
Scalable Dynamic
Adaptive
Simulations with 
ParFUM

Terry L. Wilmarth

Center for Simulation of Advanced Rockets
and Parallel Programming Laboratory

University of Illinois at Urbana-Champaign



30 April 2008   2

ParFUM

Load Balancing Framework Communication Optimizations

Charm++AMPIMulti-phase
Shared
Arrays System View

Partitioning

Ghost Layer
Generation

Bulk
Adaptivity

Incremental
Adaptivity

Collision
Detection

Contact

Solution
Transfer

User's
Solver

Adjacency
Generation

I FEM

pTopS

User View

The Big Picture

Charm
Run-time 

System



30 April 2008   3

A Brief Introduction to ParFUM

 Parallel Framework for Unstructured Meshes
 Inherited features from Charm run-time system:

 object-based virtualization (AMPI threads/partitions)
 automated dynamic load balancing
 communication/computation overlap

 multi-paradigm implementation
 communication optimizations
 portability



30 April 2008   4

ParFUM

Load Balancing Framework Communication Optimizations

Charm Run-time System

AMPIMulti-phase
Shared
Arrays

Multi-paradigm Implementation

GlobalGlobal
SharedShared
MemoryMemory

MessagedrivenMessagedrivenMessagepassingMessagepassing

Charm++



30 April 2008   5

ParFUM Features

 Flexible communication (“ghost”) layers
 Parallel partitioning
 MPI-style communication for shared and ghost 

entities
 C/C++ and FORTRAN bindings
 Supports multiple element types and mixed 

elements
 Support for topological adjacencies



30 April 2008   6

ParFUM Features (cont'd)

 Mesh adaptivity
 Cohesive elements
 Solution transfer
 Contact detection



30 April 2008   7

Why use ParFUM?
 Better performance for irregular problems
 Ease of use:

 Fast conversion of serial codes to parallel
 Even faster conversion of MPI codes to benefit from 

load balancing and other features
 You can still use FORTRAN if you really want to

 Extremely portable, even to latest greatest 
supercomputers

 Development is collaboration-driven 



30 April 2008   8

User Responsibilities

 Specifying mesh data and attributes: two modes
 ParFUM manages data

 User writes solver to use ParFUM data format
 User manages data

 User writes packing and resizing code for their data

 Solver (implementation, porting, etc.)
 Use of simple collective calls to maintain 

consistency of data on shared/ghost entities



30 April 2008   9

Virtualization of Partitions
 Create N virtual processors (mesh partitions), 

where N>>P, the number of processors
 How to choose N:

 minimize ratio of remote data to local data → larger 
partitions

 minimize communication → larger partitions
 maximize adaptive overlap → more VPs
 maximize agility of load balancing → sufficient VPs
 optimize cache performance → smaller partitions 

 Start with ~2000 elements per partition



30 April 2008   10

Virtualization of Dynamic Fracture
 Uses localized mesh adaptivity for solution 

accuracy; 50,000 elements initially
 Virtualization overhead on one processor

 Virtualization benefits on 16 processors

VPs

% Increase

Time (103s)

1          4          8          10          16          24          32

7.9        8.4       9.2       9.7        10.7        11.7       12.0

           6.3      16.5      22.8      35.4        48.1        51.8

VPs/Proc

% Decrease

Time (s)

1          4          8          10          16          24          32

1328     934     835        857        807        769        770

           29.7     37.1       35.5       39.2       42.1       42.0



30 April 2008   11

Performance Challenges

 Computational load change with physical state 
change

 Mesh adaptivity
 Cohesive finite elements
 Contact
 Multi-scale simulations
➔ Irregular problems -> Load Balancing



30 April 2008   12

Dynamic Changes in Computational Load

[G. Zheng, M. Breitenfeld, H. Govind, 
P. Geubelle, L. Kale]



30 April 2008   13

Dynamic Fracture

 Periodic load balancing



30 April 2008   14

Dynamic Fracture

 Periodic load balancing



30 April 2008   15

Mesh Adaptivity
 Two approaches in ParFUM

 Incremental adaptivity (2D triangle meshes)
 edge bisection, edge contraction, edge flip
 supported in meshes with 1 layer of edge-neighbor ghosts
 each individual operation leaves mesh consistent
 used in SDG code [A. Becker, R. Haber, et al]

 Bulk adaptivity (2D triangle, 3D tetrahedral meshes)
 edge bisection, edge contraction, edge flips
 supported in meshes with any or no ghost layers
 operations performed in bulk; ghosts and adjacencies 

updated at end



30 April 2008   16

Mesh Adaptivity

 Higher level operations [T. Wilmarth, A. Becker]
 Refinement: longest edge bisection
 Coarsening: shortest edge contraction
 Smoothing
 Optimization
 Mesh gradation
 Scaling

 User sets sizing on mesh entities as desired



30 April 2008   17

Mesh Adaptivity

[S. Mangala, T. Wilmarth, S. Chakravorty, N. Choudhury, L. Kale, P. Geubelle]



30 April 2008   18

Dynamic Fracture

 Accurately capture failure process



30 April 2008   19

Dynamic Fracture
 Severe load imbalance



30 April 2008   20

Dynamic Fracture
 Change VP mapping



30 April 2008   21

Dynamic Fracture
 Load balancing, greedy strategy, applied after 

mesh adaptation (every 2000 timesteps)



30 April 2008   22

Dynamic Fracture
 Preliminary performance for adaptive application



30 April 2008   23

Dynamic Fracture
 Load balancing after mesh adaptivity results in 

excellent performance during computation 
phase

 What about adaptivity phase?



