise with the fourth and fifth. In general, we selected for combining dimensions of the lowest
size. Scaling runs and tuning of dimension sizes of the virtual topology for runs on Vesta were done by
Ramprasad Venkataraman. Figure 5 shows scaling plots of the results on Intrepid and Vesta.

HPCC Fast Fourier Transform

Another HPC Challenge benchmark which greatly benefits from the use of TRAM is the Fast Fourier
Transform benchmark, which measures the floating point rate of execution of a double precision complex
one-dimensional Discrete Fourier Transform.

In the benchmark, processes send arrays of a single data type on the network. To simplify the user
interface and remove the need for individually submitting each element of a data array to TRAM, we
employed a version of TRAM that allows submitting arrays of data items. The library then automatically
performs segmentation of the array into chunks at the source and reconstructing arrays from chunks at the
receiver. Chunk size is independent of the size of the data type for individual elements, allowing us to limit
processing overhead when data items are very small. Figure 6 shows a scaling plot for the benchmark on
Intrepid.
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The Charm++ FFT benchmark was written by Anshu Arya, who also did the scaling runs on Intrepid.

5.2 Applications

EpiSimdemics - Simulations of the Spread of Contagion

EpiSimdemics is a parallel algorithm and simulator developed at Virginia Tech for simulating the spread of
infectious disease over realistic social networks with hundreds of millions of individuals [3, 4, 8]. Originally
coded in MPI, it has more recently been ported to Charm++.

EpiSimdemics employs an agent-based epidemic model. In each time step, each person object sends a
message to every location object visited. The location objects in turn calculate the probability of infection
and send messages to infected person objects. Messages sent to the location objects are numerous and small
in size (38 bytes), so that network communication is a bottleneck to performance. These factors combine to
make EpiSimdemics a good use case for TRAM.

We evaluated the performance using TRAM on Blue Waters [23] using a 2D virtual topology with the the
number of nodes as the first dimension and the the number of cores per node as the second. EpiSimdemics
was run using CHARM++’s Cray Gemini SMP machine layer [25, 26]. Combining messages with TRAM
yields speedups of up to 4x, as shown in Figure 7. Also shown are results when using a manual message
combining scheme rather than TRAM. In this scheme local messages which are to be sent to the same PE
are combined, similar to using TRAM with a linear (1D) virtual topology. Compared to TRAM, the manual
scheme performs slightly worse and uses more memory, as a buffer is required for each PE in the run.
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The work of incorporating TRAM into EpiSimdemics was done by Abhishek Gupta and Jae-Seung Yeom.
Performance results were collected by Jae-Seung Yeom.

ChaNGa - Cosmological N-Body Simulations

Another application which benefited from TRAM is ChaNGa [10, 16], a cosmological N-body simulator
written in Charm++, based on the Barnes-Hut algorithm. Network communication structure in ChaNGa
had been optimized over the course of several years with multiple levels of abstraction grouping particles
in a hierarchy of structures of increasing size to balance different sources of overhead. Despite this, we
still found some opportunities for improving performance with TRAM. One source of improvement was
combining of messages requesting data from remote processors. These messages, each consisting of 16 bytes
of payload data, were numerous, and combining them significantly lowered the total number of messages
in the application. Secondly, we used TRAM for the messages that returned particle data in response to
a request. While the average size of these messages was relatively large, in some cases the returned data
consisted of only a few particles. We also used TRAM during domain decomposition, when particles are
migrated between processes in a sparse all-to-all communication pattern.

Figure 9 illustrates the effect of TRAM on the total volume of communication in ChaNGa. Shown are
histograms of messages sent in a single time step of ChaNGa, both with and without using TRAM. As can be
seen, using TRAM greatly reduces the number of messages requesting data from remote processes. as shown
in Figure 8, TRAM improved performance by 15 to 20% on Vesta, except at 512 nodes where bottlenecks
in parts of the code not accelerated with TRAM determine performance.

For messages of sufficiently large size, further combining may not improve performance, and the delay
due to buffering may in fact hurt performance. A case in point is the node reply message type in ChaNGa.
These messages, while numerous, are several hundred bytes in size or larger. We found that using TRAM
for these messages hurt performance.

Incorporating TRAM into ChaNGa was done in collaboration with Pritish Jetley.

