
ACR: Automatic Checkpoint/Restart for Soft and Hard
Error Protection

Xiang Ni, Esteban Meneses, Nikhil Jain, Laxmikant V. Kalé
Department of Computer Science, University of Illinois at Urbana-Champaign

{xiangni2, emenese2, nikhil, kale}@illinois.edu

ABSTRACT
As machines increase in scale, many researchers have predicted
that failure rates will correspondingly increase. Soft errors do not
inhibit execution, but may silently generate incorrect results. Re-
cent trends have shown that soft error rates are increasing, and
hence they must be detected and handled to maintain correctness.
We present a holistic methodology for automatically detecting and
recovering from soft or hard faults with minimal application in-
tervention. This is demonstrated by ACR: an automatic check-
point/restart framework that performs application replication and
automatically adapts the checkpoint period using online informa-
tion about the current failure rate. ACR performs an application-
and user-oblivious recovery. We empirically test ACR by injecting
failures that follow different distributions for five applications and
show low overhead when scaled to 131,072 cores. We also ana-
lyze the interaction between soft and hard errors and propose three
recovery schemes that explore the trade-off between performance
and reliability requirements.

1. INTRODUCTION
In recent times, the HPC community has seen a stellar growth in
the capability of high-end systems. Machines such as IBM Blue
Gene/Q and Cray XK7 have a peak performance that reaches to the
tens of petaflops. Since the frequency of CPUs has been limited in
recent years, these systems have increased processing power by in-
creasing the number of cores. However, the increase in the number
of system components required to build these machines has had a
negative impact on the reliability of the system as a whole. If these
trends persist, large systems in the near future may experience hard
failures very frequently [5, 18].

Soft errors are becoming more prevalent as feature sizes decrease
along with supply voltages to chips [24]. As systems become more
energy-efficient, chips may approach near-threshold operation to
reduce the power required. Previous studies have shown a strong
correlation between the increase in soft error rate and the decrease
in device sizes and operating voltages [9]. This same study sug-
gests that the soft error rate may reach very high levels, to the point
that an undetected soft error may occur once per day in a single
chip. For mission-critical applications, having a guarantee that the

data was not silently corrupted may be very important. However,
even today’s systems face a modest amount of soft errors. For ex-
ample, ASC Q at LANL experienced on average 26.1 radioactivity-
induced CPU failures per week [22].

The common approach currently in use today is to tolerate intermit-
tent faults by periodically checkpointing the state of the application
to disk and restarting when needed. However, as hard failure rates
increase along with machine sizes, this approach may not be fea-
sible due to high overheads. If the data size is large, the expense
of checkpointing to disk may be prohibitive, and may incur severe
forward-path overheads. At the possible cost of memory overhead,
recent libraries for checkpointing have successfully explored alter-
native local storage resources to store checkpoint data [2, 23, 29].

Although checkpoint/restart strategies may be effective for hard
faults, soft errors can not be detected with this mechanism. Soft
error detection is a difficult problem and most traditional fault tol-
erance approaches applied to HPC fail at addressing this problem.
One possible solution, which has been shown to be effective in the
past, is to use redundant computation to detect both hard and soft
errors and correct them. This approach is beneficial because it is
universally applicable and is well-established as a solid approach.
However, due to its perceived high cost, it is only recently been
explored for HPC. Analytical studies have shown that if the failure
rate is sufficiently high, introducing redundancy to handle errors
may actually increase the overall efficiency in the HPC realm [8,
10]. Other work has shown that redundancy is an effective method-
ology for detecting soft errors in HPC applications [11].

In order to better grasp the problem, we model the system utiliza-
tion and system vulnerability (the probability of finishing execu-
tion with an incorrect result) as the number of sockets increase and
the soft error rate increases. Figure 1a shows the results of vary-
ing these parameters without any fault tolerance. Note that as the
socket count increases from 4K to 16K, the utilization rapidly de-
clines to almost 0. With hard-error resilience (shown in Figure 1b)
using checkpoint/restart, the utilization increases substantially, but
still drops after 64K sockets. However, since checkpoint/restart
cannot detect soft errors, the vulnerability to soft errors remains
very high. To mitigate both these problems, we present ACR: a
scalable, automatic checkpoint/restart framework that can detect
and correct both soft and hard errors. As shown in Figure 1c, by
using our framework the system vulnerability disappears and the
utilization remains mostly level, although it incurs some utilization
penalty.

We believe to reach the exascale computing realm effectively, we
must develop holistic solutions that cover all the types of failures
that may occur in the system. Although hard failures may be de-

1

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets Soft E
rror Rate

per So
cket (F

IT)

U
til

iz
at

io
n

0 1

Vulnerability

(a) No fault-tolerance protection

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets Soft E
rror Rate

per So
cket (F

IT)

U
til

iz
at

io
n

(b) Hard-error checkpoint-based protection

4K 16K 64K 256K 1M
1

100
10000

 0
 0.2
 0.4
 0.6
 0.8

 1

U
til

iz
at

io
n

Number of Sockets Soft E
rror Rate

per So
cket (F

IT)

U
til

iz
at

io
n

(c) ACR soft and hard error protection

Figure 1: Overall system utilization and vulnerability to soft errors with different fault tolerance alternatives (for a job running 120 hours).
ACR offers holistic protection against soft and hard errors and provides a scalable mechanism as the size of supercomputers grows.

tectable by external system components, soft errors remain elusive.
Hence, software solutions that address both problems in an inte-
grated fashion are needed. ACR does exactly this, and also utilizes
a novel mechanism to interact with applications for checkpointing
based on observed failure rates.

By developing this framework and empirically evaluating it under
various failure scenarios, we make the following contributions:

• We present a novel design for an automatic check-
point/restart mechanism that tolerates both soft and hard er-
rors, and can adaptively adjust the checkpointing period (§2,
§3, §4).

• We present a distributed algorithm for determining check-
point consensus asynchronously and show empirically it
causes minimal application interference (§2).

• We present three distinct recovery schemes in ACR that ex-
plore the tradeoff between performance and reliability. Us-
ing a model we have developed, we analytically study for
these schemes the interaction between hard-error recovery
and soft-error vulnerability at large scales (§2, §5).

• We demonstrate how topology-aware mapping can be ex-
ploited to optimize communication and empirically show
that this results in a speedup of 4 during checkpointing (§4,
§6).

• We evaluate ACR by showing for five mini-applications writ-
ten in two programming models on over 131,072 cores that
the framework is highly scalable and adapts to dynamic be-
havior (§6).

2. AUTOMATIC CHECKPOINT RESTART
We describe the Automatic Checkpoint/Restart (ACR) framework,
a low-overhead framework that aims to provide both hard and soft
error protection for applications. To handle failures efficiently,
ACR automatically checkpoints at an adaptive rate on the basis
of failure history.If failures occur, based on the type of error, ACR
enacts corrective measures and performs an automatic restart.

