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NAMD Scalable Molecular Dynamics

• Code written in C++/Charm++/CUDA

• Performance scales to hundreds of thousands 
of CPU cores and tens of thousands of GPUs

- Large systems (single copy scaling)

- Enhanced sampling (multiple copy scaling)

• Runs on laptops up to supercomputers

• Runs on AWS cloud, MS Azure

• TCL/Python script as input file

- Workflow control

- Method development at higher level

• Structure preparation and analysis with VMD

- QwikMD
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NAMD: http://www.ks.uiuc.edu/Research/namd/

Zika VirusE. coli chemosensory array

J. Phillips, D. Hardy, J. Maia, et al. J. Chem. Phys. 153, 044130 (2020) https://doi.org/10.1063/5.0014475

http://www.ks.uiuc.edu/Research/namd/
https://doi.org/10.1063/5.0014475


NAMD Highlights
• User defined forces

- Grid forces

- Interactive molecular dynamics

- Steered molecular dynamics

• Accelerated sampling methods
- Replica exchange

• Collective variables (Colvars)
- Biased simulation

- Enhanced sampling

• Alchemical transformations
- Free energy perturbation (FEP)

- Thermodynamic integration (TI)

- Constant-pH molecular dynamics

• Hybrid QM/MM simulation
- Multiple QM regions
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Complete List of NAMD Features: https://www.ks.uiuc.edu/Research/namd/2.14/ug/

Proteosome (MDFF+IMD) Membrane vesicle fusion and formation
(grid forces)

ABC transporter mechanism
(Colvars) DNA QM/MM simulation

https://www.ks.uiuc.edu/Research/namd/2.14/ug/


Molecular Dynamics Simulation
• Most fundamentally, integrate Newton’s equations of motion:
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integrate for up to billions of time steps

most of the computational work
(Lennard-Jones) (electrostatics)



Parallelism for MD Simulation Limited to Each Timestep
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Computational workflow of MD:

initialize particle

positions

particle

forces

force

calculation

about 99% of 
computational work

update

 positions

about 1% of 
computational work

reduced quantities (energy, temperature, pressure)
position coordinates (trajectory snapshot)

occasional

output

aLoop millions 
of timesteps



NAMD 2.14 Decomposes Force Terms into 
Fine-Grained Objects for Scalability
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Offload forces to GPU



NAMD 2.14 Excels at Scalable Parallelism on 
CPUs and GPUs
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NAMD 2.14 Simulating SARS-CoV-2 on Summit

(A) Virion, (B) Spike, (C) Glycan shield conformations
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Scaling performance:
• ~305M atom virion
• ~8.5M atom spike

Collaboration with Amaro Lab at UCSD, images rendered by VMD

strong scaling 
51% efficiency



Benchmarks on Single Nodes and Newer GPUs 
Reveal Problems
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NAMD 2.13 (2018) has ~20% perf improvement from P100 to V100 Hardware has ~70% perf improvement!

Peak Performance in TFLOPS

0

16

Pascal (P100) Volta (V100)

15.7

9.3
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Gaps in the blue strip = GPU is idle!

Profiling ApoA1, 92k atoms 
NAMD 2.13, 16 cores and 1 

GPU Volta

Profiling on Modern GPUs
Molecule with 4x4x4 Patches



NAMD 2.13 and 2.14 Have Limited 
GPU Performance

• Offloading force calculation is not enough!


• Overall utilization of modern GPUs is limited


• We want better single GPU performance


- Majority of MD users run system sizes < 1M 
atoms on a single GPU


• Must transition from GPU-offload approach to 
GPU-resident!

11

The DGX-2 has 16 V100 GPUs but only  
48 CPU cores: We need to do more GPU 

work with less 
CPU Power



NAMD 3.0: GPU-Resident NAMD

• Fetches GPU force buffers directly from the force module


• Bypass any CPU-GPU memory transfers - only call GPU 
kernels! 

