
Scalable Dynamic
Adaptive
Simulations with 
ParFUM

Terry L. Wilmarth

Center for Simulation of Advanced Rockets
and Parallel Programming Laboratory

University of Illinois at Urbana-Champaign



30 April 2008   2

ParFUM

Load Balancing Framework Communication Optimizations

Charm++AMPIMulti-phase
Shared
Arrays System View

Partitioning

Ghost Layer
Generation

Bulk
Adaptivity

Incremental
Adaptivity

Collision
Detection

Contact

Solution
Transfer

User's
Solver

Adjacency
Generation

I FEM

pTopS

User View

The Big Picture

Charm
Run-time 

System



30 April 2008   3

A Brief Introduction to ParFUM

 Parallel Framework for Unstructured Meshes
 Inherited features from Charm run-time system:

 object-based virtualization (AMPI threads/partitions)
 automated dynamic load balancing
 communication/computation overlap

 multi-paradigm implementation
 communication optimizations
 portability



30 April 2008   4

ParFUM

Load Balancing Framework Communication Optimizations

Charm Run-time System

AMPIMulti-phase
Shared
Arrays

Multi-paradigm Implementation

GlobalGlobal
SharedShared
MemoryMemory

Message­drivenMessage­drivenMessage­passingMessage­passing

Charm++



30 April 2008   5

ParFUM Features

 Flexible communication (“ghost”) layers
 Parallel partitioning
 MPI-style communication for shared and ghost 

entities
 C/C++ and FORTRAN bindings
 Supports multiple element types and mixed 

elements
 Support for topological adjacencies



30 April 2008   6

ParFUM Features (cont'd)

 Mesh adaptivity
 Cohesive elements
 Solution transfer
 Contact detection



30 April 2008   7

Why use ParFUM?
 Better performance for irregular problems
 Ease of use:

 Fast conversion of serial codes to parallel
 Even faster conversion of MPI codes to benefit from 

load balancing and other features
 You can still use FORTRAN if you really want to

 Extremely portable, even to latest greatest 
supercomputers

 Development is collaboration-driven 



30 April 2008   8

User Responsibilities

 Specifying mesh data and attributes: two modes
 ParFUM manages data

 User writes solver to use ParFUM data format
 User manages data

 User writes packing and resizing code for their data

 Solver (implementation, porting, etc.)
 Use of simple collective calls to maintain 

consistency of data on shared/ghost entities



30 April 2008   9

Virtualization of Partitions
 Create N virtual processors (mesh partitions), 

where N>>P, the number of processors
 How to choose N:

 minimize ratio of remote data to local data → larger 
partitions

 minimize communication → larger partitions
 maximize adaptive overlap → more VPs
 maximize agility of load balancing → sufficient VPs
 optimize cache performance → smaller partitions 

 Start with ~2000 elements per partition



30 April 2008   10

Virtualization of Dynamic Fracture
 Uses localized mesh adaptivity for solution 

accuracy; 50,000 elements initially
 Virtualization overhead on one processor

 Virtualization benefits on 16 processors

VPs

% Increase

Time (103s)

1          4          8          10          16          24          32

7.9        8.4       9.2       9.7        10.7        11.7       12.0

­           6.3      16.5      22.8      35.4        48.1        51.8

VPs/Proc

% Decrease

Time (s)

1          4          8          10          16          24          32

1328     934     835        857        807        769        770

   ­        29.7     37.1       35.5       39.2       42.1       42.0



30 April 2008   11

Performance Challenges

 Computational load change with physical state 
change

 Mesh adaptivity
 Cohesive finite elements
 Contact
 Multi-scale simulations
➔ Irregular problems -> Load Balancing



30 April 2008   12

Dynamic Changes in Computational Load

[G. Zheng, M. Breitenfeld, H. Govind, 
P. Geubelle, L. Kale]



30 April 2008   13

Dynamic Fracture

 Periodic load balancing



30 April 2008   14

Dynamic Fracture

 Periodic load balancing



30 April 2008   15

Mesh Adaptivity
 Two approaches in ParFUM

 Incremental adaptivity (2D triangle meshes)
 edge bisection, edge contraction, edge flip
 supported in meshes with 1 layer of edge-neighbor ghosts
 each individual operation leaves mesh consistent
 used in SDG code [A. Becker, R. Haber, et al]

 Bulk adaptivity (2D triangle, 3D tetrahedral meshes)
 edge bisection, edge contraction, edge flips
 supported in meshes with any or no ghost layers
 operations performed in bulk; ghosts and adjacencies 

updated at end



30 April 2008   16

Mesh Adaptivity

 Higher level operations [T. Wilmarth, A. Becker]
 Refinement: longest edge bisection
 Coarsening: shortest edge contraction
 Smoothing
 Optimization
 Mesh gradation
 Scaling

 User sets sizing on mesh entities as desired



30 April 2008   17

Mesh Adaptivity

[S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kale, P. Geubelle]



30 April 2008   18

Dynamic Fracture

 Accurately capture failure process



30 April 2008   19

Dynamic Fracture
 Severe load imbalance



30 April 2008   20

Dynamic Fracture
 Change VP mapping



30 April 2008   21

Dynamic Fracture
 Load balancing, greedy strategy, applied after 

mesh adaptation (every 2000 timesteps)



30 April 2008   22

Dynamic Fracture
 Preliminary performance for adaptive application



30 April 2008   23

Dynamic Fracture
 Load balancing after mesh adaptivity results in 

excellent performance during computation 
phase

 What about adaptivity phase?