30 April 2008   24

Mesh Refinement Phase
 Extreme load imbalance
 Peak utilization at start of phase



30 April 2008   25

Mesh Refinement Phase
 How to balance load?

 Principle of persistence does 
not hold for instrumentation

 Phase is too short to 
instrument and to call load 
balancer repeatedly

 We have domain-specific 
knowledge of what will be 
refined

 We can estimate the load on 
a partition prior to mesh 
modification



30 April 2008   26

Mesh Refinement Phase
 Pre-balancing: model-based load balancing [S. 

Chakravorty, T. Wilmarth]
 ParFUM uses user-specified mesh adaptation 

parameters to measure potential load during 
adaptivity (no other instrumentation)

 Passes load information to Charm++ Run-time 
System, which then migrates VPs appropriately

 When migration is finished, adaptivity phase 
commences

 Still essentially automatic (no user input required)



30 April 2008   27

Mesh Refinement Phase
 Mesh refinement phase performance improves



30 April 2008   28

Mesh Refinement Phase
 Coarsening component of adaptivity phase is 

equally costly
 Pre-balancing by refinement criteria insufficient
 Cost of pre-balancing is low
 Incremental adaptivity is not appropriate for this 

degree of mesh modification



30 April 2008   29

Bulk Mesh Adaptivity
 Fast parallel algorithm for edge bisect in 3D 

when edge is on partition boundary: requires 
four asynchronous multicasts in average case

 Allows parallel operations on disjoint sets of 
neighboring partitions

 Uses element adjacency information based on 
globally unique element IDs

 Maintains consistent shared entities
 Ghost layers and user adjacencies updated at 

end of bulk mesh modification



30 April 2008   30

Bulk Mesh Adaptivity: Ongoing

 Fast parallel algorithm for edge contract in 3D 
(will be much like edge bisect)

 Fast parallel edge flipping operations (for mesh 
optimizations)

 Re-implement existing refinement, coarsening 
and optimization algorithms (currently using 
incremental)

 Add domain boundary preservation
 [T. Wilmarth, A. Becker, S. Chakravorty]



30 April 2008   31

Cohesive Finite Elements
 CFEs model progressive material failure and 

propagation of cracks through domain
 Located at interfaces between volumetric elements
 Two schemes:

 Intrinsic: everpresent contributors 
to deformation

 Extrinsic: introduced based on 
external traction-based criterion

 Activated extrinsic: everpresent CFEs 
do not contribute until “activated” [S. 
Mangala, P. Geubelle, I. Dooley, L. 
Kale]



30 April 2008   32

Cohesive Finite Elements
 Initial performance with activated CFEs: no load 

imbalance



30 April 2008   33

Cohesive Finite Elements: Ongoing
 Insertion of extrinsic CFEs as needed [I. Dooley, A. 

Becker, T. Wilmarth, G. Paulino, K. Park]
 Will result in load imbalance as crack passes 

through partitions
 Dynamic fracture simulation needs:

 fine mesh near failure zone to capture stress 
concentrations accurately

 large domain to accurately capture loading and avoid 
wave reflections from boundary

➔ Dynamic mesh adaptation in mesh with mix of 
volumetric and cohesive elements



30 April 2008   34

Contact: Ongoing
 Detect when domain fragments come into contact
 Uses Charm++ Collision Detection [O. Lawlor]
 Potential for load imbalance:

 Only partitions with domain boundary participate
 Only domain boundary elements can collide
 Fragment movement problem (bounding box too large); 

may require repartitioning
 Element collisions between pairs of partitions can be 

distributed to idle processors



30 April 2008   35

Future Directions
 Load balancing enhancements: 

 model-based LB with bulk adaptivity
 Dynamic repartitioning:

 A full repartitioning to same number of partitions 
can balance load, but...

 Maintain ideal VP size: partition VPs that grow too 
large (less expensive than full repartitioning); 
increases the number of partitions!

 Multi-scale simulation: many interesting load 
balancing problems



30 April 2008   36

Closing Remarks

 ParFUM software available:
 http://charm.cs.uiuc.edu/download

 Charm++ Workshop, May 1st - 3rd 
 http://charm.cs.uiuc.edu/charmWorkshop
 ParFUM tutorial: 3rd May, 9:00am


