Scalable Dynamic
Adapfive
Simulations with
ParFUM

Terry L. Wilmarth

Center for Simulation of Advanced Rockefs
and Parallel Programming Laboratory
University of lllinois at Urbana-Champaign

The Big Picture

ParFUM
: | | Solution
Adjacency , Transfer. Bulk
Generation | User’s | Adaptivity.
‘ Solver ‘
| | |
Ghost Layer | pTopS | Contact
Generation ' . ‘
L | Collision
Detection | I y
| | FEM | Fremers
Partitioning | , ‘ Adaptivity.
Multi-phase AMPI | Charm++
Shared
Arrays System View A
& @@ g | O
&
& |6y S B
_

Charm
Run-time

Load Balancing Framework System

30 Ap1A

Communication Opﬂmizo‘rions/

A Brief Infroduction 1o ParFUM

Parallel Framework for Unstructured Meshes

Inherited features from Charm run-time system:

object-based virtualization (AMPI threads/partitions)

automated dynamic load balancing
communication/computation overlap

multi-paradigm implementation
communication optimizations

portability

30 April 2008

Multi-paradigm Implementation

ParFUM

Glopal
Shared Message-passing

|
|
|
|
Mernory |
|
|
|

Multi-phase AMPI Charm++
Shared
Arrays
Charm Run-time System
Load Balancing Framewaork Communication Optimizations

30 Ap1A

ParFUM Features

Flexible communication (“ghost”) layers
Parallel partitioning

MPI-style communication for shared and ghost
entities

C/C++ and FORTRAN bindings

Supports multiple element types and mixed
elements

Support for topological adjacencies

30 April 2008

ParFUM Features (cont’d)

Mesh adaptivity
Cohesive elements
Solution transfer

Contact detection

30 April 2008

Why use ParFUM?

Better performance for irregular problems

Ease of use:

Fast conversion of serial codes to parallel

Even faster conversion of MPI codes to benefit from
load balancing and other features

You can still use FORTRAN if you really want to

Extremely portable, even to latest greatest
supercomputers

Development is collaboration-driven

30 April 2008

User Responsibilities

Specifying mesh data and attributes: two modes

ParFUM manages data
User writes solver to use ParFUM data format
User manages data

User writes packing and resizing code for their data

Solver (implementation, porting, etc.)

Use of simple collective calls to maintain
consistency of data on shared/ghost entities

30 April 2008 8

Virtualization of Partitions

Create N virtual processors (mesh partitions),
where N>>P, the number of processors

How to choose N:

minimize ratio of remote data to local data — larger
partitions

minimize communication — larger partitions
maximize adaptive overlap — more VPs

maximize agility of load balancing — sufficient VPs
optimize cache performance — smaller partitions

Start with ~2000 elements per partition

30 April 2008

Virtualization of Dynamic Fracture

Uses localized mesh adaptivity for solution
accuracy; 50,000 elements initially

Virtualization overhead on one processor

VPs 1 4 8 10 16 24 32

Time (10%) @ 7.9 8.4 9.2 9.7 10.7 1.7 12.0

% Increase | - 6.3 16,5 228 354 48.1 51.8
Virtualization benefits on 16 processors

VPs/Proc 1 4 8 10 16 24 32

Time(s) 1328 934 835 857 807 769 770

% Decrease| - 29.7 371 355 39.2 42 1 42.0

30 April 2008 10

Performance Challenges

Computational load change with physical state
change

Mesh adaptivity
Cohesive finite elements
Contact

Multi-scale simulations

Irregular problems -> Load Balancing

30 April 2008

11

Dynamic Changes in Computational Load

Trigger Plasticity Check

[G. Zheng, M. Breitenfeld, H. Govind,
P. Geubelle, L. Kale]

30 April 2008 12

Dynamic Fracture

= Periodic load balancing

100 100

80 80

N 60 X 60
5 5

5 40 = 40
ol o
@) @)

20 20

0 0

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30

Processor

30 April 2008

40 50 60
Processor

70

80

90

100

13

Dynamic Fracture

Periodic load balancing

100
80
60
X
-]
- 40 -
o
@)
20
With LB
Without LB
o +—m7—/—?m—m—m—m—7 7
0 10000 20000 30000 40000

