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Abstract

The increasing number of cores on current supercomputers will quickly decrease the

mean time to failures (MTTF) of the system. With such high failure rates, long

time running applications will have little chance to complete successfully if they

don’t use any fault tolerance strategy.

Double in memory/disk checkpointing is a production fault tolerance strategy in

Charm++ runtime system. Each node will store one copy of its checkpoint in its

own memory or disk as a local checkpoint and another copy in other node’s memory

or disk as a global checkpoint. This method takes advantage of the relatively high

network bandwidth compared to I/O bandwidth. It is able to store a checkpoint

faster than the traditional NFS- based checkpoint/restart.

However, as the core counts on each node keep increasing, the large checkpoint

size of a node will quickly saturate the limited network bandwidth. In this thesis,

we introduce the semi-blocking checkpoint/restart protocol to hide the checkpoint

overhead by overlapping global checkpoint with applications. To further analyze

the benefits of using semi-blocking checkpoint protocol in case of failures, we extend

Daly’s model and show the usefulness of the semi-blocking protocol for different

kinds of applications.

Solid state disk (SSD) is used in the semi-blocking checkpoint protocol when

there is no space to store checkpoint in memory. We present two strategies to

choose what data to store in SSD based on the memory usage of applications.

In this thesis, we show the scalability and benefits of the semi-blocking checkpoint

protocol. Semi-blocking checkpoint protocol has a performance improvement of 20%
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compared to blocking checkpoint. And the overhead of semi-blocking checkpoint

protocol could be as low as 1.6% with the consideration of checkpoints dumping

time and the extra time to recover applications from failures.
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1 Introduction and Motivation

One concern for the high performance computing community for Exascale is the

ability to tolerate failures. Even when the mean time to failure(MTTF) of an

individual node is still acceptable, as the number of nodes increases in Exascale, the

reliability of the whole system will keep decreasing. Jaguar, the 3rd supercomputer

on top500 today, experienced 2.33 failures/day from August 2008 to February 2010.

The “ASIC Q” supercomputer at Los Alamos National Laboratories has a MTTF of

less than 6.5 hours [1]. Such high failure rates will force today’s scientific simulation

to checkpoint frequently. However, periodically writing several GBs of data or even

TBs to a NFS fault free space may consume up to 20% of the application time [2].

Two main methods are used to initiate checkpointing: system or application

based. System based checkpoint could take up to 40 minutes to checkpoint for

the best machines on top500 list(2008) [3, 4]. Application initiated checkpointing

could help reduce checkpoint size by only checkpointing the data that couldn’t be

recovered or recomputed, however it would require programmer’s effort in identifying

which data needs to be stored in checkpoints. Some compiler technology is also used

to pack the live variables at the time of checkpointing [5].

The diskless checkpoint protocol in Charm++ uses local memory or disk to

store checkpoint data, and can take advantage of the high speed interconnect to

speed up the checkpoint process. Basically, each Charm++ object will periodi-

cally create two checkpoints. One checkpoint is stored in its local memory or disk

while the other one is stored in other node (called the buddy node) as a global

checkpoint. When failures happen, the crashed node could recover from the check-
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point in buddy node’s memory or disk. Whereas the surviving nodes restore from

their local checkpoint. This scheme is able to tolerate one single failure or multiple

failures if the failed nodes do not store the checkpoint of each other [6].

In this thesis, we discuss the limitation of this blocking diskless checkpointing

in Charm++ to large scale processors and propose a semi-blocking protocol which

could further hide the high checkpoint overhead for applications of moderate memory

footprint.

1.1 Network and Memory Constrains for

Checkpointing

Double in memory/disk checkpointing requires each node to transmit the whole

application checkpoint to its buddy every checkpoint interval. As seen in Table 1.1,

a prediction for Exascale machine, the increase of network bandwidth couldn’t catch

up with the increase of memory and it falls far behind the speed up of FLOPS. The

dumping time of global checkpoint will keep increasing as the memory consumption

of applications grows up in Exascale. The emergence of communication avoiding

algorithms [7] will aggravate this problem due to the redundant memory it uses to

eliminate communication. During the diskless checkpointing, after local checkpoint

is achieved on every node, there is no need for the application to stall for the

accomplishment of global checkpoints since a consistent checkpoint copy has already

been obtained. We explore to overlap global checkpoint with application execution

to hide the checkpoint overhead as a semi-blocking protocol. Solid state disk(SSD)

is also used as a back storage when memory becomes scarce.
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Table 1.1: Projection of Exascale System
1 petaFLOPS 1 exaFLOPS