2.1 Replication-enhanced Checkpointing
ACR uses checkpointing and replication to detect soft errors and
enable fast recovery of applications from hard and soft errors.
When a user submits a job using ACR, a few nodes are marked
as spare nodes, and are not used by the application, but only to re-
place failed nodes when hard errors occur. The rest of the nodes are
equally divided into two partitions that execute the same program
and checkpoint at the same time. We refer to these two partitions

as replica 1 and replica 2. Each node in replica 1 is paired with ex-
actly one unique node in replica 2; we refer to this pair as buddies.
Checkpointing is performed at two levels: local and remote. When
a checkpoint is instigated by the runtime, each node generates a
local checkpoint by invoking a serialization framework to save its
current state. Programmers are required to write simple functions
that enable ACR to identify the necessary data to checkpoint.

Node A Node BNode A Node B

Tasks

 Remote
Checkpoint

 Local
Checkpoint

Replica 1 Replica 2
buddy

Figure 2: Replication enhanced checkpointing. The buddy of a
node is the corresponding node in the other replica.

Hard Error Protection: We assume hard errors follow a fail-stop
model, i.e. a failed node does not perform any communication. We
call the replica containing the crashed node the crashed replica and
the other replica the healthy replica. After a failure is detected, the
buddy node (in the healthy replica) of the crashed node sends its
own local checkpoint to the new node (from the spare pool) that
replaces the crashed node. Since the paired buddy nodes perform
exactly the same work during forward-path execution, the crashed
node can be restarted using the checkpoint of its buddy node on the
new node. Every other node in the crashed replica rolls back using
the checkpoint stored locally.
Soft Error Protection: In order to detect soft-errors, every node
in the replica 1 sends a copy of the local checkpoint to its buddy
node in replica 2. This is the remote checkpointing. Upon re-
ceiving the checkpoints from their buddy nodes in replica 1, ev-
ery node in replica 2 compares the remote checkpoint with its local
checkpoint using the same serialization framework used to pack the
checkpoint. If a mismatch is found between the two checkpoints,
ACR rolls back both the replicas to the previous safely stored local
checkpoint, and then resumes the application. Note that the re-
mote checkpoint is sent to the replica 2 only for soft error detection
purposes, and hence ACR does not store the remote checkpoint.
Figure 2 shows the stable state of nodes during application execu-
tion when using ACR. The local checkpoint of each task is stored
on the node it resides on.

2

2.2 Automatic Checkpoint Decision
An important feature of replication-enhanced checkpointing is its
ability to reduce recovery overhead in the face of hard errors, which
is enabled by automatic checkpointing. When a hard failure oc-
curs, if an immediate checkpoint can be performed in the healthy
replica to help the crashed replica recover instead of using the pre-
vious checkpoint, the crashed replica can quickly catch up with
the progress of the healthy one. Moreover, as online failure pre-
diction [19] becomes more accurate, checkpointing right before a
potential failure occurs can help increase the mean time between
failures visible to applications. ACR is able to schedule dynamic
checkpoints in both the scenarios described.

1

1

2

ACR: update
local maximum

progress

ACR: finding
checkpoint

iteration

checkpoint
scheduled ACR: Broadcast

checkpoint
iteration 3

checkpoint
iteration
decided ACR: ready to

checkpoint

2

pause 3

3

progress
has reached

local maximum
progress

reach
checkpoint

iteration

resume
execution

Task a

Task b

Phase 1 Phase 2 Phase 3 Phase 4

pause

pause

Figure 3: Initialization of automatic checkpointing. Each task re-
ports its progress to ACR and immediately returns to execution in
phase 1 when there is no checkpointing scheduled. In phase 2, on
receiving checkpointing request ACR starts to find the next iter-
ation to checkpoint, and pauses tasks that have reached the local
maximum progress. In phase 3, having found the checkpoint iter-
ation, tasks are resumed if they have not reached it. In phase 4,
every task has reached checkpoint iteration and ACR is ready to
checkpoint.

Upon reception of a checkpointing request, ACR can not simply
notify every task to store its state. This may lead to a situation
where an inconsistent checkpoint is stored, causing the program to
hang after restart. For example, in an iterative application, task a
receives the checkpoint decision at iteration i and it waits to receive
message c from task b to enter iteration i + 1, however when task
b receives the checkpoint decision, it is already at i + 1. If task
b has already sent out message c, this in-flight message c will not
be stored in the checkpoint. Thus after restart, task b is unaware
that it needs to send message c to a again and task a will hang at
iteration i. This scenario is possible when there is no global syn-
chronization at each iteration and each task progresses at different
rates during application execution. ACR ensures the consistency of
checkpointing with minimal interference to applications using the
following scheme.

Periodically, each task reports its progress to ACR through a func-
tion call. In most cases when there is no checkpointing scheduled,
this call returns immediately. ACR records the maximum progress
among all the tasks residing on the same node as shown in Fig-
ure 3 (Phase 1). If checkpointing is required, either due to a failure
in one of the replicas or based on an observation of the failure his-
tory, ACR proceeds to find a safe checkpoint iteration.
Using the local progress information, ACR begins an asynchronous
reduction to find the maximum progress among all the tasks. In
the mean time, tasks whose progress has reached the local maxi-
mum are temporarily paused to prevent tasks from going beyond
the possible checkpoint iteration (Figure 3, Phase 2). Once ACR
finds the maximum progress in the system, the checkpoint iteration
will be decided accordingly. Each task compares its progress with

the checkpoint iteration. If its progress has reached the checkpoint
iteration, the task is considered ready for the checkpoint and transi-
tions to the pause state if it was in the execution state or remains in
the pause state if it was already in the pause state. Otherwise, the
computation task will continue or resume execution until reaching
the checkpoint iteration (Figure 3, Phase 3). Eventually, when all
the tasks get ready for the checkpoint, checkpointing is initiated
(Figure 3, Phase 4).

2.2.1 Adapting to Failures
It has been shown that a fixed checkpoint interval is optimal if the
failures follow a Poisson process [7]. However, a study of a large
number of failure behaviors in HPC systems [27] has shown that
a Weibull distribution is a better fit to describe the actual distribu-
tion of failures. An important point to note in this study is that
the failure rate often decreases as execution progresses. Dynam-
ically scheduling checkpoints has shown benefits in such scenar-
ios in comparison to a fixed checkpoint interval in an analytical
study [4, 20]. Hence, it is important to fit the actual observed fail-
ures during application execution to a certain distribution and dy-
namically schedule the checkpoints based on the current trend of
the distribution. To support such adaptivity, ACR provides a mode
in which each checkpoint interval is decided based on the distri-
bution of the streaming failures. This is enabled by the automatic
checkpointing and automatic recovery in ACR.

2.3 Interaction of Hard Error Recovery and
Soft Error Vulnerability

Soft error detection and correction using replication enables ACR
to recover from hard failures in different ways. These choices offer
novel trade-offs that have not been encountered in any framework
for HPC. Three resilience schemes may be used in ACR depending
on the reliability and performance requirements of an application.