Time (s)
30 April 2008

14

Mesh Adaptivity

Two approaches in ParFUM

Incremental adaptivity (2D triangle meshes)

edge bisection, edge contraction, edge flip

supported in meshes with 1 layer of edge-neighbor ghosts
each individual operation leaves mesh consistent

used in SDG code [A. Becker, R. Haber, et al]

Bulk adaptivity (2D triangle, 3D tetrahedral meshes)

30 April 2008

edge bisection, edge contraction, edge flips
supported in meshes with any or no ghost layers

operations performed in bulk; ghosts and adjacencies
updated at end

15

Mesh Adaptivity

Higher level operations [T. Wilmarth, A. Becker]
Refinement: longest edge bisection
Coarsening: shortest edge contraction
Smoothing
Optimization
Mesh gradation
Scaling

User sets sizing on mesh entities as desired

30 April 2008

16

v, (t)

L]
£=0.75
[S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kale, P. Geubelle]
30 April 2008 17

IC Fracture

Dynam

18

llure process

= Accurately capture fa

30 April 2008

Dynamic Fracture

Severe load imbalance

30 April 2008

e

gy
a il
TN

3

Utilization

100

g0

0

a0

40

30

20

T8

Processor

[
3

I
10

I
11

I
1z

I
13

[
14

[
15

19

Dynamic Fracture
nge VP mapping

g0

0

a0

Utilization

40

30

20

02 I [[I I I I [[I I I I [[
o1 2 3 4 5 & F & 93 10 11 12 15 14 15

Processor

30 April 2008 20

30 April 2008

Dynamic Fracture

Load balancing, greedy strategy, applied after
mesh adaptation (every 2000 timesteps

Utilization

100

0

go

10

60

a0

40

30

20

10

I [
T8

Frocessor

[
3

I
10

I
11

I
12

I
13

|
14

[
15

21

Dynamic Fracture

Preliminary performance for adaptive application

128
< 1 VP/processor
Round Robin Mapping
64 - Greedy Load Balancing

30 April 2008 22

Dynamic Fracture

Load balancing after mesh adaptivity results in
excellent performance during computation
phase

What about adaptivity phase?
Timesteps Compute | Adapt Total | % Adapt
1-2000 17.047 | 12.967 | 30.014 43.203
2001-4000 32.873 0.837 | 42.710 23.032
4001-6000 36.484 | 17.073 | 53.557 31.878
6001-8000 41.186 | 15.756 | 56.942 27.670
8001-10000 46.644 | 14.886 | 61.530 24.193
10001-12000 50.831 | 17.302 | 65.133 25.304
12001-14000 59.155 | 21.215 | 80.370 26.396
14001-16000 68.703 | 25.102 | 93.805 26.759
16001-18000 76.503 | 19.897 | 96.400 20.640
18001-20000 81.763 NA | 81.763 NA

30 April 2008

23

Jtilization

Mesh Refinement Phase

Extreme load imbalance

Peak utilization at start of phase

100 100
30 30
80 80
70 70
&0 60
=
[m}
3
50 M50
-—
-
+
jun |
40 40
30 30
20 20
10 10
L T e e e e e e A H E E R R o T
O 1 2 3 4 5 6 7 B 9 10 11 17 13 14 15 234
Processaor Ti

30 April 2008

Mesh Refinement Phase
How to balance load?

Principle of persistence does
not hold for instrumentation

Phase is too short to
Instrument and to call load
balancer repeatedly

We have domain-specific
knowledge of what will be

refined

We can estimate the load on
a partition prior to mesh
modification

30 April 2008

25

Mesh Refinement Phase

Pre-balancing: model-based load balancing [S.
Chakravorty, T. Wilmarth]

ParFUM uses user-specified mesh adaptation
parameters to measure potential load during
adaptivity (no other instrumentation)

Passes load information to Charm++ Run-time
System, which then migrates VPs appropriately

When migration is finished, adaptivity phase
commences

Still essentially automatic (no user input required)