FLOPS 1015 1018

# of sockets 20000 100000
Memory per socket 4GB 210GB
Memory BW 10GB/s 32GB/s
Network BW 2GB/s 20GB/s

1.2 Daly’s Model for Optimal Checkpoint

Interval

Checkpoint overhead of the whole application is also related to how frequently we

do checkpoint. Daly [8] investigates the optimum checkpoint interval to minimize

the application execution time. The total execution time is divided into:

T = solve time+ dump time+ rework time+ restart time (1.1)

The more frequently an application checkpoints, the more time an application would

spend dumping checkpoint. However, the applications would experience less rework

time on failures. So there is always a balance between the checkpoint dumping time,

mean time to failure and rework time. In Daly’s model, the optimum checkpoint

interval is

τ =
√

2δ(M +R) (1.2)

where δ is the checkpoint dumping time, M is the mean time to failure and R is the

restart time.

The rest of the thesis is organized as follows: §2 will give the background of the

Charm++ runtime system and the blocking checkpoint protocol in Charm++, §3

introduces the semi-blocking protocol for Exascale and a model of it to minimize the

execution time, §4 details the implementation of the semi-blocking on Charm++,
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experiment results and analysis will show in §5, we review the related work in this

area in §6, and we conclude the work in §7.
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2 Blocking Checkpoint in Charm++

In this section, we summarize the design of blocking in-memory checkpoint-based

fault tolerance scheme, which is a production fault tolerance strategy in Charm++

and has been used for years. The supporting parallel runtime systems are Charm++,

a message driven runtime system, and Adaptive MPI [9], an implementation of MPI

on top of Charm++. These fault tolerant runtimes take advantage of the migratable

objects and threads.

2.1 Runtime Support for Checkpoint/Restart

The fault tolerant runtime system supports checkpointing of application’s data in

two levels: fully automated checkpointing or flexible user-controlled checkpointing

by additional helper functions.

Adaptive MPI [10] runs MPI “processes” in light-weight threads, which are easier

to checkpoint and restart compared to processes. Thread migration during restart

would raise the problem of pointer reference. Isomalloc [10, 11] is used to solve

this problem for fully automated checkpointing, similar to the technique in the

PM2 system [12]. Isomalloc reserves a range of virtual address space for all the

processors. During checkpointing, virtual addresses of the MPI threads or objects

and the data associated with them are saved automatically. A object or thread can

then be restored on any processor since the allocated data can be restored without

changing its address.

Another option is that users can write their own helper functions to pack and
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unpack heap data for checkpointing and restoring an object. This is sometimes

useful in reducing the size of data involved in checkpointing and restoring. This

method reduces the amount of data to checkpoint, and so checkpointing becomes

faster.

2.2 Basic Double In-Memory

Checkpoint/Restart Scheme

Checkpoint/restart scheme requires nodes to frequently save their complete state to

stable storage or the memory of another node.

The in-memory checkpointing scheme[6] introduced the idea of diskless check-

pointing that checkpoints data in memory. It uses a coordinated checkpoint strategy,

which requires applications to have a synchronization point where they could start

a global collective operation to checkpoint. In order to handle one failure at a time,

a common case scenario, one checkpoint of the application state in the memory of

a different node is not sufficient as illustrated in Figure 2.1. In this scenario with 4

nodes, each Charm++ object (represented as a circle) checkpoints only one copy

of its checkpoint (represented as a triangle). When node 2 crashes, the checkpoints

for object d and e in memory of that node are permanently lost, so we couldn’t

recover from the checkpoint. This suggests that at least two copies of the check-

point at different locations are needed. In particular, we adopted an in-memory

double-checkpointing scheme which can tolerate at least one failure at a time.

Figure 2.2 illustrates an example of this scheme. The top half of the figure shows

the scenario before one node crashes. Each circle represents an object being check-

pointed, while each triangle and square represents its first and second checkpoints.

We call these two nodes buddy nodes for the checkpointing object. Note that one

of the two buddy nodes can be the same node where the object resides. This can
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Figure 2.2: In-Memory Single Checkpoint

help reduce the checkpointing overhead, since the checkpointing is basically a local

memory copy, which is much faster than accessing memory of remote nodes. Over-

all, compared to the traditional on-disk checkpointing, in-memory checkpointing
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scheme uses memory as storage in a distributed way, taking advantage of the high

speed interconnect, which tends to be more efficient.