1) Strong Resilience: In this scheme, the crashed replica is rolled
back to the previous checkpoint. The restarting process (on the
spare node) is the only process in the crashed replica that receives
the checkpoint from the other replica, and hence minimal network
traffic is generated. Every other node in the crashed replica rolls
back using its own local checkpoint. Figure 4a shows the progress
chart in which replica 2 is recovered using strong resilience. When
a hard error is encountered in replica 2, the crashed replica is
restarted using the previous checkpoint. When reaching the next
checkpoint period, replica 1 waits for replica 2 to resume applica-
tion execution.
The advantage of using this scheme is 100% protection from soft
errors. The execution of applications in the two replicas is always
cross-checked. Additionally, restarting the crashed replica is very
fast because only one message is sent from the healthy replica to
the restarting process. However, the amount of rework being done
is large, and it slows down the application progress.

2) Medium Resilience: This scheme attempts to reduce the
amount of rework by forcing the healthy replica to immediately
schedule a new checkpoint when a hard error is detected in the
crashed replica as shown in Figure 4b. The latest checkpoint is
sent from every node of the healthy replica to their buddy nodes
in the crashed replica, which may incur relatively higher overhead
in comparison to the strong resilience scheme. Moreover, any soft
error occurred since the previous checkpoint and the latest check-
point will remain undetected. On the positive side, this scheme
avoids any rework on the crashed replica and hence the two repli-
cas reach the next checkpoint period at similar times.

3) Weak Resilience: In this scheme, the healthy replica does not

3

Time

Pr
og

re
ss

periodic
checkpointing

replica 2 crashes

Replica 1 Replica 2

replica 2
recovers using
the previous
checkpoint

(a) Strong resilience recovery scheme

Time

Pr
og

re
ss

periodic
 checkpointing

replica 2 crashes
replica 1 detects the crash of

replica 2 and checkpoints

Replica 1 Replica 2

replica 2 recovers
using the most

recent checkpoint
from replica 1

(b) Medium resilience recovery scheme

Time

Pr
og

re
ss

periodic
checkpointing

replica 2 crashes

Replica 1 Replica 2

replica 2 waits for replica
1 to make the next

periodical checkpoint
and recover

(c) Weak resilience recovery scheme

Figure 4: Recovery in the different resilience levels of ACR. Strong resilience rolls back immediately after a hard error. Medium resilience
forces an additional checkpoint and restarts from there. Weak resilience waits until the next checkpoint to restore a replica.

take any immediate action to restart the crashed replica when a
hard error is detected. Instead, it continues execution until the
next checkpoint and thereafter sends the checkpoint to the crashed
replica for recovery. This scheme leads to a zero-overhead hard
error recovery since the healthy replica does not incur any extra
checkpoint overhead to help the crashed replica recover, and the
crashed replica does not spend any time in rework. But the sys-
tem is left unprotected from soft errors for the entire checkpoint
interval. Figure 4c shows the event chart for this resilience scheme.
Assuming a large rework time, Figure 4 suggests that this scheme
should be the fastest to finish application execution.

2.4 Control Flow
Figure 5 presents a study of application execution using ACR with
different reliability requirements. In each scenario, execution be-
gins with the division of the allocated nodes into two replicas each
of which performs the same application task.
Figure 5(a) presents the scenario in which an application only re-
quires support for handling hard errors. No periodic checkpoint-
ing is needed in this scenario. When a node crash is detected at
T2, replica 2 schedules an immediate checkpoint. Thereafter, every
node in replica 2 sends the checkpoint to its buddy node in replica
1. This allows replica 1 to continue on the forward path without
rollback.
Figures 5(b),5(c),5(d) present the general scenario in which both
soft and hard errors may occur in the system. In all these scenarios,
periodic local checkpointing is performed (e.g. at time T1, T3 etc.).
Following the local checkpointing, replica 1 sends its checkpoint to
replica 2 for comparison. In the event of a soft error detected, both
replicas roll back to the previous safe checkpoint.
When a hard failure occurs at time T2, in the strong resilience
scheme shown in Figure 5(b), replica 2 sends its soft-error-free lo-
cal checkpoint at T1 to the restarting process in replica 1 to help it
recover. The application is fully protected from soft errors in this
scenario. However, in Figure 5(c) with medium resilience, an im-
mediate checkpoint is performed in replica 2 when a failure occurs
at time T2. Replica 1 is recovered using this new checkpoint. As
such, at time T3, only the soft error that occurs after T2 will be
detected. Figure 5(d) shows the scenario of weak resilience that
avoids rework and immediate checkpointing when a failure is de-
tected at time T2. Replica 2 continues execution until the next
scheduled checkpoint time T3, and then sends this checkpoint to
replica 1 for recovery. Although this scheme incurs zero-overhead
in the case of a hard failure, the application is not protected from
soft errors from time T1 to T3.

3. DESIGN CHOICES
During the design process of ACR, we evaluated alternative meth-
ods for different components of the framework, and selected the
ones most suited to our needs. In this section, we present those de-
sign choices and their trade-offs relative to the alternatives.
1) Ensuring consistent states. To enable the recovery of a crashed
replica from a hard error using information from the healthy
replica, it is necessary that the processes in the two replicas are
interchangeable, i.e. for every process in replica 1 there is a pro-
cess in replica 2 that has the same application state. ACR makes
use of coordinated checkpointing to ensure this consistency, and
hence does not require any communication or synchronization be-
tween replicas unless a hard error occurs.
An alternative approach to maintain the consistent state between
replicas is by cloning the messages. Libraries such as rMPI [10]
and P2P-MPI [13], which provide replication-based reliability to
MPI applications, provide reliability support by ensuring that if an
MPI rank dies in one of the replicas, its corresponding MPI rank
in the other replica performs the communication operations in its
place. This approach requires that the progress of every rank in one
replica is completely synchronized with the corresponding rank in
the other replica before and after the hard error. Such a fine-grained
synchronization approach may hurt application performance espe-
cially if a dynamic application performs a large number of receives
from unknown sources. In fact, in such scenarios the progress of
corresponding ranks in the two replicas must be serialized to main-
tain consistency. For a message-driven execution model in which
the execution order is mostly non-deterministic, this approach is
certainly not optimal.
2) Who detects soft errors? In ACR, the runtime is responsible
for transparently creating checkpoints and their comparison to de-
tect soft errors. Algorithmic fault tolerance is an alternative method
based on redesigning algorithms using domain knowledge to detect
and correct soft errors [3]. Further, using containment domains [6]
is a programming-construct methodology that enables applications
to express resilience needs, and to interact with the system to tune
error detection, state preservation, and state restoration. While both
these approaches have been shown to be scalable, they are specific
to their applications. One may need to have in-depth knowledge of
the application domain and make significant modifications to the
code in order to use them. In contrast, a runtime-based method is
universal and works transparently with minimal changes to the ap-
plication. Hence, we use this strategy in ACR.
3) Soft error detection method. Similar to ensuring consis-
tent states, an alternative method to detect soft errors is to com-
pare messages from the replicas [11]. If a message is immedi-