• Convert forces in a structure-of-arrays (SOA) data structure 
using the GPU 

• Invoke GPU Integration Tasks Once

Calculate Forces Convert buffers to 
SOA 

Integrate all the 
atoms

Fetch GPU Force 
Buffers

https://www.ks.uiuc.edu/Research/namd/3.0alpha/
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https://www.ks.uiuc.edu/Research/namd/3.0alpha/


NAMD 3.0 Has Better GPU Utilization

Forces

Integration

Forces

Integration

Forces

Integration

Forces

Integration

NAMD 2.14 

Gaps between GPU tasks

NAMD 3.0

No CPU bottlenecks
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NAMD 3.0: Multi-Copy Performance - 

 Aggregate Throughput With DGX-2

ApoA1 
92k atoms

16 Replicas
 1 for each NVIDIA V100 0

1000

2000

3000

4000

12A Cutoff 8A Cutoff

3,005.65

1,924.36

283.84283.7

NAMD 2.14 NAMD 3.0

ns/day
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NAMD 3.0: Single trajectory - Multiple GPU Performance

# GPUs
1 2 3 4 5 6 7 8

11.5

20.5
28.3

34.8
39.9

44.9 47.5
50.8

8.3 9.6 9.2 10.4 10.9 11.5 10.8 13.0

NAMD 2.14 NAMD 3.0

ns/day
STMV 

1.06M atoms 
2fs timestep 
No PME yet 



PME Impedes Scalability
• For multi-node scaling, 3D FFT communication cost grows faster than 

computation cost

• For single-node multi-GPU scaling:
- 3D FFTs are too small to parallelize effectively with cuFFT
- Too much latency introduced with pencil decomposition and cuFFT 1D FFTs
- Is task-based parallelism best, delegating one GPU for 3D FFTs and reciprocal space 

calculation?
- Requires gathering all grid data to that one GPU and being careful to not overload it with 

other work

• Why not use a better scaling algorithm, such as MSM?
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Multilevel Summation Method (MSM)

• Split the 1/r potential into a short-range cutoff part plus smoothed parts that are 
successively more slowly varying.  All but the top level potential are cut off.

• Smoothed potentials are interpolated from successively coarser grids.

• Finest grid spacing h and smallest cutoff distance a are doubled at each successive level. 

18

=

+

+

atoms

h-grid

2h-grid

Split the 1/r potential Interpolate the smoothed potentials

a 2a

. 

. 

.
. 
. 
.

1/r

r0

D. Hardy, et al. J. Chem. Theory Comput. 11(2), 766-779 (2015) https://doi.org/10.1021/ct5009075
D. Hardy, et al. J. Chem. Phys. 144, 114112 (2016) https://doi.org/10.1063/1.4943868

https://doi.org/10.1021/ct5009075
https://doi.org/10.1063/1.4943868


MSM Calculation is O(N)
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Periodic MSM: Replaces PME
• Previous implementation was fine for non-periodic boundaries but 

insufficient for periodic boundary conditions
- Lower accuracy than PME, requires system to be neutrally charged

• New development for MSM:
- Interpolation with periodic B-spline basis functions gives same PME accuracy
- Handle infinite 1/r tail as reciprocal space calculation of top level grid
- Number of grid levels can be terminated long before reaching a single point; 

use it to bound size of FFT
- Communication is nearest neighbor up the tree to the top grid level
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Extending NAMD 3.0 to multiple nodes

• Reintroducing Charm++ communication
- Fast GPU integration calls the force kernels directly
- Unused Sequencer user-level threads are put to sleep
- Awaken threads for atom migration between patches and coordinate output

• Will GPU direct messaging be the best alternative?
- Charm++ support is being developed

21



Additional Challenges for NAMD
• Feature-complete GPU-resident version

- NAMD 3.0 for now supports just a subset of features

• Incorporating Colvars (collective variables) force biasing
- Poses a significant performance penalty without reimplementing parts of Colvars on GPU

• Introducing support for other GPU vendors
- AMD HIP port of NAMD 2.14, still working on 3.0
- Intel DPC++ port of non-bonded CUDA kernels

22Intel GPUs AMD GPUs
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