Improving NAMD Performance and Scaling on Heterogeneous Architectures

David J. Hardy and Julio D. C. Maia NIH Center for Macromolecular Modeling and Bioinformatics Theoretical and Computational Biophysics Group Beckman Institute for Advanced Science and Technology University of Illinois at Urbana-Champaign

NAMD Scalable Molecular Dynamics

J. Phillips, D. Hardy, J. Maia, et al. J. Chem. Phys. 153, 044130 (2020) https://doi.org/10.1063/5.0014475

- Code written in C++/Charm++/CUDA
- Performance scales to hundreds of thousands of CPU cores and tens of thousands of GPUs
 - Large systems (single copy scaling)
 - Enhanced sampling (multiple copy scaling)
- Runs on laptops up to supercomputers
- Runs on AWS cloud, MS Azure
- TCL/Python script as input file
 - Workflow control
 - Method development at higher level
- Structure preparation and analysis with VMD
 - QwikMD

E. coli chemosensory array

Zika Virus

NAMD: http://www.ks.uiuc.edu/Research/namd/

 User defined forces 	
- Grid forces	
 Interactive molecular dynamics Steered molecular dynamics 	
 Accelerated sampling methods 	0
 Replica exchange 	Prote
 Collective variables (Colvars) 	
 Biased simulation Enhanced sampling 	
 Alchemical transformations 	
 Free energy perturbation (FEP) Thermodynamic integration (TI) Constant-pH molecular dynamics 	
 Hybrid QM/MM simulation 	ABC t
 Multiple QM regions 	Complete Lis

lational Institutes

of Health

NAMD Highlights

eosome (MDFF+IMD)

Membrane vesicle fusion and formation (grid forces)

transporter mechanism (Colvars)

DNA QM/MM simulation

st of NAMD Features: https://www.ks.uiuc.edu/Research/namd/2.14/ug/

Molecular Dynamics Simulation

•

$$m_{i} \frac{d^{2} \vec{r_{i}}}{dt^{2}} = \vec{F_{i}} = -\vec{\nabla} U(\vec{R})$$

$$U(\vec{R})$$

$$U(\vec{R})$$

most of the computational work \longrightarrow

Most fundamentally, integrate Newton's equations of motion:

integrate for up to billions of time steps

Parallelism for MD Simulation Limited to Each Timestep

Computational workflow of MD:

NAMD 2.14 Decomposes Force Terms into Fine-Grained Objects for Scalability

lational Institutes of Health

NAMD 2.14 Excels at Scalable Parallelism on **CPUs and GPUs Replications of the** 128.0 64.0 - **Summit** () 32.0 16.0 8.0 4.0 2.0 9.0 9.0 3.0 1.0 0.3 Frontera 9.0 0.3 0.1

1000

10 100 number of nodes

ional Institutes of Healtl

Satellite Tobacco Mosaic Virus (STMV)

7x6x5 grid = 224M Atoms

NAMD 2.14 Simulating SARS-CoV-2 on Summit

Collaboration with Amaro Lab at UCSD, images rendered by VMD

Benchmarks on Single Nodes and Newer GPUs **Reveal Problems**

NAMD 2.13 (2018) has ~20% perf improvement from P100 to V100

Hardware has ~70% perf improvement!

GPU Volta

Gaps in the blue strip = GPU is idle!

Profiling on Modern GPUs

NAMD 2.13 and 2.14 Have Limited **GPU Performance**

- Offloading force calculation is not enough!
- Overall utilization of modern GPUs is limited
- We want better single GPU performance
 - Majority of MD users run system sizes < 1M atoms on a single GPU
- Must transition from **GPU-offload** approach to **GPU-resident**!