14



Figure 9: Histogram of messages, grouped by message size, for a time step of ChaNGa when not using
TRAM (top) and with TRAM (bottom). Results were obtained on 4k nodes of the Intrepid Blue Gene/P
system at ALCF, using the 50 million particle dwarf data set.
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Planned Work

The results presented in the previous sections show the utility of the topological routing and aggregation
approach as employed in TRAM for improving communication and overall performance in benchmarks and
large applications. Moving forward, the planned work, described in the following sections, serves to advance
this work along multiple axes.

The success of a software library depends heavily on ease of use and feature set. Our existing TRAM
use cases have served to identify multiple opportunities for making TRAM easier to use. Over time, we
made some of these changes. Other issues, which are more involved, are part of the proposed work in the
following sections. These changes will allow tighter integration of TRAM as a module and subsystem of the
Charm++ runtime system. Ultimately, our goal is for every Charm++ program to benefit from topological
message aggregation without requiring additional code, tuning, or input from the developer or user. This
entails several challenges, which we will describe in Section 6.

Secondly, in its current form TRAM can only exploit the full benefits of topological aggregation while
preserving minimal routing on mesh and torus systems which assign hyperrectangle job partitions. Currently,
only Blue Gene systems satisfy this requirement. On other systems, one can still get some benefit from
intranode aggregation, typically by setting up a 2D virtual topology with one dimension for the nodes in the
run and one for the processes or worker threads within the node. As part of the work proposed in Section 7,
we will be implementing topological schemes for non-mesh topologies, as well as mesh networks which do
not assign hyperrectangle partitions.

Our theoretical study of aggregation, so far limited to nearest neighbor communication, will need to be
extended to more realistic systems, taking into account both topology and network congestion. This will be
explored in Section 8.

We believe TRAM can be leveraged for implementation of higher level communication libraries on top
of it, particularly collective libraries. We have already implemented broadcast capabilities within TRAM.
In the future, we will look at implementing other collective calls, including multicasts, reductions, scatters,
gathers, allreduce, and possibly other collective operations. Section 9 describes these efforts in more detail.

In order to make TRAM competitive with the best communication libraries on supercomputing systems,
we will need to exploit native communication operations. Examples of such interfaces include multicast
capabilities, special auxiliary networks (such as the collective network on Blue Gene/P), and remote direct
memory access (RDMA), which we can leverage through the use of an existing Charm++ persistent com-
munication library. Effective use of shared memory within an SMP-node will also be important for getting
the best possible performance with TRAM. This will be further explored in sections 10, 11, and 12.

A module that is tightly coupled within the Charm++ runtime system will not serve the needs of most
of the HPC community, where MPI is the norm. With a bit of careful software engineering, it should be
possible to separate out sections of the TRAM code base that are truly Charm++ dependent from the more
generally applicable code for routing and aggregation. The small amount of Charm++-specific code could
then be ported to other communication libraries, such as MPI. This will be further described in Section 13.

Finally, we will continue working on application and benchmark use cases for TRAM. These efforts serve
a double purpose, as an evaluation tool for TRAM on one hand, and a gauge of its robustness and generality
on the other hand. Also, we intend to demonstrate the use of TRAM to combine control messages at the
level of the runtime system. We will describe this in Section 14.
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6 From Library to Autonomous Subsystem

In its existing form, TRAM is a generalized library for aggregation of network communication in Charm++
applications. The current library is capable of aggregating network communication to a client chare group or
array, and takes as a template parameter a data type denoting the type of data items to be communicated.
To send a data item using TRAM, users call a method of the library, which takes a reference to a singleton
data item as input. In addition, for group clients, there exists a “Chunk” variant of TRAM which supports
sending arrays of data items.

Our initial implementation of TRAM is by design relatively simple, leaving out features which were
not deemed to be necessary to establish the proof of concept, and assigning many parameter specification
decisions to users of the library. We now take a closer look at the challenges involved in automating parameter
selection and relaxing interface restrictions.

6.1 Automating Parameter Selection

Library parameters that users have to specify include:
• Size of buffers to be used for aggregation (or alternately, the total memory footprint for the buffer

space)
• Virtual topology, including the number of dimensions and their sizes
• Whether to activate periodic dispatch, and if so, at what time interval
Automating the choice of each of the above parameters presents its own challenges. In the theoretical

results presented in Section 4.1 we identified 2 - 16 KB as reasonable buffer sizes which lead to good bandwidth
utilization while limiting the amount of time data items are buffered before being sent. However, our tests
were done on a single system (Blue Gene/P) and only for nearest neighbor communication. Although we
are confident the results are generally applicable, this needs to be shown concretely by repeating the test on
other systems. Perhaps the most interesting result of this exercise will be to see whether the range of buffer
sizes that work well for aggregation varies significantly across systems.