4

replica 1 replica 2

hard
error

hard error detected
by replica 2

replica 2 sends the
immediate checkpoints
to replica 1 for recovery

Job
Starts

T1

T2

T3

TIME

application execution
with soft error protection checkpoint application execution

without soft error protectionrestart

replica 1 replica 2

hard
error

hard error detected
by replica 2

replica 2 sends the
checkpoints at T1 to
replica 1 for recovery

Job
Starts

T1

T2

T3

transfer checkpoint for
soft error detection

soft error detected,
both replicas roll back

replica 1 replica 2

hard
error

hard error detected
by replica 2

replica 2 sends the
immediate checkpoints
to replica 1 for recovery

Job
Starts

T1

T2

T3

transfer checkpoint for
soft error detection

soft error detected,
both replicas roll back

replica 1 replica 2

hard
error

hard error detected
by replica 2

replica 2 sends the
checkpoints at T3 to
replica 1 for recovery

Job
Starts

T1

T2

T3

transfer checkpoint for
soft error detection

soft error cannot be
detected

(a) ACR with only hard error protection (b) ACR with strong resilience scheme (c) ACR with medium resilience scheme (d) ACR with weak resilience scheme

Figure 5: The control flow of ACR with different reliability requirements.

ately sent out using the corrupted memory region, early detection of
soft errors is possible using this scheme. However, a major short-
coming of message-based error detection is the uncertainty of er-
ror detection—if the data effected by soft errors remains local, it
will not be detected. Moreover, even when corruption has been
detected, it may be difficult to correct the corrupted data on the
source process if the corruption was not transient or was used in
the computation. Checkpoint-based soft error detection does not
suffer from any of these issues; given the synergy with the hard-
error recovery method, it is the apropriate choice for ACR.
4) Redundancy model. Based on dual redundancy, ACR requires
re-executing the work since the last checkpoint if a soft error is de-
tected. Alternatively, triple modular redundancy (TMR) is a popu-
lar method to provide resilience for applications that have real-time
constrains. In TMR, the results processed by the three redundant
modules are passed by a voting system to produce a single output
and maintain consistency. The trade off to consider between dual
redundancy and TMR is between re-executing the work or spending
another 33% of system resources on redundancy. We have chosen
the former option assuming good scalability for most applications
and relatively small number of soft-errors.
5) Checkpointing level. Checkpointing can be performed either at
the kernel or user level. Kernel-level checkpointing like BLCR [14]
dumps all the system state and application data when it is time to
checkpoint. As a result it can quickly react to a failure prediction.
In contrast, user-level checkpointing such as SCR [23] is triggered
by the application at a certain interval. Compared to kernel-level
checkpointing, user-level checkpointing can reduce the checkpoint
size since the process state and buffered messages are not stored.
ACR performs user-level checkpointing but with the simplicity and
flexibility advantages of the kernel-level scheme. In ACR each
checkpoint is invoked at a safe point specified by the user in or-
der to store the minimal state needed. But we allow the interval
between checkpoints to be dynamically adjusted to the observed
failure rate without user interference.

4. ADAPTATION AND OPTIMIZATIONS
An adaptation of ACR to Charm++ has been performed to validate
it on real systems executing applications of various types. In order
to support ACR, we have made use of some existing features in
Charm++ and added new ones. Important optimizations to boost
performance and reduce overheads have been performed.

4.1 Implementation Details
Replication To support replication, we have augmented Charm++
with support for transparent partitioning of allocated resources. On
a job launch, ACR first reserves a set of spare nodes (§ 2) to be
used in event of failure. The remaining nodes are divided into two
sets that constitute the two replicas. The application running in
each replica is unaware of the division and executes independently
in each replica. In addition to support for regular intra-replica ap-
plication communication, we have added an API for inter-replica
communication that is used by ACR for various purposes.
Checkpointing Charm++ supports checkpointing to either mem-
ory or file system using simple user specified pup functions. The
pup functions use the Pack and UnPack (PUP) framework to se-
rialize/deserialize the state of the application to/from the chosen
medium using special PUPer(s).
Handling soft errors We have augmented the PUP framework to
support a new PUPer called the checker. This PUPer compares the
local checkpoint of a node with the remote checkpoint sent to the
node by its buddy, and reports if a soft error has occurred. PU-
Per::checker also enables a user to customize the comparison func-
tion based on their application knowledge. For example, since the
floating point math may result in round-off errors, a programmer
can set the relative error a program can tolerate. One may also
guide the PUP framework to ignore comparing data that may vary
between different replicas, but is not critical to the result.

4.2 Optimizations
Simultaneous transmitting checkpoints for comparison or during
restart using the weak/medium resilience scheme may saturate the
network and result in congestion. We have implemented the fol-
lowing two techniques to reduce network congestion, and hence
improve the performance of ACR.
Checksum A simple but effective solution to network congestion
problem is use of a checksum to compare the checkpoints. ACR
uses the position-dependent Fletcher’s checksum algorithm [12] to
calculate the checksum of a checkpoint, which is then transmitted
to the buddy for comparison. While the use of checksums reduces
the load on the network, it increases the computation cost. Instead
of a single instruction required to copy the checkpoint data to a
buffer if the full checkpoint is sent, 4 extra instructions are needed
to calculate the checksum. Assuming a system that has the commu-

5

nication cost per byte of β and computation cost of γ per byte, the
difference in cost of the two schemes is (β − 4γ) × n. Hence, us-
ing the checksum to compare checkpoints will show benefits only
when γ < β

4
.

Topology-aware mapping ACR implements topology-aware task
mapping to reduce network congestion during restart and check-
point comparison (if checksum is not used). Consider the default
mapping of replicas onto 512 nodes of Blue Gene/P running in
shared-memory mode (Figure 6(a)). Only the mapping for the front
plane (Y = 0) is shown for ease of understanding. Replica 1 is al-
located on the block of nodes that constitute the left half of the
allocations, whereas replica 2 is allocated the right half. During
checkpointing, node i of replica 1 sends a message to node i of
replica 2. Using the default mapping, the nodes are laid out such
that the path taken by checkpoints sent by nodes in each column
overlaps with the path traversed by checkpoints sent by nodes in
their row in every other column. In Figure 6(a), this overlap is
represented by tagging each link with the number of messages that
pass through them during checkpointing. Even if the torus links are
considered, the overlap on links exist albeit in lower volume. In ef-
fect, the links at the bisection of replica 1 and replica 2 become the
bottleneck links. And the loads of these bottleneck links are deter-
mined by the number of columns. On BG/P, the default mapping is
TXY Z in which ranks increase slowest along Z dimension; hence
the two replicas are divided along the Z dimension and the load on
bottleneck links is proportional to the length of Z dimension.