30 April 2008 26

Mesh Refinement Phase

Mesh refinement phase performance improves

0 llllllllllllllllllllll
555555555555555555555555555555

rrrrrrrrr

30 April 2008

27

Mesh Refinement Phase

Coarsening component of adaptivity phase is
equally costly

Pre-balancing by refinement criteria insufficient
Cost of pre-balancing is low

Incremental adaptivity is not appropriate for this
degree of mesh modification

W /o Pre-balancing With Pre-balancing
P Refine Coarsen Refine | Coarsen Cost
8 118.237 128.561 | 110.876 120,387 | 7.342
16 76.77. 83.670 58.096 89,225 | 5.226

32 43.623 45.084 30.586 49.840 | 3.815
64 32.123 27.126 22.730 52.507 | 3.385

30 April 2008 28

Bulk Mesh Adaptivity

Fast parallel algorithm for edge bisect in 3D
when edge is on partition boundary: requires
four asynchronous multicasts in average case

Allows parallel operations on disjoint sets of
neighboring partitions

Uses element adjacency information based on
globally unique element IDs

Maintains consistent shared entities

Ghost layers and user adjacencies updated at
end of bulk mesh modification

30 April 2008

29

Bulk Mesh Adapfivity: Ongoing

Fast parallel algorithm for edge contract in 3D
(will be much like edge bisect)

Fast parallel edge flipping operations (for mesh
optimizations)

Re-implement existing refinement, coarsening
and optimization algorithms (currently using
Incremental)

Add domain boundary preservation
[T. Wilmarth, A. Becker, S. Chakravorty]

30 April 2008

30

Cohesive Finite Elements

CFEs model progressive material failure and
propagation of cracks through domain

Located at interfaces between volumetric elements
Two schemes:

Violumetric Element

Intrinsic: everpresent contributors A
to deformation S W

Extrinsic: introduced based on
external traction-based criterion

Violumetric Element

Activated extrinsic: everpresent CFEs
do not contribute until “activated” [S.
Mangala, P. Geubelle, I. Dooley, L.
Kale]

30 April 2008 31

Cohesive Finite Elements
= |nitial performance with activated CFEs

no load

balance

Im

300 400 500
Processors

200

100

.

ey
ey
T

el

o Tt
TR S
Call S

2

1

il

AT

L
Al TG

A SrAR T

T
v,

T

T
CRE

s g
3| = R
s) Rl LAY
; o e,
2 o
fEnh
ket
o] R
e e
1 4t
v =,
et [
T kopiek]
5 e
AT
h
1

DA,

AR

Tl

i

er
N

0.08

0.06

0.04

X (m)

32

30 April 2008

Cohesive Finite Elements: Ongoing

Insertion of extrinsic CFEs as needed [l. Dooley, A.
Becker, T. Wilmarth, G. Paulino, K. Park]

Will result in load imbalance as crack passes
through partitions

Dynamic fracture simulation needs:

fine mesh near failure zone to capture stress
concentrations accurately

large domain to accurately capture loading and avoid
wave reflections from boundary

Dynamic mesh adaptation in mesh with mix of
volumetric and cohesive elements

30 April 2008 33

Contact: Ongoing

Detect when domain fragments come into contact
Uses Charm++ Collision Detection [O. Lawlor]

Potential for load imbalance:

Only partitions with domain boundary participate
Only domain boundary elements can collide

Fragment movement problem (bounding box too large);
may require repartitioning

Element collisions between pairs of partitions can be
distributed to idle processors

30 April 2008 34

Future Directions

Load balancing enhancements:
model-based LB with bulk adaptivity
Dynamic repartitioning:

A full repartitioning to same number of partitions
can balance load, but...

Maintain ideal VP size: partition VPs that grow too
large (less expensive than full repartitioning);
Increases the number of partitions!

Multi-scale simulation: many interesting load
balancing problems

30 April 2008 35

Closing Remarks

ParFUM software available:

http://charm.cs.uiuc.edu/download
Charm++ Workshop, May 1% - 3™

http://charm.cs.uiuc.edu/charmWorkshop
ParFUM tutorial: 3™ May, 9:00am

30 April 2008

36