Automating the choice of virtual topology can be done reasonably well on systems with mesh networks
by using the Charm++ Topology Manager, which returns the dimensions of the physical topology for the
partition used for a run. On Blue Gene/P, using Topology Manager to match the physical topology appears
to work best, while on Blue Gene/Q, using a 3D topology which combines the 5D dimensions of the job
partition into two dimensions and uses the third dimension for the processes within a node appears to work
well. Still, the Blue Gene/Q runs were done on the Vesta system at ALCF, which is a relatively small test
system that may not accurately represent conditions on larger machines. As such, more work is needed to
assess the tradeoff between aggregation and overhead that depends on the number of dimensions used for
the virtual topology specification. Handling non-mesh topologies is another serious challenge, which we will
describe further in the following sections.

The periodic flushing mechanism is normally used only in situations that require it to avoid deadlock,
such as when a TRAM data item is submitted in response to the delivery of another TRAM data item.
Automating the flushing aspect of the library may thus require code analysis to identify the potential for
deadlock. Another possibility is deadlock detection and recovery. Detection could be achieved by using
the Charm++ quiescence detection feature, which identifies a global idle state. Recovery could be done by
dispatching all TRAM buffers. The performance of this scheme will depend on how frequently deadlock is
encountered. If necessary, we will develop a more efficient scheme.

6.2 Generalized Aggregation

In addition to the need to specify library parameters, users of TRAM currently need to be aware of certain
restrictions in usage of the library:
• Each TRAM instance is limited to supporting a single client, either group or chare array, and a single

input data type.
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• A TRAM instance must be initialized prior to use and terminated to mark that submission of data
items is done.

• Data items must have a constant size.
• The operator = for the data item data type must be sufficient for copying the state of the data item

into an aggregation buffer.
• For client chare arrays, location of chare array elements must be globally known while TRAM is active.
Most of these limitations arise from the decision to implement TRAM as a templated library that restricts

data items to a single type. An alternative design is to allow sending arbitrary data buffers. We have already
taken a step in this direction with a “Chunk” variant of TRAM, which allows users to submit arrays of data
items. To support data items of arbitrary size, Chunk TRAM processes submitted buffers as raw data
and performs segmentation automatically without regard for data type boundaries. Further generalization
of this approach is required to allow sending arbitrary data, and to properly serialize/deserialize complex
objects before/after transmission on the network. The Charm++ pack-unpack framework will be useful for
accomplishing this task. We anticipate a significant challenge in attempting to make the generalized library
perform as well in simple cases as the current, more specialized variants.

The last bullet point above refers to an esoteric performance problem that users of TRAM may encounter
when using it in applications that perform migration of chare array elements, such as for load balancing
purposes. When an element is migrated in Charm++, its location information is updated only at a single,
globally known process, called the homePE. Other than the homePE and the two PEs involved in migration,
any process that subsequently tries to send a message to that element will send to the previous location.
When the message arrives at the old location, the runtime system recognizes that the object no longer resides
locally and forwards the message to the homePE, from where it will be delivered to the correct destination.
The homePE also performs another important function - it sends the updated location back to the original
sender, so that future sends from that sender may go directly to the correct destination. Unfortunately,
this process does not have the desired effect when using TRAM. When a data item arrives at an incorrect
destination due to stale location data at the original sender of the data item, the rank of the process that sent
the data item is unknown, as the data item may have passed through one or more intermediate destinations.
As such, while the default lazy location update scheme will be sufficient to deliver the item to the correct
destination by forwarding it to the homePE, the updated location data will be sent to the last sender, which
is likely to be an intermediate destination rather than the original source. Hence, future sends from the
original source for the same destination will be indefinitely routed to the incorrect location. In this scenario,
using TRAM will likely hurt performance. To work around this problem, we implemented a scheme that
updates the location of migrated array elements globally. However, this scheme is not scalable and only works
for applications that employ centralized load balancing. As such, we will need to develop a new scheme with
low overhead and low incidence of data items that require forwarding.