43

4

4

4

4

4

4

43

3

3

3

3

3

3

2

2

2

2

2

2

2

21

1

1

1

1

1

1

1 1

1

1

1

1

1

1

Replica 2 nodes

2

2

2

2

2

2

2

23

3

3

3

3

3

3

3

(a) Default-mapping
1

1

1

1

1

1

1

1

(b) column-mapping
1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0 1 0 1 0 1 012

2

2

2

2

2

2

21

1

1

1

1

1

1

1 1

1

1

1

1

1

1

12

2

2

2

2

2

2

2

(c) Mixed-mapping

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Replica 1 nodes

1

inter-replica messages[0-4]

Figure 6: Different mapping schemes and their impact on inter-
replica communication: the number on the links represents the
number of checkpoint messages that will traverse through those
links.

The excess load on the bottleneck link can be reduced by using an
intelligent mapping that places the communicating nodes from the
two replicas close to each other. Consider the column-mapping
of the two replicas in Figure 6(b) that alternatively assigns the
columns (and the corresponding Z planes that are not shown) to
replica 1 and replica 2. This kind of mapping eliminates the over-
lap of paths used by inter-replica messages, and is best in terms
of network congestion. However, providing disjoint mapping for
a replica may interfere with application communication and result
in slow progress for communication-intensive applications. Addi-
tionally, placing the buddy nodes close to each other increases the
chances of simultaneous failures if the failure propagation is spa-
tially correlated. In such scenarios, one may use mixed-mapping in
which chunks of columns (and the corresponding planes) are alter-
natively assigned to the replicas as shown in Figure 6(c).

Another way to reduce network congestion is to use asynchronous
checkpointing [25] that overlaps the checkpoint transmission with
application execution. However, doing so may delay the comple-
tion of checkpointing which exposes the system to more failures.
We leave implementation and a more formal analysis of this aspect
for future work.

5. MODELING PERFORMANCE AND RE-
LIABILITY

A fundamental question regarding checkpoint/restart strategy is
how often to checkpoint. Frequent checkpoints will imply less
work to be recovered in case of a failure, but it will incur high over-
head because of the more time spent doing checkpointing. This
section presents a model to help understand the performance and
reliability difference for the three resiliense schemes in ACR. The
presented model represents a system with a number of parameters
and defines several equations to compute relevant values: optimum
checkpoint period, total execution time and probability of unde-
tected soft errors. Additionally, the model allows us to understand
how ACR will scale and perform in different scenarios.

The model extends the theoretical framework presented in the lit-
erature [7] by incorporating soft errors in the equations, and three
different levels of resilience recovery schemes. We assume fail-
ures follows the Poisson process. Parameters used in the model are
listed in table 1. These parameters include application-dependent
parameters (W , δ,RH ,RS), system-dependent parameters (MH ,
MS , S), and the output of the model (τ , T , TS , TM , TW).

Description Description

W Total computation time S Total number of sockets
δ Checkpoint time τ Optimum checkpoint period
RH Hard error restart time T Total execution time
RS Soft error restart time TS T strong resilience
MH Hard error MTBF TM T medium resilience
MS Soft error MTBF TW T weak resilience

Table 1: Parameters of the performance model.

Since total execution time is the main variable of interest which we
are trying to minimize, we use the following equation to describe
the different components:

T = TSolve + TCheckpoint + TRestart + TRework

where TSolve is the useful computation time, TCheckpoint is the
time spent exclusively on checkpointing, TRestart is the time of
restarting applications for execution after detecting any type of er-
ror, and TRework stands for the time spend in re-executing the work
after both soft and hard errors.

The total checkpointing time is simply the product of the individual
checkpoint time and the number of checkpoints:

∆ = TCheckpoint =

(
W

τ
− 1

)
δ

The total restart time is similarily the product of individual restart
time and the number of restarts:

P = TRestart =
T

MH
RH +

T

MS
RS

In order to represent the three different levels of resilience defined
in Section 2, we define an equation for each level. The total exe-
cution time for strong resilience level (TS) uses the fact that a hard
error will require the system to rollback immediately to a previous
checkpoint. The medium resilience level (whose total execution
time is TM) will checkpoint right after the hard error, so on aver-
age half that checkpoint interval the system is unprotected against
soft errors. Finally, the weak resilience level (TW represents the
total execution time) will leave the whole checkpoint period un-
protected against soft errors. The equations for these variables are

6

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

1K 2K 4K 8K 16K 32K 64K 128K 256K

U
til

iz
at

io
n

pe
r

R
ep

lic
a

Number of Sockets per Replica

Weak δ = 15s
Medium δ = 15s

Strong δ = 15s
Weak δ = 180s

Medium δ = 180s
Strong δ = 180s

(a) Utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1K 2K 4K 8K 16K 32K 64K 128K 256KPr
ob

ab
ili

ty
 o

f U
nd

et
ec

te
d

So
ft

 E
rr

or
s

Number of Sockets per Replica

Weak δ = 180s
Medium δ = 180s

Weak δ = 15s
Medium δ = 15s

(b) Probability of undetected soft errors

Figure 7: The utilization and vulnerability of the different recovery schemes for different checkpoint size. Strong resilience scheme detects
all the soft errors but results in loss of 30% utilization. Weak resilience scheme has the best utilization but is more likely to have undetected
soft errors for a large δ. Medium resilience scheme reduces the likelihood of undetected soft errors with additional 4% performance loss.

presented below.

TS = W + ∆ + P +
TS
MH

(
τ + δ

2

)
+

TS
MS

(τ + δ)

TM = W + ∆ + P +
TM
MH

δ +
TM
MS

(τ + δ)

TW = W + ∆ + P +
TW
MS

(τ + δ)

Note that there is no rework time for both the weak and medium
resilience schemes. The medium-resilience scheme has an extra
overhead since it requires checkpointing when hard error is de-
tected. Using these formula, we calculate the optimal checkpoint
interval for the three resilience schemes and use the best total exe-
cution time for further analysis.
Performance and Protection: We define the utilization of the sys-
tem as the portion of the time which is devoted to do useful work:
W
T

. The complement of the utilization gives us the overhead of the
fault tolerance approach. This overhead includes the checkpoint
time, restart time and the rework time. Figure 7a shows the utiliza-
tion of the different schemes with different checkpoint time from
1K sockets to 256K sockets per replica. The checkpoint time pro-
jected for exascale machine ranges from seconds to minutes [18].
Thus we choose δ to be 180s and 15s to represent large and small
checkpoints respectively, since one of the dominant factors in δ is
the checkpoint size (Section 6). We assume a mean time between
hard errors MH of 50 years (equivalent to the MTBF of Jaguar
system [28]) and soft error rate of 100 FIT [1] in our model. For δ
of 15s, the efficiency for all the three resilience schemes is very
high—above 90% even on 256K sockets. When δ is increased
to 180s, the efficiency of the strong resilience scheme decreases
to 73% while that of the weak and medium resilience scheme is
above 85% using 256K sockets. Note that in weak and medium
resilience scheme, the system is left without any soft error protec-
tion for some period of time. Hence, based on the application, one
may have to sacrifice different amount of utilization to gain 100%
protection from soft errors.