30 April 2008   24

Mesh Refinement Phase
 Extreme load imbalance
 Peak utilization at start of phase



30 April 2008   25

Mesh Refinement Phase
 How to balance load?

 Principle of persistence does 
not hold for instrumentation

 Phase is too short to 
instrument and to call load 
balancer repeatedly

 We have domain-specific 
knowledge of what will be 
refined

 We can estimate the load on 
a partition prior to mesh 
modification



30 April 2008   26

Mesh Refinement Phase
 Pre-balancing: model-based load balancing [S. 

Chakravorty, T. Wilmarth]
 ParFUM uses user-specified mesh adaptation 

parameters to measure potential load during 
adaptivity (no other instrumentation)

 Passes load information to Charm++ Run-time 
System, which then migrates VPs appropriately

 When migration is finished, adaptivity phase 
commences

 Still essentially automatic (no user input required)



30 April 2008   27

Mesh Refinement Phase
 Mesh refinement phase performance improves



30 April 2008   28

Mesh Refinement Phase
 Coarsening component of adaptivity phase is 

equally costly
 Pre-balancing by refinement criteria insufficient
 Cost of pre-balancing is low
 Incremental adaptivity is not appropriate for this 

degree of mesh modification



30 April 2008   29

Bulk Mesh Adaptivity
 Fast parallel algorithm for edge bisect in 3D 

when edge is on partition boundary: requires 
four asynchronous multicasts in average case

 Allows parallel operations on disjoint sets of 
neighboring partitions

 Uses element adjacency information based on 
globally unique element IDs

 Maintains consistent shared entities
 Ghost layers and user adjacencies updated at 

end of bulk mesh modification



30 April 2008   30

Bulk Mesh Adaptivity: Ongoing

 Fast parallel algorithm for edge contract in 3D 
(will be much like edge bisect)

 Fast parallel edge flipping operations (for mesh 
optimizations)

 Re-implement existing refinement, coarsening 
and optimization algorithms (currently using 
incremental)

 Add domain boundary preservation
 [T. Wilmarth, A. Becker, S. Chakravorty]



30 April 2008   31

Cohesive Finite Elements
 CFEs model progressive material failure and 

propagation of cracks through domain
 Located at interfaces between volumetric elements
 Two schemes:

 Intrinsic: everpresent contributors 
to deformation

 Extrinsic: introduced based on 
external traction-based criterion

 Activated extrinsic: everpresent CFEs 
do not contribute until “activated” [S. 
Mangala, P. Geubelle, I. Dooley, L. 
Kale]



30 April 2008   32

Cohesive Finite Elements
 Initial performance with activated CFEs: no load 

imbalance



30 April 2008   33

Cohesive Finite Elements: Ongoing
 Insertion of extrinsic CFEs as needed [I. Dooley, A. 

Becker, T. Wilmarth, G. Paulino, K. Park]
 Will result in load imbalance as crack passes 

through partitions
 Dynamic fracture simulation needs:

 fine mesh near failure zone to capture stress 
concentrations accurately

 large domain to accurately capture loading and avoid 
wave reflections from boundary

➔ Dynamic mesh adaptation in mesh with mix of 
volumetric and cohesive elements



30 April 2008   34

Contact: Ongoing
 Detect when domain fragments come into contact
 Uses Charm++ Collision Detection [O. Lawlor]
 Potential for load imbalance:

 Only partitions with domain boundary participate
 Only domain boundary elements can collide
 Fragment movement problem (bounding box too large); 

may require repartitioning
 Element collisions between pairs of partitions can be 

distributed to idle processors



30 April 2008   35

Future Directions
 Load balancing enhancements: 

 model-based LB with bulk adaptivity
 Dynamic repartitioning:

 A full repartitioning to same number of partitions 
can balance load, but...

 Maintain ideal VP size: partition VPs that grow too 
large (less expensive than full repartitioning); 
increases the number of partitions!

 Multi-scale simulation: many interesting load 
balancing problems



30 April 2008   36

Closing Remarks

 ParFUM software available:
 http://charm.cs.uiuc.edu/download

 Charm++ Workshop, May 1st - 3rd 
 http://charm.cs.uiuc.edu/charmWorkshop
 ParFUM tutorial: 3rd May, 9:00am