6.3 Automatic Aggregation

On the path to fully automating TRAM, one of the most ambitious aspects of the planned work will be to
determine which messages to aggregate and which to send directly without delay. The challenge involved is
substantial. Optimally, the runtime system would have to determine which messages lie on the critical path
for the application in order to correctly decide when aggregation should not be attempted. Alternatively,
we may employ autotuning to determine at runtime which message types are amenable to aggregation.
Due to the possibly large number of different types of messages, we may also need to prune the full set of
message types in the application and runtime to be considered for aggregation. One way to do so would be
to determine which message types lead to substantial bandwidth use, and only consider these messages for
aggregation.

If the task proves too difficult, we will consider relaxing slightly the automation requirement. For example,
we may leave it to the user to specify latency-sensitive messages that should not be aggregated, or even to
specify when aggregation should be attempted. This can be achieved by adding new annotation types for
Charm++ interface (.ci) files, supplementing existing types that specify message-specific behavior, such as
prioritizing specific messages in the scheduler.
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7 Non-Mesh and Incomplete Mesh Topologies

In its current form TRAM employs a mesh topological aggregation scheme that works well on mesh networks
with hyperrectangle job partitions. We now take a closer look at the challenges involved in extending
topological aggregation to various other network types.

7.1 Incomplete Meshes - Cray Gemini Systems

Like Blue Gene/P systems, Cray supercomputers such as the XE series use a 3D torus network. Despite
this, there are two main challenges in effectively using topological aggregation on these systems:
• some nodes within the torus topology are reserved for I/O, login, and system related tasks
• irregular job partitions - typical partitions consist of various nodes throughout the system
The issue of missing nodes, or holes, within an otherwise regular partition has been previously explored

in [17] and [19]. There, the proposed solution was to route traffic that would normally go through the missing
node to a nearby node, while ensuring that links were utilized as uniformly as possible in all-to-all scenarios.

The above scheme may be useful when running on a full Cray XE system or a large, manually selected
partition from the full system. Otherwise, a different scheme is required in the more general case of a run
across various nodes throughout the system. One approach we can try is to identify substructures within the
list of nodes in the run using a clustering algorithm. A 2D mesh virtual topology could then be established,
with one dimension for the substructures and a second for their contents. Recursive application of the
clustering algorithm within each cluster could be used to identify additional dimensions for the topology.
Due to the unpredictability of this scenario, adaptivity may be required for good performance, where the
virtual topology would be adjusted depending on the structure of the list of nodes in the run.

7.2 Fat Tree Networks - Infiniband Clusters

Fat tree networks are the standard interconnection network topology for Infiniband networks, which account
for 45% of the systems on the November 2012 Top 500 list. In a true fat tree the communication nodes are
arranged into a tree, with progressively higher bandwidth in the upper levels, closer to the root. Theoretically,
this allows for full bisection bandwidth, so that in any partitioning of the leaf nodes into pairs, all pairs can
concurrently communicate at the bandwidth of the links in the bottom level of the tree. Typical network
configurations are not strictly fat trees, as they have multiple nodes in the uppermost level instead of a root.
However, as messages between distant nodes always pass through one of the handful of switches in the top
level, the top switches can be imagined to collectively form a “root”, so that the full topology resembles a
fat tree. For example, Stampede, placed 7th on the November 2012 Top500 list, has a two level fat tree
topology, with 8 core switches forming the top level of the tree, connected in an all-to-all manner to 640 leaf
switches in the second level, each of which in turn serves a group of 20 compute nodes.

Fat tree networks are characterized by a low diameter (and hence low small message latency) and high
bisection bandwidth, but due to much network traffic being routed through the core switches, they tend to
exhibit considerable performance degradation in network congestion scenarios [11]. Some recent efforts to
address this issue take the approach of throttling communication to prevent congestion-related performance
deterioration [22]. We expect that an aggregation approach should further improve the efficacy of such
schemes, by making better use of the time that messages are buffered. As such, using TRAM could make
a significant difference in the network performance on these systems. This would require modifications to
allow TRAM to actively throttle injection of messages onto the network. An alternative is to use TRAM as
a first stage in combination with existing throttling libraries.

