Vector Load Balancing in
Charm++

Ronak Buch

Parallel Programming Laboratory, University of Illinois at Urbana-Champaign

October 21,2020
18th Annual Workshop on Charm++ and Its Applications

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Load Balancing

Load balancing is a hallmark of Charm++
Performance often limited by maximum load on a PE
RTS measures load and migrates objects in response

Dynamic, irregular applications have been able to
achieve high performance and scalability because of
it

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

What is Load?

 Load is really just a proxy value we use to reason
about performance
o In truth, we want to minimize execution time
o Unbalanced, fast program > balanced, slow program

e CPU time per object by itself is often a sufficient
metric for this value

e However, in the same way measuring cache misses
or pipeline stalls improves upon merely profiling,
sometimes more detail is helpful

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

3/23

Vector Load Balancing

 Rather than being a single value, load is now a vector
of multiple values

o Store vector loads in LBDatabase
o Pass vector loads to strategies
o Use vector loads in strategies

e Can be used generically: for various hardware
measurements (CPU/GPU/network/memory),
discrete parts of an iteration, application specific
parameters, etc.

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Strategies

Extra dimensionality makes vector load balancing
computationally difficult

Objects can no longer be totally ordered
Want to minimize the maximum in each dimension

NP-complete problem, so only interested in
approximations

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector Strategies

o A simple strategy finds object with global maximum
load dimension and places it on PE with minimum
load in that dimension

o Only works well when object has load in only one dimension

e For more realistic cases, have to consider vector
holistically

Ronak Buch rabuch2@illinois.edu

Vector Load Balancing in Charm++

Vector Strategies

 Find object with maximum p-norm and place on PE
with minimum p-norm after placement
o Works well, but computationally expensive
o PE “weight” varies with object, i.e. ||(2,0)]||, < ||(0,3)]|,, but
when adding (3,0), [|(5,0)[|, > [[(3,3)ll,
 Calculate average load vector in d-space and create a
normal hyperplane, then repeatedly allow furthest

PE below the hyperplane to choose an object

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

New Load Balancing APIs - Phase

» Many applications have orthogonal phases within an
iteration separated by barriers (or weaker
sychronization)

e New functions have been added to track phases for
load balancing:

o void CkMigratable::CkLBSetPhase(int phase) - Until
called again, all automatic LB measurements for calling chare
attributed to specified phase

o int CkMigratable::CkLBGetPhase() - Returns current
phase

8
Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++ / 23 4

New Load Balancing APIs - Manual

» Added new API for recording vector load data

o void CkMigratable: :CkLBSetObjTime (LBRealType
load, int dimension) - Sets specified dimension of
vector load for calling chare

O std::vector<LBRealType>
CkMigratable: :CkLBGetObjVectorLoad () - Returns
current vector load for calling chare

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Using Vector Strategies

e Currently only strategies built on top of TreelLB
support vector load balancing
o TreelLB is new flexible, optimized replacement of CentralLB

and HybridLB

o Eventually all non-distributed strategies should use TreeLB

o If vector loads are detected in the LB database, a
vector version of the chosen strategy is automatically
used if available

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Writing Vector Strategies

e Objects and PEs are templated on dimension,
replicated in a static constexpr field for external
access

* A specific dimension of Object or PE load is
accessible with LBRealType getLoad(int
dimension)

e Template specialization allows LB author to handle
vector and non-vector cases

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Writing Vector Strategies

template <typename 0O, typename P, typename S>
class Example : public Strategy<0, P, S> {

public:

void solve(std::vector<0>% objs, std::vector<P>& procs,

S& solution, bool objsSorted) {
// vector implementation

}

};

template <typename P, typename S>
class Example<Obj<1>, P, S> : public Strategy<Obj<i>, P, S> {
public:
void solve(std::vector<0bj<1>>& objs, std::vector<P>& procs,
S& solution, bool objsSorted) {
// scalar implementation
}
}

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance - AMPI

o

PEO
(57, 57)

PE 1
(57,57)
PE 2

(57, 57)

PE 3
(57, 57)

Ronak Buch rabuch2@illinois.edu

Time In Microseconds
100,000,000 200,000,000 300,000,000

AMPI - No Load Balancing

Vector Load Balancing in Charm++

Vector LB Performance - AMPI

Time In Microseconds
100,000,000 200,000,000 300,000,000

o

PEO
(73, 57)

PE 1
(73, 57)
PE 2

(73, 57)

PE 3
(73, 57)

AMPI - Regular Load Balancing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance - AMPI

Time In Microseconds
100,000,000 200,000,000 300,000,000

o

PEO
(77, 57)

PE 1
(77, 57)
PE 2
(77, 57)

PE 3
(77, 57)

AMPI - Vector Load Balancing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance - AMPI

LB Off

PEO
(57,57)
PE1
67,570
PE2
(57,57)
PE3
(57,57)

Phase Unaware -

(1.44x speedup) .

Phase Aware

(1.67x speedup) -

Ronak Buch rabuch2@illinois.edu

PEL
(73,57)

PE3
73,57

E0
(77,57)

PEL
(77,57)

PE3
7,

(77,57)

8

4
z
2

__c __
g
S k:
3
3 3
8 8
s s
3
a
Sa
83
X
=8
g3
S
g g
S S
3 3
18 18
S S
3 3

8
8
8

ii

8
4
z

8

To
2
S
3
3
8
s
3
a
Sa
83
XS
=8
g3
S
g
S
3
18
8 - H_

g

31

i

Vector Load Balancing in Charm++

Vector LB Performance

Timeline of phase-based application:

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

(non-vector) GreedyLB

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Vector LB Performance

Vector Greedy
ing in Ch

Ronak Buch rabuch2@illinois.edu

Applications

e ChaNGa

o Working, but no performance results at scale yet
o Time spent in each rung of multi-stepping corresponds to
dimension in vector

e NAMD
o In process of making vector of CPU and GPU load

* Please contact me if you think your application
would benefit!

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Future Vector LB Work

» Performance is still an issue, so optimizations

needed
o Discretization, clustering, space-partitioning, etc. should go a
long way

 Exploit distribution of load per-dimension

e Integrate HAPI into load measurement to
automatically record accelerator load

e Add support for constraint based objective functions

for cache/memory balancing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

Conclusions

 Applications often have scope for improved load
balance

e As programming techniques and hardware become
more complex, this scope will likely increase

 Providing more detailed load data via Vector LB has
been shown to improve decision quality over
traditional LB in testing

Ronak Buch rabuch2aillinois.edu Vector Load Balancing in Charm++