The restart procedure is initiated by a crash of a physical node. On clusters, the

crash detector in the runtime system detects the crash through broken pipe socket

errors. When the restart procedure is initiated, all surviving nodes examine the

checkpoints in their memory and check for missing buddy nodes. A new node is

chosen (which can be either a spare node, or a running node) to replace the crashed

node and the latest checkpoint data is copied to that node to maintain the dou-

ble checkpoints. One of the two buddy nodes is then responsible for restoring the

corresponding objects from its checkpoints in memory. At restart, if the replace-

ment node is from a running node, then a load imbalance may occur since that

node restores more checkpoints. This can be fixed by a load balancing phase after

restart [6].

The bottom half of the Figure 2.2 illustrates a snapshot of the objects and their

checkpoints distributed on nodes after a recovery is complete. The lost checkpoints

on the crashed node 2 are recovered to node 3 and node 0 respectively. Node 3

is chosen to restore node 2’s objects(f,g) locally to avoid communication overhead,

since node 3 is node 2’s original buddy node.

Our protocol ensures the recovery from a single node failure and we can recover

from multiple concurrent failures if the crashed nodes are not buddies to each other.

2.3 Dumping Time Increases with Checkpoint

Size

The blocking double in-memory checkpoint protocol scales well for application of

small or moderate memory footprint. In one of our previous papers [13], we show the

good scalability of the checkpoint and restart time using this protocol for LeanMD
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on up to 64K cores of BG/P machines.

However our experiment of wave2D benchmark with problem size of 58368 ×

15872 shows checkpoint dumping time increases as the number of cores used per

node increases on Trestles where each physical node has 32 cores. In Figure 2.3 and

Figure 2.4, wave2D is run on 128 cores, however, we use different number of cores

per node. So with 8 cores per node, we end up using a total of 16 physical nodes to

run the application. While with 32 cores per node configuration, we use 4 physical

nodes on Trestles cluster. Using more cores on one node could help us improve the

performance of wave2D as seen in Figure 2.4 since some inter-node communication

is avoided. However, checkpoint dumping time increases from 10 seconds with 8

cores per node configuration to 45 seconds while using all of the 32 cores per node

in Figure 2.3. Our blocking checkpoint protocol will have performance limitation as

the increasing number of cores per node.
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3 Semi-Blocking Checkpoint
Protocol

Coordinated checkpointing will quickly saturate the network bandwidth with the in-

crease of checkpoint size, making checkpoint overhead unacceptable for applications

at exascale. In this section we show the effort of semi-blocking checkpoint protocol

in hiding the checkpoint overhead. A model will also be introduced to demonstrate

the benefits of semi-blocking protocol.

3.1 Solution: Semi-Blocking Checkpointing

Semi-blocking protocol is based on the double in-memory checkpoint protocol in

Charm++ [6].

Figure 3.1 illustrates the operation of semi-blocking checkpoint protocol. In

Figure 3.1, three nodes will synchronize and then dump their local checkpoints to

local memory or disk coordinately. After all the nodes are done with their local

checkpoints, they are safe to continue with the computation. In the mean time,

Charm++ runtime system will take over to make global checkpoints. The red lines

show that checkpoint of each node is sent to its buddy node as global checkpoints.

Previous checkpoints are still kept in memory or local disk of each node until the

global checkpoints are accomplished on all the nodes in case of failures happening

during global checkpoints. Figure 3.2 and Figure 3.3 show how two types of failures

are dealt with in the semi-blocking checkpoint protocol.

Two questions need to be answered before demonstrating the benefit of semi-

blocking checkpoint protocol.
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Figure 3.1: Forward Path of SemiBlocking Protocol

• How many failures will force the application to rollback to a previous check-

point? The number of failures inducing a further rollback depends on how soon the

global checkpoint is finished. We use overlap to illustrate the time to finish a global

checkpoint in seconds as global checkpoint always overlapping with application. The

smaller the overlap is, the less amount of failures will require a further rollback.

• Will semi-blocking protocol slow down the application? Global checkpoints

and application would share the same NIC for communication, and thus the message

sending for global checkpoints may interfere with the execution of application. We

use overhead as the slow down of application in seconds in each checkpoint interval.

The less the overhead is, the more we could gain from semi-blocking checkpointing

in a forward case with no failures.