Figure 7b presents the probability of occurrence of soft error dur-
ing the period in which the framework does not provide any soft
error protection using medium and weak resilience schemes for a
job run of 24 hours. The results suggest that for low socket count
(up to 16K sockets), the probability of an undetected error is very
low for the two types of the applications we considered. It is also
worth noting that even on 64K sockets, the probability of an unde-
tected soft error for the medium resilience scheme is less than 1%

(using δ = 15s). These scenarios may be sufficient to meet the re-
silience requirement of some users with minimal performance loss.
However, the probability of an undetected soft error is very high on
256K sockets, and users will have to choose the strong resilience
scheme with some performance loss to execute a fully protected
experiment. For both the cases, the medium resilience scheme de-
creases the probability of undetected soft errors by half with only
4% performance loss at maximum.

6. EVALUATION
6.1 Setup
We have used various mini-applications including a stencil-based
state propagation simulation, a molecular dynamic simulation, a
hydrodynamics simulation using an unstructured mesh, and a con-
jugate gradient solver to evaluate ACR. Jacobi3D is a simple but
commonly-used kernel that performs a 7-point stencil-based com-
putation on a three dimensional structured mesh. We evaluate our
framework using a CHARM++ based and an MPI-based implemen-
tation of Jacobi3D. HPCCG is distributed as part of the MPI-based
Mantevo benchmark suite [15] by Sandia National Laboratories.
It mimics the performance of unstructured implicit finite element
methods and can scale to large number of nodes. LULESH is the
Livermore Unstructured Lagrange Explicit Shock Hydrodynamics
mini-app [21]. It is a mesh-based physics code on an unstruc-
tured hexahedral mesh with element centering and nodal center-
ing. LeanMD [17], written in CHARM++, simulates the behav-
ior of atoms based on short-range non-bonded force calculation in
NAMD [26]. miniMD is part of the Mantevo benchmark suite [15]
written in MPI. It mimics the operations performed in LAMMPS.
In contrast to the other four benchmarks, the molecular dynamic
simulation programs have low memory footprint. Moreover, owing
to their implementations, checkpoint data in these programs may
be scattered in the memory resulting in extra overheads during op-
erations that require traversal of application data.

Benchmark Configuration (per core) Memory Pressure
Jacobi3D 64*64*128 grid points high
HPCCG 40*40*40 grid points high
LULESH 32*32*64 mesh elements high
LeanMD 4000 atoms low
miniMD 1000 atoms low

Table 2: Mini-application configuration.

In our experiments, the MPI based programs were executed us-
ing AMPI [16], which is Charm++’s interface for MPI programs.
The experiments were performed on Intrepid at ANL. Intrepid is

7

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(a) Jacobi3D Charm++

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(b) LULESH

 0

 0.01

 0.02

 0.03

 0.04

 0.05

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(c) LeanMD

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(d) Jacobi3D AMPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(e) HPCCG

 0

 0.2

 0.4

 0.6

 0.8

 1

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

local checkpoint
comparison

checkpoint transfer

checksumcolumnmixeddefault

(f) miniMD

Figure 8: Single checkpointing overhead. Our framework incurs minimal overheads and provides scalable error detection.

an IBM Blue Gene/P with a 3D-torus based high speed intercon-
nect. The configuration of our experiments can be seen in Table 2.
The Charm++ and MPI implementation of Jacobi3D used the same
configuration in our experiments.

To produce a soft error, our fault injector injects a fault by flipping
a randomly selected bit in the user data. On most existing systems,
when a hard error such as a processor failure occurs, the job sched-
uler kills the entire job. To avoid a total shutdown, we implement a
no-response scheme to mimic a ‘fail-stop’ error. When a hard fault
is injected to a node, the process on that node stops responding to
any communication as if it were dead. Thereafter, when the buddy
node of the dead node does not receive heartbeat for a certain pe-
riod time, the dead node is diagnosed as dead.

6.2 Forward Path
In this section, we analyze the overheads ACR incurred in a failure-
free case. These overheads include the time spent in local check-
pointing, transferring the checkpoints, and comparing the check-
points. For these experiments, the system size is varied from 2K
cores to 128K cores, i.e. there are 1K to 64K cores assigned for
each replica. Figures 8 presents a comparison of the overheads us-
ing the default method and with the proposed optimizations for all
the mini-apps described. To easily view the change in overheads
we graph four of the mini-apps which have higher memory usage
on the left and two of the molecular dynamic simulation on the
right. Compared to the other three memory consuming mini-apps,
LULESH takes longer time in local checkpointing since it contains
more complicated data structures for serialization.

Using the default mapping method, we observe a four-fold increase
in the overheads (from 0.6s to 2s in the case for Jacobi3D) as the
system size is increased from 1K cores to 64K cores per replica.
Further looking into the time decomposition we find that the time
for inter-replica transfer of the checkpoints keeps increasing while
the time spent on local checkpointing and comparison of check-
points remains constant. An interesting observation is the linear
increase of the overheads from 1K to 4K cores and its constancy

 0

 0.5

 1

 1.5

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
pe

r
R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(a) Jacobi3D Charm++

 0

 0.05

 0.1

 0.15

 0.2

 0.25

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
pe

r
R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(b) LeanMD

Figure 9: ACR Forward Path Overhead.

beyond 4K cores. This unusual increase and steadiness is a result of
the change in the length of the Z dimension in the allocated system
which determines the load on the bisection links between replica 1
and replica 2 (Section 4.2). As the system size is increased from
1K to 4K cores per replica, the Z dimension increases from 8 to
32, after which it becomes stagnant. Beyond 4K cores, only the
X and Y dimensions change but they do not have any impact on
the performance. We make use of the mapping schemes proposed
in Section 4.2 to eliminate the dependence of overheads of the de-
fault method on the length of Z dimension. Figures 8 show that
column and mixed mappings help reduce the inter-replica commu-
nication time significantly, enabling the full checkpoint-based error
detection method to incur a constant overhead.

In contrast, the overheads incurred using checksum based error de-

8

 0

 0.5

 1

 1.5

 2

 2.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(a) Jacobi3D Charm++

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(b) LULESH

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(c) LeanMD

 0

 0.5

 1

 1.5

 2

 2.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(d) Jacobi3D AMPI

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(e) HPCCG

 0

 0.2

 0.4

 0.6

 0.8

 1

1k 64k 1k 64k 1k 64k 1k 64k

T
im

e
(s

)

Number of Cores per Replica

checkpoint transfer
reconstruction

strong
medium
(column)

medium
(mixed)

medium
(default)

(f) miniMD

Figure 10: Single restart overhead. Strong resilience scheme reduces the recovery time because of the smaller amount of checkpoint data
transmitted.

tection method remain constant irrespective of the mapping used.
Most of the time is spent in computing the checksum with trivial
amount of time being spent in checksum transfer and comparison as
expected since the checksum data size is only 32 bytes. Note that,
due to extra computation cost one has to pay for computing check-
sum, overheads for it are even larger than the column-mapping for
high memory pressure applications.