The DGX-2 has 16 V100 GPUs but only 48 CPU cores: We need to do more GPU work with less **CPU** Power

NAMD 3.0: GPU-Resident NAMD https://www.ks.uiuc.edu/Research/namd/3.0alpha/

- Fetches GPU force buffers directly from the force module
- Bypass any CPU-GPU memory transfers only call GPU kernels!
- Convert forces in a structure-of-arrays (SOA) data structure using the GPU

Fetch GPU Force

Buffers

Invoke GPU Integration Tasks Once

Calculate Forces

Convert buffers to SOA

Integrate all the atoms

NAMD 3.0 Has Better GPU Utilization

NAMD 2.14 Gaps between GPU tasks

NAMD 3.0 No CPU bottlenecks

NAMD 3.0: Performance on Different Systems

NVE 12A Cutoff 2fs timestep

Intel Xeon E5-2650 V2 w/ 16 physical cores

ns/day

NAMD 3.0: Multi-Copy Performance -Aggregate Throughput With DGX-2

ApoA1 92k atoms

4000

3000

2000

1000

16 Replicas 1 for each NVIDIA V100

NAMD 3.0: Single trajectory - Multiple GPU Performance

STMV 1.06M atoms **2fs timestep** No PME yet

ns/day

PME Impedes Scalability

- For multi-node scaling, 3D FFT communication cost grows faster than computation cost
- For single-node multi-GPU scaling:
 - 3D FFTs are too small to parallelize effectively with cuFFT
 - Too much latency introduced with pencil decomposition and cuFFT 1D FFTs
 - Is task-based parallelism best, delegating one GPU for 3D FFTs and reciprocal space calculation?
 - Requires gathering all grid data to that one GPU and being careful to not overload it with other work
- Why not use a better scaling algorithm, such as MSM?

Multilevel Summation Method (MSM)

D. Hardy, et al. J. Chem. Theory Comput. 11(2), 766-779 (2015) <u>https://doi.org/10.1021/ct5009075</u> D. Hardy, et al. J. Chem. Phys. 144, 114112 (2016) https://doi.org/10.1063/1.4943868

- successively more slowly varying. All but the top level potential are cut off.
- Smoothed potentials are interpolated from successively coarser grids.

Split the 1/r potential into a short-range cutoff part plus smoothed parts that are

Finest grid spacing h and smallest cutoff distance a are doubled at each successive level.

Interpolate the smoothed potentials

MSM Calculation is O(N)

Computational Steps

lational Institutes of Health

exact short-range + part

interpolated long-range part

> grid cutoff \Leftrightarrow 3D convolution anterpolation \Leftrightarrow PME charge spreading interpolation \Leftrightarrow PME force interpolation

Periodic MSM: Replaces PME

- Previous implementation was fine for non-periodic boundaries but insufficient for periodic boundary conditions
 - Lower accuracy than PME, requires system to be neutrally charged
- New development for MSM:
 - Interpolation with periodic B-spline basis functions gives same PME accuracy
 - Handle infinite 1/r tail as reciprocal space calculation of top level grid
 - Number of grid levels can be terminated long before reaching a single point; use it to bound size of FFT
 - Communication is nearest neighbor up the tree to the top grid level

Extending NAMD 3.0 to multiple nodes

- Reintroducing Charm++ communication
 - Fast GPU integration calls the force kernels directly
 - Unused Sequencer user-level threads are put to sleep
 - Awaken threads for atom migration between patches and coordinate output
- Will GPU direct messaging be the best alternative?
 - Charm++ support is being developed

Additional Challenges for NAMD

- Feature-complete GPU-resident version
 - NAMD 3.0 for now supports just a subset of features
- Incorporating Colvars (collective variables) force biasing •
 - Poses a significant performance penalty without reimplementing parts of Colvars on GPU
- Introducing support for other GPU vendors
 - AMD HIP port of NAMD 2.14, still working on 3.0
 - Intel DPC++ port of non-bonded CUDA kernels -

Acknowledgments

- NAMD development is funded by NIH P41-GM104601 •
- NAMD team: •

David Hardy

Julio Maia

Mohammad Soroush Barhaghi

Mariano Spivak

Wei Jiang

John Stone

Jim Phillips

Rafael Bernardi

Ronak Buch

Jaemin Choi