3.2 A New Model for Semi-Blocking Protocol

Daly’s model for the optimum checkpoint interval seeks a balance between the time

to dump checkpoints with MTTF. However their model only supports blocking

checkpoint/restart. We extend Daly’s mode for the semi-blocking protocol.

Table 3.1 lists the parameter used in the model. The total time of a checkpointed
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Figure 3.2: Failure happens after global checkpoint is done, application could recover
from the latest checkpoint
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Figure 3.3: Failure happens during global checkpoint, application must discard the cur-
rent checkpoint and recover from the previous checkpoint

workload with failures would be divided into five parts:

Ttotal = Ts + Tlocal + Toverhead

+ Trollback,recover + Tfurther−rollback (3.1)

where Ts is the pure computation time of the application without doing any check-

points, Tlocal is the time to dump checkpoints in local memory or disk, Toverhead is the

total interference of global checkpoint to application, Trollback,recover is corresponding

to recover from failures described in Figure 3.2, when global checkpoint is finished,

Tfurther−rollback is the cost to recover from failures during the global checkpoint as in

Figure 3.3.

The local checkpoints dumping time Tlocal is the product of the number of check-
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Table 3.1: Semi-Blocking Checkpoint Parameters
overlap The time to finish global checkpoint
overhead Interference of global checkpoint to application
fa The number of failures not in global checkpoint
τ Checkpoint interval using semi-blocking protocl
τblocking Checkpoint interval using blocking protocl
δ The dumping time of local checkpoint
c The dumping time of checkpoint using blocking protocol
R The recover time
MTTF The system mean time to failure
Ts The workload of application
Ttotal The total execution time using semi-blocking protocol
Tblocking−total The total execution time using blocking protocol
benefit The performance improvement of semi-blocking over blocking protocol

points and the dumping time of each checkpoint. The pure computation time in

each checkpoint interval would be (τ -overhead), thus,

Tlocal =
Ts

τ − overhead
δ (3.2)

Toverhead is calculated in the similar way,

Toverhead =
Ts

τ − overhead
overhead (3.3)

Failures are distributed exponentially according to Daly’s mode. The number of

failures not happening during global checkpoint would be,

fa =

(
1− overlap

τ

)
Ttotal
MTTF

(3.4)

Overhead is avoided when recovering from such failures since there is no need to
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redo any checkpoints, so

Trollback,recover = fa

(
R +

τ + overlap

2
− overhead

)
. (3.5)

And R would be at the same order of magnitude with the τ in blocking checkpoint

protocol since restart is the reverse process of checkpointing as seen in §2.

For failure during global checkpoints, application needs to recover from the pre-

vious checkpoint and redo the current checkpoint, thus,

Tfurther−recover =

overlap

τ

(
R + τ +

overlap

2
+ c− overhead

)
Ttotal
MTTF

(3.6)

After all, the total execution time with checkpoints and rework for a workload

of Ts would be

Ttotal = Ts +
Ts

τ − overhead
δ +

Ts
τ − overhead

overhead

+

(
1− overlap

τ

)(
R +

τ + overlap

2
− overhead

)
Ttotal
MTTF

+
overlap

τ

(
R + τ +

overlap

2
+ c− overhead

)
Ttotal
MTTF

. (3.7)

Similarly, for the blocking checkpoint, the total execution time Tblocking−totalof an

application with Ts workload is

Tblocking−total = Ts +
Ts

τblocking
c+

Tblocking−total
M

(
R +

τblocking + c

2

)
(3.8)

Next, we use MATLAB to minimize 3.7 and 3.8 by finding the optimum check-

point interval for the two protocols. Checkpoint interval τ has strict bounds in the

semi-blocking model: overlap < τ < MTTF. So We optimize the Ttotal in the given
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bounds with overlap and overhead as input for the semi-blocking model. In the

blocking checkpoint model τblocking has the bound of 0 < τblocking < MTTF.

To quantify the performance improvement using semi-blocking checkpoint proto-

col compared to the blocking one, we calculate the benefit of semi-blocking protocol

like

benefit =
Tblocking−total − Ttotal

Tblocking−total
. (3.9)

Here, Ttotal and Tblocking−total are the total execution time of the application with

the optimum checkpoint interval using semi-blocking and blocking protocol respec-

tively.
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4 Implementation

In this section, we describe the implementation of the semi-blocking checkpoint

protocol in Charm++. We quantify the interference of global checkpoint to ap-

plications with different communication to computation ratios. Two schemes are

developed to ensure global checkpoint is finished in an appropriate time period.