Figure 8c and 8f presents the checkpointing overheads for the
molecular dynamic mini-apps. While the general trend of results
for molecular dynamic mini-apps is similar to the other four mini-
apps, the effect of small size of checkpoints and scattered data in
memory results in some differences. First, gains in eliminating the
total overhead due to use of optimal mappings are lower in com-
parison to the high memory pressure mini-apps. Secondly, only
20% of the time is spent in remote checkpoint transfer with opti-
mal mapping while for the other four mini-apps checkpoint trans-
fer costs around 50% of the time. Thirdly, the checksum method
outperforms other schemes though the absolute time is now in
100 − 200ms range.

In Figure 9, we use two representative mini-apps, Jacobi3D and
LeanMD, to demonstrate the overhead of ACR in a failure-free
case when checkpointing at the optimal interval according to the
model in Section 5. The MTBF for hard error used in the model is
50 years per socket while the soft error rate per socket is estimated
as 10, 000 FIT. Overhead is calculated as the percentage of the ex-
tra time spent in checkpointing compared to the pure application
execution time (W in our model). Either using checksum or topol-
ogy mapping optimization can bring down by 50% checkpoint-
ing overhead compared to using default mapping without check-
sum. Strong resilience is slightly worse than weak and medium
resilience scheme. This is because applications using strong re-
silience scheme need to checkpoint more frequently to balance the
extra rework overhead on hard failures. As the failure rate increases
with the number of sockets in the system, forward path overhead
also increases.

These results indicate that ACR is scalable and performs well
for applications with either big or small checkpoints at large core
counts.

 0

 0.5

 1

 1.5

 2

 2.5

 3

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
pe

r
R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(a) Jacobi3D Charm++

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1k 4k 16k 1k 4k 16k 1k 4k 16k 1k 4k 16k

O
ve

rh
ea

d
pe

r
R

ep
lic

a
(%

)

Number of Sockets per Replica

strong
medium

weak

column+checksumcolumndefault+checksumdefault

(b) LeanMD

Figure 11: ACR Overall Overhead.

6.3 Restart from Errors
Figure 10 presents the restart overhead using strong and medium
resilience schemes with different mapping methods. Restart over-
head for hard errors includes the time spent on getting the check-
points from the replica and the time of using checkpoints to re-
construct computation for execution as shown in the figure. On
detecting a soft error, every node rolls back using its local check-
point without checkpoint transfer, so the restart overhead for soft
error is equivalent to the reconstruction part of restarting from hard
errors. The only difference between medium and weak resilience

9

Figure 12: Adaptivity of ACR to changing failure rate. Spike black lines show the time when failures are injected to the system. Spike white
lines indicate when checkpoints are performed. ACR schedules more checkpoints when there are more failures at the beginning and fewer
checkpoints when the failure rate decreases.

is whether an immediate checkpoint is needed (we find the over-
head to schedule an immediate checkpointing is negligible in our
experiments), thus the restart overhead is the same for both cases,
so we only demonstrate the restart overhead for medium resilience
scheme.

As can be seen in Figure 10, the strong resilience scheme incurs the
least restart overhead for all the mini-apps. Two factors help strong
resilience scheme outperform the other two schemes- i) the check-
point that needs to be sent to the crashed replica already exists,
and ii) only the buddy of the dead node has to send the checkpoint
to the spare node. Since there is only one inter replica message
needed to transfer checkpoints using strong resilience scheme, we
found that mapping does not affect its performance. In compari-
son, for the medium and the weak resilience schemes, every node
in the healthy replica has to send the checkpoint to its buddy in
the crashed replica. The simultaneous communication from all the
nodes results in network congestion similar to what we saw dur-
ing checkpointing phase (§ 6.2): the time increase comes from the
checkpoint transfer stage as shown in Figure 10. We make use of
topology aware mapping to address the congestion problem and
bring down the recovery overhead from 2s to 0.41s in the case of
Jacobi3D for the medium resilience schemes. Similar results were
found for the other benchmarks with relatively large checkpoints.

For LeanMD, which has a small checkpoint, the overheads are pre-
sented in Figure 10c. Note that unlike checkpointing, the restart of
a crashed replica is an unexpected event. Hence it requires several
barriers and broadcasts that are key contributors to the restart time
when dealing with applications such as LeanMD whose typical
restart time is in tens of milliseconds. Figure 10c shows these ef-
fects with a small increase in reconstruction time as the core count
is increased. Further inspection confirms that the extra overheads
can be attributed to the synchronization costs.

Figure 11 shows the overall overhead of ACR which includes the
restart and checkpointing overhead using Jacobi3D and LeanMD
at their optimal checkpoint interval. It follows the similar trend as
shown in Figure 9 whereas the overall overhead doubles compared
to checkpointing overhead alone because of the extra time spent
in recovering applications from hard and soft failures. Although
restarting is faster using strong resilience as shown in Figure 10,
the extra checkpointing overhead and extra time spent re-executing
the work lost due to hard failures makes it worse compared to weak
and medium resilience no matter what optimization techniques are
used. Regardless, the overhead of strong resilience is less than 3%

for Jacobi3D and around 0.45% for LeanMD. After utilizing topol-
ogy mapping and checksum optimization, the overall overhead is
further reduced to 1.4% and 0.2%

Nonetheless, these results demonstrate that ACR provides very fast
recovery for applications with small as well as large checkpoints.

6.4 Adaptivity
As discussed in section 2.2.1, ACR can dynamically schedule
checkpoint based on the failure behaviour. In order to test ACR’s
capability to adapting to the change of failure rate, we performed
a 30 minutes run of Jacobi3D benchmark on 512 cores of BGP
with 19 failures injected during the run. The failures are injected
according to Weibull process with a decreasing failure rate (shape
parameter is 0.6). Figure 12 shows the timeline profile for this run.
The red part is the useful work done by application. The spike black
line means a failure is injected at that time and the spike white line
indicates that a checkpoint is performed. As can be seen in the fig-
ure, more failures are injected at the beginning and the failure rate
keeps decreasing as time progresses. ACR can change the check-
point interval based on the current observed mean time between
failures. Accordingly, it schedules more checkpoints at the begin-
ing (checkpoint interval is 6s) and fewer at the end (checkpoint
interval increases to 17s).

7. CONCLUSIONS
This paper introduced ACR, an automatic checkpoint/restart
framework to make parallel computing systems robust against both
soft and hard errors. ACR aims to automatically recover applica-
tions from failures and automatically adjust the checkpoint interval
based on the environment. ACR supports three recovery schemes
of different levels of resilience. We built a performance model to
understand the interaction of soft and hard errors and explore the
trade-off between performance and reliability in the three schemes.

We described the design and implementation of ACR in an estab-
lished runtime system for parallel computing. We showed the util-
ity of topology aware mapping implemented in ACR, and its im-
pact on the scalability. ACR was tested on a leading supercomput-
ing installation by injecting failures during application execution
according to different distributions. We used five mini-apps written
in two different programming models and demonstrated that ACR
can be used effectively. Our results suggest that ACR can scale to
131, 072 cores with low overhead.

10

8. REFERENCES
[1] R. C. Baumann. Radiation-induced soft errors in advanced

semiconductor technologies. Device and Materials
Reliability, IEEE Transactions on, 5(3):305–316, 2005.