To date, our approach to using TRAM on Infiniband clusters has been to employ a two-dimensional
virtual mesh topology, with one dimension for the cores within a node, and the second for the nodes in the
run. This has led to some performance improvement, particularly for EpiSimdemics (see Section 5.2), but
there is room for further improvement.

To better exploit fat tree networks, we propose new abstractions for message aggregation. The first step
along this direction will be to establish a TRAM dimension for the set of nodes connected to each leaf switch.
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For all-to-all communication on Stampede, this should reduce the number of messages by up to a factor of
20, while maintaining minimal distance routing. More involved schemes are possible to further increase
aggregation. While employing aggregation at the core and leaf switches would likely require modifying the
switch firmware and may not be possible, we could try assigning some nodes the task of aggregation across a
collection of leaf switches. This last change in particular would move us away from the purely mesh virtual
topology abstraction. A possible direction in this vein is a mesh of trees virtual topology model.

7.3 Hierarchical Clustered Networks - IBM PERCS, Cray Cascade

Some recent supercomputing networks use a multi-level, hierarchical approach that attempts to strike a
balance between network performance and scalability. At the top level, these networks consist of a set of
supernodes that form a dense (or complete) graph. Each supernode is in turn another dense or complete
graph of substructures. Examples of such networks include the IBM PERCS network, used in its Power
775 series of supercomputers, and the Cray Cascade. These networks provide high bandwidth connections
between nodes that are nearby in the topology, and progressively lower bandwidth between far-away nodes
(especially in congestion scenarios, such as for bisection bandwidth). To make the discussion more concrete,
we will use PERCS as a guiding example, but we expect most of the ideas to carry over to Cascade as well.

Previous work has shown that when using these networks, care is required to make good use of the
numerous direct connections between clusters at each level [7]. Secondly, one must try to avoid overutiliz-
ing individual links in the higher levels of the topology, which may have lower bandwidth than links at the
subcluster level. Unlike with mesh and torus networks, topology-aware mapping schemes, when used in com-
bination with direct routing, may aggravate these problems by using only a small fraction of the links. The
proposed solution was to randomize placement of tasks to physical nodes and use indirect routing, improving
communication load balance among links, at the cost of increased aggregate bandwidth consumption.

The use of randomized mapping on these systems has the effect of obscuring the distinction between
near-neighbor and far away communication by making it difficult to predict whether two ranks are nearby
or far apart within the physical topology. This may increase the applicability of TRAM for near-neighbor
communication. On mesh networks an application with strictly nearest-neighbor communication may not
benefit significantly from a message aggregation approach, and would certainly not benefit from combining
at intermediate destinations. With a randomized mapping on a PERCS network, the previously nearest-
neighbor pattern would instead consist of mostly far away communication. As a result, aggregation at the
source and intermediate destinations may lead to a significant reduction in the number of messages on the
network and the bytes consumed by envelope data.

Our choice of TRAM virtual topology on these systems will be guided by the physical topology of the
network. As with other network types, we do not want TRAM to cause excessive bandwidth use through
software routing choices that significantly stray from a “good” path. We define the quality of a path for
a software routed data item based on the maximum number of hops required to deliver a data item from
the original source to its destination. To develop a scheme with relatively low maximum path length, we
can take advantage of an important characteristic of these networks - messages sent between nodes on the
same supernode are always routed directly [7]. This gives us control over the routing decisions within the
supernode for the source and destination. The only uncertainty is whether the hardware will route a message
directly to the destination’s supernode or along an indirect route when sending across supernodes.

Given a source node and destination node, it should be simple to determine the path that direct routing
would choose. Hence, our planned scheme is to set up TRAM to route data items along the direct path to
the destination, with the nodes along that path as the intermediate destinations. If direct routing is used in
hardware, the path will be no different from a direct send, and each data item will travel along at most 3
links. If indirect routing is used in hardware, the path between supernodes could conceivably take as many
as 5 links, but in practice this number will be lower. In the worst case, the number of links used to deliver
the data item will be 7, so the additional bandwidth use due to dilated paths will be manageable.
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8 Analysis for Generalized Communication Patterns

With the analysis presented in Section 4.1, we have shown that medium-sized buffers (e.g. 8 - 16 KB on Blue
Gene/P) achieve reasonably good utilization of network bandwidth for nearest neighbor communication. We
also showed that sends of messages below 2 KB suffer due to envelope and processing overhead. We used
these results to support the idea that relatively low levels of aggregation can lead to large benefits. Using
medium-sized buffers directly limits the memory footprint of the aggregation buffer space and indirectly
affects the time spent buffering data items before sending them out on the network.