We also discuss how to use solid state disk in the semi-blocking protocol to reduce

memory pressure.

4.1 Charm++ for Multicore Clusters

Charm++ runtime system provides an SMP extension for each platform specific

implementation to explore the shared memory of multicore machines. The SMP

version of Charm++ allows the process space to consist of multiple flows of control

as worker threads instead of one. Worker threads are typically implemented via

pthreads and share the process’s address space but have their own event schedulers.

Using SMP mode of Charm++, we can achieve faster startup, reduction in memory

consumption and an optimized node-level collective communication. Charm++

works for both SMP and non-SMP versions without any SMP specific changes to

applications.

In SMP mode of Charm++ runtime system, one node has a dedicated com-

munication thread to handle all the inter-node communication while cores on the

same node communicate using shared memory. The worker threads don’t need to

pay for the communication overhead themselves. Communication thread is bound
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to a certain core per node. Therefore, cores on the same node are mapped either to

worker threads or communication thread. When a worker thread sends a network

message, it enqueues the message to the communication thread’s outgoing message

queue. More benefits of the communication thread are showed in [14].

4.2 Overlapping Global Checkpoint and

Computation

During global checkpoint, each node sends checkpoint message to its buddy; those

messages are enqueued in the outgoing message queue right after local checkpoint

is finished. Thus, the communication of application is stalled by the sending of

checkpoint messages. To solve this problem, we design a separate checkpoint mes-

sage queue on each communication thread. Worker threads enqueue the checkpoint

message to this separate queue. The communication thread only sends checkpoint

messages when there is no application message ready to be sent to ensure the mini-

mum interference of the checkpoint message to application. We call it opportunistic

sending of checkpoint messages. The checkpoint message is split into multiple small

chunks for better overlap with the computation of applications.

Interference of the global checkpoint to application is heavily affected by the

communication needs of applications. Figure 4.1 shows different communication to

computation ratios we achieve using a synthetic benchmark: FT Test with a dump-

ing time of 6.5 seconds using blocking checkpoint protocol. With FT Test, users

could control the computation time, number of messages and message size of each

computation step to see the sensitivity of the semi-blocking protocol. As seen in

Table 4.1, with the increase of communication to computation ratio, overhead will

also increase. And overlap has an upward trend until the communication to com-

putation ratio reaches 3.4. Figure 4.2 corresponds to the benefit of semi-blocking
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is 512MB/node

protocol for different communication to computation ratios. Semi-blocking protocol

gives us more than 5% benefit compared to blocking checkpoint protocol with a

communication to computation ration up to 3.4. With the emergence of communi-

cation avoiding algorithm [7], the checkpoint data size will increase on each node

because of the redundant computation which means checkpointing using blocking

protocol will take a lot of time and the communication to computation ratio will

decrease. We believe the semi-blocking protocol will show more and more bene-

fits as programmers try to cut down the communication to computation ratio of

applications.
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Table 4.1: Overlap and Overhead associated with Different Communication to Com-
putation Ratio

Scenario Comm/Comp Ratio Overlap(s) Overhead(s)
1 1.4 9.6 0.2
2 2.9 13.5 0.5
3 3.4 17.3 1.0
4 5.1 14.3 4.0

4.3 Opportunistic and Random Scheduling of

Checkpoint Message

Ideally, semi-blocking protocol could achieve the best benefit with the smallest

overlap and the smallest overhead. Reducing overlap period decreases the num-

ber of failures that require a further rollback. On the other hand increasing the

overlap period may incur less overhead to applications. Finding a good overlap

period is critical to the success of semi-blocking protocol.

Opportunistic sending of checkpoint messages will only give us a fixed overlap

period. Will this fixed overlap and overhead relationship bring the most benefit of

semi-blocking protocol? An option is to use the idea of lottery scheduling [15] to

control the overlap period. Lottery scheduling is a randomized resource allocation

mechanism used to control the relative execution rates of computations. It also

supports resource management such as I/O bandwidth or memory. The clients’

allocations to access the shared resource are represented by the number of lottery

tickets they hold. Each time the resource is granted to the client with the winning

ticket. In the semi-blocking protocol, transmission of global checkpoint messages

and application messages share the same network interface controller (NIC). By

controlling their allocations to use the NIC, we could have different overlap periods.

In FT Test, the amount of messages sent is evenly distributed over computation.