[2] L. Bautista-Gomez, D. Komatitsch, N. Maruyama, S. Tsuboi,
F. Cappello, and S. Matsuoka. FTI: High performance fault
tolerance interface for hybrid systems. In 2011 International
Conference for High Performance Computing, Networking,
Storage and Analysis (SC), pages 1 –12, Nov. 2011.

[3] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou.
Algorithm-based fault tolerance applied to high performance
computing. J. Parallel Distrib. Comput., 69(4):410–416,
2009.

[4] M. Bougeret, H. Casanova, M. Rabie, Y. Robert, and
F. Vivien. Checkpointing strategies for parallel jobs. In
Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’11, pages 33:1–33:11, New York, NY, USA, 2011.
ACM.

[5] F. Cappello. Fault tolerance in petascale/ exascale systems:
Current knowledge, challenges and research opportunities.
IJHPCA, 23(3):212–226, 2009.

[6] J. Chung, I. Lee, M. Sullivan, J. H. Ryoo, D. W. Kim, D. H.
Yoon, L. Kaplan, and M. Erez. Containment domains: a
scalable, efficient, and flexible resilience scheme for exascale
systems. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 58:1–58:11, Los Alamitos, CA,
USA, 2012. IEEE Computer Society Press.

[7] J. T. Daly. A higher order estimate of the optimum
checkpoint interval for restart dumps. Future Generation
Comp. Syst., 22(3):303–312, 2006.

[8] C. Engelmann, H. H. Ong, and S. L. Scott. The Case for
Modular Redundancy in Large-Scale High Performance
Computing Systems. In Proceedings of the 27th IASTED
International Conference on Parallel and Distributed
Computing and Networks (PDCN) 2009, pages 189–194.
ACTA Press, Calgary, AB, Canada, Feb. 2009.

[9] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring:
probabilistic soft error reliability on the cheap. In
Proceedings of the fifteenth edition of ASPLOS on
Architectural support for programming languages and
operating systems, ASPLOS XV, pages 385–396, New York,
NY, USA, 2010. ACM.

[10] K. Ferreira, J. Stearley, J. H. Laros, III, R. Oldfield,
K. Pedretti, R. Brightwell, R. Riesen, P. G. Bridges, and
D. Arnold. Evaluating the viability of process replication
reliability for exascale systems. In Proceedings of 2011
International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 44:1–44:12, New
York, NY, USA, 2011. ACM.

[11] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira,
and R. Brightwell. Detection and correction of silent data
corruption for large-scale high-performance computing. In
Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis,
SC ’12, pages 78:1–78:12, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[12] Fletcher checksum algorithm wiki page. .
[13] S. Genaud, C. Rattanapoka, and U. L. Strasbourg. A

peer-to-peer framework for robust execution of message
passing parallel programs. In In EuroPVM/MPI 2005, volume
3666 of LNCS, pages 276–284. Springer-Verlag, 2005.

[14] P. H. Hargrove and J. C. Duell. Berkeley lab

checkpoint/restart (blcr) for linux clusters. In SciDAC, 2006.
[15] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.

Willenbring, H. C. Edwards, A. Williams, M. Rajan, E. R.
Keiter, H. K. Thornquist, and R. W. Numrich. Improving
performance via mini-applications. Technical report, Sandia
National Laboratories, September 2009.

[16] C. Huang, G. Zheng, S. Kumar, and L. V. Kalé. Performance
Evaluation of Adaptive MPI. In Proceedings of ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming 2006, March 2006.

[17] L. Kale, A. Arya, A. Bhatele, A. Gupta, N. Jain, P. Jetley,
J. Lifflander, P. Miller, Y. Sun, R. Venkataraman,
L. Wesolowski, and G. Zheng. Charm++ for productivity and
performance: A submission to the 2011 HPC class II
challenge. Technical Report 11-49, Parallel Programming
Laboratory, November 2011.

[18] P. Kogge, K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller,
S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards,
A. Scarpelli, S. Scott, A. Snavely, T. Sterling, R. S. Williams,
and K. Yelick. Exascale computing study: Technology
challenges in achieving exascale systems, 2008.

[19] Z. Lan, J. Gu, Z. Zheng, R. Thakur, and S. Coghlan. A study
of dynamic meta-learning for failure prediction in large-scale
systems. J. Parallel Distrib. Comput., 70(6):630–643, June
2010.

[20] Y. Ling, J. Mi, and X. Lin. A variational calculus approach to
optimal checkpoint placement. Computers, IEEE
Transactions on, 50(7):699–708, 2001.

[21] Lulesh. http:
//computation.llnl.gov/casc/ShockHydro/.

[22] S. Michalak, K. Harris, N. Hengartner, B. Takala, and
S. Wender. Predicting the number of fatal soft errors in los
alamos national laboratory’s asc q supercomputer. Device
and Materials Reliability, IEEE Transactions on, 5(3):329 –
335, sept. 2005.

[23] A. Moody, G. Bronevetsky, K. Mohror, and B. R.
de Supinski. Design, modeling, and evaluation of a scalable
multi-level checkpointing system. In SC, pages 1–11, 2010.

[24] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error
problem: An architectural perspective. In High-Performance
Computer Architecture, 2005. HPCA-11. 11th International
Symposium on, pages 243–247. IEEE, 2005.

[25] X. Ni, E. Meneses, and L. V. Kalé. Hiding checkpoint
overhead in hpc applications with a semi-blocking algorithm.
In IEEE Cluster 12, Beijing, China, September 2012.

[26] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and
K. Schulten. Scalable molecular dynamics with NAMD.
Journal of Computational Chemistry, 26(16):1781–1802,
2005.

[27] B. Schroeder and G. Gibson. A large scale study of failures
in high-performance-computing systems. In International
Symposium on Dependable Systems and Networks (DSN),
2006.

[28] J. Vetter. Hpc landscape application accelerators: Deus ex
machina? Invited Talk at High Performance Embedded
Computing Workshop, Sep. 2009.

[29] G. Zheng, L. Shi, and L. V. Kalé. FTC-Charm++: An
In-Memory Checkpoint-Based Fault Tolerant Runtime for
Charm++ and MPI. In 2004 IEEE International Conference
on Cluster Computing, pages 93–103, San Diego, CA,
September 2004.

11

http://en.wikipedia.org/wiki/Fletcher's_checksum
http://computation.llnl.gov/casc/ShockHydro/
http://computation.llnl.gov/casc/ShockHydro/

	Introduction
	Automatic Checkpoint Restart
	Replication-enhanced Checkpointing
	Automatic Checkpoint Decision
	Adapting to Failures

	Interaction of Hard Error Recovery and Soft Error Vulnerability
	Control Flow

	Design Choices
	Adaptation and Optimizations
	Implementation Details
	Optimizations

	Modeling Performance and Reliability
	Evaluation
	Setup
	Forward Path
	Restart from Errors
	Adaptivity

	Conclusions
	References