More theoretical and empirical analysis is needed to further quantify the benefits of aggregation. To
start, the experiment from 4.1 should be repeated on other platforms to verify that the same conclusions
will hold for other systems and network types. Secondly, we need to evaluate aggregation in the presence of
non-nearest neighbor communication, network congestion, and overlap of computation and communication.

To estimate whether medium sized buffers will work well in congestion scenarios, we will run tests of the
all-to-all benchmark 5.1 with various buffer sizes on a number of systems.

Other issues which need to be examined, both analytically, and empirically include:
• Effects of varying the number of dimensions in the virtual topology
• Quantification of processing overhead due to sending a message
• Quantification of TRAM overhead due to processing at source and intermediate destinations
• Injection bandwidth overhead due to TRAM

9 Topology-aware Collective Communication

Up to now, we have primarily assumed communication specified as point-to-point messages, but many
communication patterns are specified in terms of collective operations over a large number of processes or
objects. We propose to look at how these patterns can be implemented within TRAM to take advantage of
its aggregation capabilities. Our first approach will be to implement well established and highly optimized
topology-aware algorithms from literature [15], [24]. Our goal is not theoretical or practical improvement on
execution time of traditional collective patterns, many of which have been proven to be close to theoretical
bounds on performance. Instead, rather than focusing on collective algorithms executed in isolation over the
full set of processes in the run, we hope our approach may provide some benefits in less structured scenarios
where collectives are executed over subsets of processes or when multiple communication patterns are active
concurrently.

By constructing collective implementations on top of a single underlying aggregation library, we hope
to attain a more cohesive collective ecosystem, with less code duplication and more centralized control over
parameters such as branching factor and buffer size for pipelining. Another benefit of this approach is to
allow simultaneous aggregation over concurrent collectives or even point-to-point communication patterns.
As part of this work, we will look for applications where overlap across concurrent communication patterns
can lead to performance improvement.

As proof of concept and an example of the research aspects of this angle to our work, we have implemented
the broadcast collective in TRAM. For an N-dimensional virtual mesh topology, the algorithm proceeds in N
stages. In the first stage, the local TRAM instance where the broadcast call was made sends the data item
to each of its peers along dimension N-1. In a subsequent step x, every local TRAM instance that received
the broadcast data item during steps 1 to x - 1 sends it to all its peers along dimension N - x. After N stages,
the broadcast is complete. The construction employed is similar to that of a spanning tree.

Because this broadcast implementation is done within TRAM, it has desirable performance characteristics
that are easily ensured. First, as long as the virtual topology matches the physical network topology, no two
steps of the algorithm will use any of the the same links of the network (although there is some redundant
sending/contention within a single step, see below). Secondly, the implementation allows aggregating data
items from multiple concurrent broadcasts or even point to point sends. This allows an all-to-all multicast
implemented as a set of TRAM broadcasts to benefit from aggregation of data from the various concurrent
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broadcasts. Finally, the broadcast implementation uses most of the same code as the point-to-point TRAM
code, with relatively minor extensions.

One potentially interesting aspect of this work is tuning the branching factor of the spanning tree used
for the broadcast. As noted above, the algorithm is not bandwidth minimal. In each step, a given sender
sends the same data to each of its peers along a dimension. These messages will travel over the same links
of the network, using more bandwidth than necessary. An alternative that would minimize bandwidth use
would be to replace each multicast within the above algorithm with a ring pattern within that dimension.
This would lead to minimal bandwidth usage, but a significant increase in the number of messages along
the critical path. An in-between scheme is also possible, where the sends along a given dimension are done
using a recursive algorithm in a logarithmic number of steps.

10 Machine-specific Network Optimizations

Some collective operations have system-optimized native implementations that rely on specialized hardware
or network-level capabilities. As an example, Blue Gene/P has a separate low-latency collective network
and the ability to broadcast a packet to a line of nodes without doing store-and-forward. In some cases,
optimized low level libraries provide fast implementations for communication and collective primitives. An
example is the multisend capabilities on Blue Gene systems available through the DCMF library [20], which,
among other things, provide an interface to the line broadcast. Multisends look particularly attractive for
the TRAM broadcast algorithm described in Section 9. We plan to add support for fast machine-specific
optimizations where appropriate.