Thus we use the number of application messages sent to represent the amount of
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work that has been finished. The longer the overlap is, the more application mes-

sages will be sent through global checkpoint. The number of application messages

s and the number of checkpoint messages c in each checkpoint interval could be

statistically obtained from previous checkpoints. Given an expected overlap, the

number of application messages sent in global checkpoint would be approximately

overlap

τ
s,

while the number of checkpoint messages are c. The number of application and

checkpoint messages sent in global checkpoint can be used as their lottery tickets.
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Figure 4.3: Overhead Associated with Different Overlap for FT Test Scenario 2

So the probability to send an application message during global checkpoint is

overlap
τ

s
overlap

τ
s+ c

,

and the probability to send a checkpoint message is

c
overlap

τ
s+ c

.

As seen in Figure 4.3 for a FT Test of communication/computation ratio set

to 2.9, the overhead of opportunistic sending of checkpoint message is the least.

Increasing the overlap period will increase the overhead slightly while decreasing

the overlap period will make the overhead dramatically increasing, both fail to buy

us more benefit using the model in §3 as seen in Figure 4.4.
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Figure 4.4: Benefit of Semi-Blocking Protocol Associated with Different Overlap for FT
Test Scenario 2, MTTF:300s

4.4 Relieving Memory Pressure of Checkpoint

with Solid State Disk

Solid state disk (SSD) is becoming more and more promising for its good random

access performance and low power consumptions, however there is no clear answer

of how to use it for checkpointing. As exascale machines are targeted for large and

complicated scientific application, SSD would be a good choice to store the huge

checkpoint data. Considering the SSD bandwidth is not comparable to memory

bandwidth nowadays, we need to carefully select what checkpoint data to store in

SSD.

In the following analysis we set the total memory of system to be M and ap-

plication memory usage to be Ma. Checkpoint memory is less than or equal to
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Ma. With the semi-blocking protocol, the peak memory consumption could be as

high as 5Ma during global checkpoint and falling down to 3Ma when global check-

point is finished. Two strategies are designed for the use of SSD depending on the

application memory usage for semi-blocking protocol.

• When application memory consumption Ma is more than M/3, all the check-

points will be saved to SSD. This is called the full SSD strategy.

• When application’s memory consumption Ma is less than M/3, only the

buddy’s checkpoints are stored in SSD. In this way half the writes to SSD are

avoided during checkpoints. At restart, only checkpoints of the crashed node need

to read from SSD while other nodes could recover from the checkpoints in their local

memory. We call it half SSD strategy.

In §5 we will show the performance differences of the two strategies at restart

and how half SSD strategy could help us achieve a faster recover.

4.5 Virtualization Analysis

Over decomposition and asynchronous communication in Charm++ can greatly

help overlap communication and computation of applications. In Charm++, pro-

grams are broken up into objects called chares. Usually, there are more chares than

the number of processors. The number of chares divided by the number of proces-

sors is called virtualization ratio. A chare will begin computation by the invocation

of entry methods associated with each Charm++ message.

We illustrate the benefit of high virtualization ratio for the semi-blocking pro-

tocol in Figure 4.5 and Figure 4.6. Different virtualization ratios wouldn’t change

the total amount of data to be communicated with, but the number of messages

and each message size. In Figure 4.5 and 4.6, we set the application virtualization

ratio to be 1 and 4 seperately. As can be seen in Figure 4.6, high virtualization
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will keep the processor busy and hide the transmission of the checkpoint message.

In Figure 4.5 with virtualization ratio of 1, the idle time of the processor will be

longer. Even if we send one checkpoint message after the sending of each application

message, there is potential to enlarge the overlap period for global checkpoint with

a low virtualization ratio.
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5 Experiments and Analysis

We evaluate the benefit of the semi-blocking checkpoint protocol as well as the

performance of restarting application after a failure.

Three applications are used in the experiments because of their different com-

munication and computation patterns. The first one is wave2D, which uses a finite

differencing scheme to calculate pressure information over a discretized 2D grid. The

second one is a canonical benchmark, jacobi2D, that uses 5 point stencil to average

values in a 2D grid using 2D decomposition. The third application, ChaNGa, is for

N-Body based parallel simulations and especially used in Cosmology and Astron-

omy [16].

The experiments are done on Trestles at the San Diego Supercomputer Center.

