
Vector Load Balancing in
Charm++

Ronak Buch
Parallel Programming Laboratory, University of Illinois at Urbana-Champaign

October 21, 2020
18th Annual Workshop on Charm++ and Its Applications

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 1/23

1/23



Load Balancing

• Load balancing is a hallmark of Charm++
• Performance often limited by maximum load on a PE
• RTS measures load and migrates objects in response
• Dynamic, irregular applications have been able to

achieve high performance and scalability because of
it

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 2/23
2/23



What is Load?
• Load is really just a proxy value we use to reason

about performance
◦ In truth, we want to minimize execution time
◦ Unbalanced, fast program > balanced, slow program

• CPU time per object by itself is often a sufficient
metric for this value

• However, in the same way measuring cache misses
or pipeline stalls improves upon merely profiling,
sometimes more detail is helpful

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 3/23
3/23



Vector Load Balancing
• Rather than being a single value, load is now a vector

of multiple values
◦ Store vector loads in LBDatabase
◦ Pass vector loads to strategies
◦ Use vector loads in strategies

• Can be used generically: for various hardware
measurements (CPU/GPU/network/memory),
discrete parts of an iteration, application specific
parameters, etc.

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 4/23

4/23



Vector Strategies

• Extra dimensionality makes vector load balancing
computationally difficult

• Objects can no longer be totally ordered
• Want to minimize the maximum in each dimension
• NP-complete problem, so only interested in

approximations

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 5/23

5/23



Vector Strategies

• A simple strategy finds object with global maximum
load dimension and places it on PE with minimum
load in that dimension
◦ Only works well when object has load in only one dimension

• For more realistic cases, have to consider vector
holistically

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 6/23

6/23



Vector Strategies
• Find object with maximum p-norm and place on PE

with minimum p-norm after placement
◦ Works well, but computationally expensive
◦ PE “weight” varies with object, i.e. ∥(2, 0)∥2 < ∥(0, 3)∥2, but

when adding (3, 0), ∥(5, 0)∥2 > ∥(3, 3)∥2

• Calculate average load vector in d-space and create a
normal hyperplane, then repeatedly allow furthest
PE below the hyperplane to choose an object

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 7/23

7/23



New Load Balancing APIs - Phase
• Many applications have orthogonal phases within an

iteration separated by barriers (or weaker
sychronization)

• New functions have been added to track phases for
load balancing:
◦ void CkMigratable::CkLBSetPhase(int phase) - Until

called again, all automatic LB measurements for calling chare
attributed to specified phase

◦ int CkMigratable::CkLBGetPhase() - Returns current
phase

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 8/23
8/23



New Load Balancing APIs - Manual

• Added new API for recording vector load data
◦ void CkMigratable::CkLBSetObjTime(LBRealType

load, int dimension) - Sets specified dimension of
vector load for calling chare

◦ std::vector<LBRealType>
CkMigratable::CkLBGetObjVectorLoad() - Returns
current vector load for calling chare

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 9/23
9/23



Using Vector Strategies
• Currently only strategies built on top of TreeLB

support vector load balancing
◦ TreeLB is new flexible, optimized replacement of CentralLB

and HybridLB
◦ Eventually all non-distributed strategies should use TreeLB

• If vector loads are detected in the LB database, a
vector version of the chosen strategy is automatically
used if available

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 10/23
10/23



Writing Vector Strategies
• Objects and PEs are templated on dimension,

replicated in a static constexpr field for external
access

• A specific dimension of Object or PE load is
accessible with LBRealType getLoad(int
dimension)

• Template specialization allows LB author to handle
vector and non-vector cases

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 11/23

11/23



Writing Vector Strategies
template <typename O, typename P, typename S>
class Example : public Strategy<O, P, S> {

public:
void solve(std::vector<O>& objs, std::vector<P>& procs,

S& solution, bool objsSorted) {
// vector implementation

}
};

template <typename P, typename S>
class Example<Obj<1>, P, S> : public Strategy<Obj<1>, P, S> {

public:
void solve(std::vector<Obj<1>>& objs, std::vector<P>& procs,

S& solution, bool objsSorted) {
// scalar implementation

}
};

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 12/23
12/23



Vector LB Performance - AMPI

AMPI - No Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 13/23
13/23



Vector LB Performance - AMPI

AMPI - Regular Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 14/23

14/23



Vector LB Performance - AMPI

AMPI - Vector Load Balancing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 15/23

15/23



Vector LB Performance - AMPI

LB Off

Phase Unaware
(1.44x speedup)

Phase Aware
(1.67x speedup)

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 16/23

16/23



Vector LB Performance
Timeline of phase-based application:

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 17/23

17/23



Vector LB Performance

No LB
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 18/23

18/23



Vector LB Performance

(non-vector) GreedyLB
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 19/23

19/23



Vector LB Performance

Vector Greedy
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 20/23

20/23



Applications
• ChaNGa

◦ Working, but no performance results at scale yet
◦ Time spent in each rung of multi-stepping corresponds to

dimension in vector
• NAMD

◦ In process of making vector of CPU and GPU load

• Please contact me if you think your application
would benefit!

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 21/23
21/23



Future Vector LB Work
• Performance is still an issue, so optimizations

needed
◦ Discretization, clustering, space-partitioning, etc. should go a

long way

• Exploit distribution of load per-dimension
• Integrate HAPI into load measurement to

automatically record accelerator load
• Add support for constraint based objective functions

for cache/memory balancing
Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 22/23

22/23



Conclusions

• Applications often have scope for improved load
balance

• As programming techniques and hardware become
more complex, this scope will likely increase

• Providing more detailed load data via Vector LB has
been shown to improve decision quality over
traditional LB in testing

Ronak Buch rabuch2@illinois.edu Vector Load Balancing in Charm++ 23/23
23/23