11 SMP Optimizations

While an appropriate choice of virtual mesh topology in TRAM leads to some SMP-level message combining,
the degree of aggregation can in general be further improved with separate schemes at the intranode level.
For example, if p processes on an SMP-node send messages to corresponding processes on a nearby SMP-
node, a mesh virtual topology would typically lead to p separate messages sent onto the network, as each
pair of communicating processes would typically be peers within the virtual topology. Instead, we could say
that a given process will be responsible for all the messages sent to a given node. In the above example, one
of the processes within the node would collect all the messages, then send a single message to the destination
node, where the messages would be scattered to the appropriate destination. Note that this would involve
2p− 1 messages in total, compared to p in the previous case, but only one message on the network, and so
much less bandwidth consumed due to envelope data. The efficacy of such schemes will depend on intranode
communication being significantly less expensive than internode communication. If, rather than having
separate processes on the same node, one considers threads of the same process, a shared memory approach
may be feasible, where the messages are deposited into shared buffers. When undertaking any such scheme,
one would have to consider whether locking may be required to allow various threads to concurrently access
the shared buffer space. If so, evaluation of the locking overhead would be required.

Another issue to consider is whether the use of a single process or thread to send and receive all the data
(for a set of other nodes) may lead to bottlenecks. For example, if each node communicates with just one
other node, but the traffic is heavy, then the single thread may become a bottleneck.

Thus, there is often a tradeoff between increasing the amount of combining and overhead due to copying,
locking, non-minimal routing, and load imbalance. We plan to investigate these tradeoffs to determine when
aggressive SMP-level combining makes sense and when a more balanced approach is preferable.

12 Persistent Communication

One-sided communication protocols such as RDMA can be used to send messages at a lower latency and
without the copying normally incurred in the runtime system. Due to the time and memory overhead
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involved in setting up a channel for one-sided communication, it is best to establish these channels once
for recurring, persistent communication patterns, amortizing the overhead over multiple sends. When using
TRAM, each PE typically communicates repeatedly with a relatively small number of peers. As a result,
there is an opportunity to establish persistent channels between TRAM peers, giving additional benefits to
communication using TRAM. Note that this possibility does not generally exist without a virtual topology
scheme, as the total number of persistent channels required for all the processes in the run would be too
high. We plan to investigate the use of one-sided communication for TRAM using an existing Charm++
API for persistent communication, and study the costs and benefits of this approach.

13 Generalized Communication Interface and MPI Support

As a module of the Charm++ runtime system, TRAM is currently usable only in Charm++ programs. In
practice, this limits its potential set of users to the small fraction of the HPC community that is familiar
with Charm++ or willing to learn it. Porting TRAM to MPI would greatly increase its potential user base.
Further, we could separate out the small amount of Charm++-specific code in TRAM for communication,
determining locations of chare objects, and a few other tasks, from the more generally applicable code for
aggregation and routing. In the end, to use TRAM with non-Charm++ parallel applications and benchmarks,
one would only need to supply an implementation of the TRAM communication interface using that language.
We will furnish implementations of the interface for Charm++, MPI, as well as for LRTS, the underlying
messaging layer for Charm++.

As long as TRAM remains a library, the above approach should work relatively well. Our plans to evolve
TRAM into an adaptive, self-tuning system that aggregates without user involvement will be more difficult
to translate into a generic library. We may attempt a port of this approach to a particular implementation
of MPI, such as MPICH.

14 Evaluation using Benchmarks and Applications

Implementation and testing of benchmark and application use cases has been an integral part in the devel-
opment process for TRAM. Benchmarks and applications have motivated the need for TRAM, influenced its
design and interface, and served as the ultimate evaluation test of its effectiveness. Some of these programs
revealed performance issues with the library. Others identified a need for new interfaces and functional-
ity. The application work also demonstrated some challenges in using TRAM, motivating our plans for
automation.

We will continue working with use cases as part of the planned work. In addition to the ones presented
in Section 5.2, we will need to explore new use cases for some of the work, such as the collectives aspect.