Trestles consists of 324 nodes with 32 cores per node. The theoretical peak per-

formance of the system is 100 teraflops. Each compute node contains four sockets,

each with a 8-core 2.4 GHZ AMD Magny-Cores processor. Each node has 64 GB of

DDR3 RAM and 120GB of flash memory(SSD).

5.1 Benefits of Semi-Blocking Protocol

We use wave2D to demonstrate the benefits of semi-blocking Protocol with different

problem size on 512 cores of Treatles. The checkpoint size goes up with problem size

from 0.45GB/node to 4GB/node. Since there is no solid answer about the MTTF

in exascale, projections goes from 1 minutes [17] to half an hour [18], we end up

using different values of MTTF for our model as seen in Figure 5.1.

25



 0

 5

 10

 15

 20

 25

 30

 35

 40

0.45 1.34 2.23 3.12 4

Be
ne

fit
(%

)

Checkpoint Size/Node(GB)

Benefit/Checkpoint Size Relationship

MTTF:300s
MTTF:600s
MTTF:900s

MTTF:1200s
MTTF:1500s
MTTF:1800s
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Suppose the problem size for wave2D to be N . The computation complexity of

wave2D would be O(N), while the communication complexity is O(
√
N), and the

checkpoint size is 2N . The communication to computation ratio of wave2D will

decrease as N increase. So semi-blocking is expected to have more benefits with the

increase of problem size according to §4.

The benefit of semi-blocking protocol increases with the checkpoint size from

15% for 0.45GB to 22% for 4GB. And also with decrease of MTTF, semi-blocking

protocol shows off more benefit. This is because that the checkpoint and restart

overhead for blocking checkpoint protocol will keep increasing as MTTF goes down

while semi-blocking protocol does a good job in hiding the checkpoint overhead and

provides a tolerable rework time on failures. As seen in the Figure 5.1, for checkpoint

size of 4GB/node, benefit of semi-blocking protocol goes from 10% for MTTF of
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1800s to 22% for MTTF of 300s.

5.2 Scalability

In Figure 5.2 we first shows the weak scalability of the semi-blocking protocol with

wave2D of a constant checkpoint size of 4GB per node. Semi-blocking checkpoint

protocol has good weak scalability from 128 cores to 512 cores. For certain MTTF,

the benefit of semi-blocking checkpoint protocol keeps a straight line from 128 cores

to 512 cores. The benefit goes from 22% with MTTF of 300s to 10% with MTTF of

1800s. We could foresee the semi-blocking protocol would have more benefit with

the decrease of MTTF in exascale.

The ChaNGa application is used to demonstrate the strong scalability of the
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semi-blocking protocol. We use a 50 million particles system for ChaNGa. The

checkpoint size decreases from 1.49GB per node on 128 cores to 381MB per node on

512 cores. Figure 5.3, 5.4 and 5.5 show the overhead of blocking and semi-blocking

checkpoint protocol compared to the normal workload with different value of MTTF.

With a MTTF of 1800s, the overhead of semi-blocking checkpoint protocol is only

1.6% compared to pure computation time even with the consideration of the time

to recover and restart when failures happen. However the overhead of blocking

checkpoint protocol is as high as 8%. Even with a MTTF of 600s, semi-blocking

protocol will only impose an overhead of 5% to application while the overhead of
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blocking protocol will go up to 14.8%. The overhead of semi-blocking decreases

as the number of cores increase, which is due to the fact that checkpoint dumping

time becomes less with the increase of core number in a strong scale test. The

optimum checkpoint interval would also decrease since we can afford to do more

checkpoints and thus there is less overhead to recover from failures. So the overhead

of semi-blocking checkpoint is falling down as the number of cores increase.

5.3 Benefits of High Virtualization Ratio

The experiment result with different virtualization ratio on 128 cores is consis-

tent with the analysis in §4. We use a jacobi2D benchmark of a checkpoint size

512MB/node. The overhead of global checkpoint per checkpoint interval decreases

from 0.78 seconds with 1 chare per core to 0.352 seconds with 4 chares per core

in Figure 5.6. Correspondingly, the benefit of semi-blocking protocol to blocking

version increases from 8.4% to 10.7% with a MTTF of 300 seconds as seen in Fig-

ure 5.7.
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Appropriate virtualization ratio will not only help overlap normal communication

of application with computation, but also hide the global checkpoint communication,

trying to minimize the interference of global checkpoint to application running.