Some of the use cases we have looked at are not currently scaling to full petascale systems. For EpiSim-
demics, TRAM leads to improved performance up to a certain node count on Blue Waters, but then ceases
to help compared to the application-specific buffering scheme. With ChaNGa, performance bottlenecks in
code unrelated to TRAM prevent scaling beyond 512 nodes of Blue Gene/Q. In both cases, if we wish to see
improved application performance at scale, significant work may be required, a lot of which may not directly
relate to TRAM.

One area that may yield interesting use cases for TRAM is the Charm++ runtime system itself. A
number of fine-grained control messages are used at the level of the runtime system, many of which are sent
concurrently with the execution of the body of a program (as opposed to, for example, at startup). The
functions performed by these messages include: updating location information for chares, load balancing,
collectives book-keeping and corner-case handling, buffer address sends and acknowledgements for one-sided
communication, fault-tolerance related traffic, and others. In addition, some use cases exist for which the
main driving point is reduction in memory use. For example, for Infiniband networks, a queue pair must be
established by the runtime system between every pair of processes in a P process run, leading to a memory
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footprint of O(P ). In TRAM, where only peers communicate directly, this could be reduced, for an N
dimensional virtual topology, to O( N

√
(P ).

15 Plan for Completion of Work

The work described in the previous sections will be completed over the course of the following months, with
December as the tentative deadline for the final examination. Figure 10 shows the plan for completing this
work within the allotted time. The plan is ambitious overall, but we have a few options at our disposal for
managing the various stages and ensuring a timely finish.

First, while Figure 10 shows the total time estimates for each subproject, we anticipate that some of the
components will be collaborative efforts, as they lie at the intersection of research interests and commitments
of other people in the group. We have already employed this collaborative approach to obtain many of the
application and benchmark results presented in Section 5, where some of the code for using TRAM in
benchmarks and applications was written by people who had implemented or were more familiar with the
original user-level code. Where research issues are involved, this approach works such that each member
of a project emphasizes and contributes to the aspect of the work that is central to his or her research.
For example, some of the planned work involves support for non-mesh networks, such as fat trees. Some
members of our group are working on abstractions for providing topology-related information about the
nodes involved in a job on various network types. Naturally, when porting TRAM to new network types,
we will use these abstractions rather than reimplementing the topology discovery process. Another example
is work on low-level messaging interfaces, where it makes sense to use existing APIs and collaborate with
members of the group who have been working extensively on messaging aspects of Charm++.

Secondly, some of the subprojects in the calendar view may be modified or skipped. For example, while
we intend to develop the findings of the planned work into papers, the three papers planned in Figure 10 are
probably the maximum, and may be reduced to two. We believe that the most risky aspect of the planned
work is automatically determining which messages to aggregate and which to send directly. For this reason,
as described in Section 6.3, we have prepared somewhat less ambitious contingency plans should the task of
full automation prove untenable.

Third, if absolutely necessary, we may extend the tentative December deadline by a month or more. In
the end, we will prioritize and orient our efforts with an eye for what we see are the main goals of this work:
• to advance the state of message aggregation techniques for high performance computing
• to produce a stable, robust, automatic message aggregation and routing subsystem that demonstrates

improved benchmark and application performance on most supercomputing systems in use today.
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July

August September

October November

December January

TRAM code cleanup (20)
Abstracting communication interface (30)
Charm++, LRTS, MPI communication interfaces (50)

NPB IS Charm++ implementation (30)
EpiSimdemics: analysis of bottleneck (50)

Section 13

Removing interface restrictions on client and input 
types (50)
Generalizing topology concept (75)
Persistent communication/RDMA support (50)

ChaNGa Refactoring (75)
ChaNGa Domain Decomposition Improvements (50)

Sections 6, 12, 14

Generalized analysis (100)
SMP-support (100)
Paper for PPoPP (100)

Sections 8, 11

Automation: bu�er size, topology (50)
Automatically determining what to aggregate (200)
Autotuning (50)

Section 6

Collectives and system-speci�c optimizations (150)
Thesis writing (150)

Sections 9, 10

Support for tree topology (50)
Support for hybrid topologies (e.g. mesh of trees) (50)
PERCS/Cascade topology support (50)
Runtime system use cases (50)
Paper for IPDPS (100)

Sections 7, 14 

Thesis writing (250)
Defense preparation (50)

Paper for ICS (100)

June

Figure 10: A calendar view of the planned work. Included are the time estimates in hours for each component
and the relevant sections in the report for each month’s subprojects.
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