5.4 Restart

As discussed in section §4, half SSD and full SSD scheme could be adaptively used

depending on the memory consumption level of applications. During restart, half

SSD scheme only requires to fetch the crashed node’s checkpoints from SSD, while

all the nodes need to access SSD for checkpoint data in the full SSD scheme.

Figure 5.8 shows the restart time of the default(in-memory), half SSD and full

SSD scheme for a jacobi2D benchmark with 512MB of checkpoint data per node .

As we could see, half SSD scheme has negligible overhead compared to the default

scheme, while full SSD scheme has around 1s overhead. We should always use half

SSD scheme when memory consumption is not that high for quick restart.
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6 Related Work

There are three main methods to checkpoint HPC applications: uncoordinated

checkpointing, coordinated checkpointing and communication-based checkpointing.

In uncoordinated checkpointing, each process independently saves its state. The

benefit is that a checkpoint can take place when it is most convenient and thus

doesn’t require synchronization to initiate checkpointing. However, uncoordinated

checkpointing is susceptible to rollback propagation, the domino effect [19] which

could cause systems to rollback to the beginning of the computation, resulting in

the waste of a large amount of useful work. Guermouche et al.[20] proposed an

uncoordinated checkpointing without domino effect with the help of logging useful

application messages, which is applicable to Send-Deterministic MPI applications.

The logging of application message may also consume much memory on computation

nodes.

Coordinated checkpointing requires processes to coordinate their checkpoints in

order to form a consistent global state. Coordinated checkpointing simplifies recov-

ering from failures because it does not suffer from rollback propagations. BLCR [21]

implements kernel level checkpointing, but will incur in a lot of overhead for appli-

cation at production level. Some multi-level approaches has been proposed recently

to deal with failures at different frequency of occurrence. FTI [2] is a multi-level

coordinated checkpoint scheme using topology-aware RS encoding with about 8%

checkpoint overhead. In [22] Moody et al. proposed a multi-level checkpoint and

used a Markov probability model to describe its performance. One drawback for

those methods is that the application couldn’t recover in the current run just after
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the failure happens but would require the user to rerun the application, reading the

checkpoint form the disk. Darius et al. [23] provides the comparison of the block-

ing and non-blocking approach for coordinated checkpointing. Their non-blocking

protocol is based on Chandy-Lamport algorithm[24] and writes the checkpoints to

a checkpoint server.

Communication-induced checkpointing allows the processes to take some of their

checkpoints independently while preventing the domino effect by forcing the pro-

cessors to take additional checkpoints based on protocol-related information piggy-

backed on the application messages it receives from other processors [25]. However

it has scalability issues on large numbers of processors.

Solid state disk is used to store local and global checkpoints in [1] and show

significant benefit to hard drive disk with the consideration of failures. However in

their approach, application could only resume computation after a global checkpoint

is achieved on all the processors. In [26], the authors replace hard disk drive with

SSD and using staging IO to buffer the write to SSD and show a benefit of 55%.
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7 Conclusion and Future Work

As the size of supercomputers increases, the probability of system failure grows sub-

stantially, posing an increasingly significant challenge for scalability. Complicated

applications on large scale machines don’t allow us to count on the low network

bandwidth for fast checkpoints.

This thesis proposes a semi-blocking checkpoint protocol to reduce the check-

point overhead and lessen the effect of failures. With this protocol, applications can

quickly resume to computation after local checkpoint is done. And the overhead

of global checkpoint could almost be hidden for applications of certain communi-

cation to computation ratios. A full implementation of the semi-blocking protocol

is accomplished in Charm++ runtime system. Then we extend Daly’s model to

compute the optimum checkpoint interval and minimize the execution time of the

semi-blocking checkpoint protocol.

We show the benefits of our protocol with three different kinds of applications

wave2D, jacobi2D and ChaNGa. The semi-blocking protocol has good strong and

weak scalability with different MTTF projected for exascle. For a wave2D bench-

mark of 4GB checkpoint data per node, semi-blocking has over 20% benefit to

blocking protocol with MTTF of 300s and 10% benefit with MTTF of 1800s. For

a 50 million particles simulation with ChaNGa, semi-blocking protocol would only

incur a 1.6% overhead to pure computation with the consideration of checkpoint

time and recover time on failures while blocking protocol has an overhead of 8%.

In future, we plan to use asynchronous IO access to SSD for better overlap of

checkpoint and computation and fast recover of application using full SSD scheme.
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Remote direct memory access (RDMA) could also be used in our protocol to reduce

the interference of NIC to applications.
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