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Goal: The study of complex heterogeneous systems to
discern emergent and new physics and create impact
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OpenAtom Concept: Statistical Sampling of
Complex Environments is Key to Understanding
many Physical Systems.

-~

Biological function : enabled by fluctuations
in both the environment and the biomolecules.

Pollutant detection: requires sampling complex
aqueous systems and then exporting the results to
a GW/GW-BSE app for computation of spectra.

Understanding chemical reactions in dense arrays:
requires non-trivial sampling of the full system due to
complex many-body reaction paths.

OpenAtom: Pimpernel (Martyna), UIUC (Kale) and Yale (Ismail-Beigi)
collaborate to build the Electronic Ground and Excited
State parallel software and methods including classical and
guantum nuclear motion capabilities to realize this vision.



Key Project Accomplishments thus Far:
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High parallel scaling
enabled by O(N? log N)
methods & charm++
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1. High Parallel Scaling allows study of hydrogen storage in MOF’s via Path Integral CPAIMD.
2. Exact Exchange N2 N3 log N (for metals & insulators): 10x speed 32 waters! (SIAM in prep).
3. Projector Augmented Wave method in N? log N (new results!).
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Electronic Excited States (charm++ parallelization)

1. High Parallel Scaling for O(N%) GW
2. O(N3) GW method based on a shredded propagator, complex time formalism



Kohn-Sham Density Functional Theory (KS-DFT):

A workhorse of computational science.

* KS-DFT: Ground state electronic energy expressed exactly as the minimum of a

functional of the zero temperature, 1-body density written in terms of
Nks

p(r,r') = z Y (MY (), n(r) = p(r,r), Ngs= (# electrons)/2

Walter Kohn,
Nobel Chemistry
1998

an orthonormal set of KS states, < y; | Y; > = 24y,.

* KS Density Functional: Sum of the kinetic energy of non-interacting electrons,
Hartree energy, electron-ion/external energy and an unknown correction term,

exchange correlation energy functional,

E[n(r)] =

, n@)n(r’)
(V2p(r, 7)oy + —Jd dr =]

+e J dr n(T)Vext(T; N) + Exc[n(r)] ) N=#%# ionS, NKS ~N.
* Generalized Gradient Approximation (GGA): Tractable approx. to E,..

Epeln()] ~ j dr £ (n(r), V(1))



KS-DFT in OpenAtom
* OpenAtom: Plane-wave (PW) based KS-DFT within the GGA — expand

KS states in the delocalized PW basis.

 PW-KS-DFT in OpenAtom - Advantages:
o N?log N or better scaling of interactions & derivatives -
Euler Exponential Spline (EES) Interpolation.
o Only orthogonalization is ~“N3.
o High parallelism under charm++.

Water -512 M - 70 Ry on Blue Gene/Q

=== penAtom

o k-points, path integrals, LSDA & %
tempering implemented. \

Number of nodes (up to 16 cores and 64 threads per node)

* PW-KS-DFT in OpenAtom - Disadvantages:
o Large basis set required - millions and millions (c.f. Carl Sagan).
o Large memory required — need large machines.
o Heavy atoms (impossibly) computationally intensive.



Projector Augmented Wave Method (PAW)

P. E. Blochl, Phys. Rev. B 50, 17953 (1994)

* Projector-Augmented Wave (PAW) : accurate treatment of
heavy atoms in KS-DFT with low computational cost.

 PAW-KS-DFT Advantages
o KS states split into localized and delocalized/smooth parts —
small basis possible even for heavy atoms.
o NMR and some other linear response methods require the core —
PAW makes it easy. <
o Small memory requirement. - 0 9

 PAW-KS-DFT Disadvantages
o Implemented with inefficient N> methods for interactions.
o Parallel performance of standard implementations poor.
o Accuracy control poor.

Goal: Implement N? log N EES-based PAW with high parallel efficiency
in OpenAtom.



PAW Basics: KS states

* KS states: delocalized/smooth part, (S), + localized/core part, (core).
Core localized within a sphere of radius R, around each ion:

N
v = pO@ + ) B50@, YT =00 - Ryl > Ry
J=1

* Smooth: fills all spaces & varies, expanded in plane-waves:

191<6e/2 ey
() 1 —(5) =
Po-F 2 Wawwa  [ol
vV Zg: 1 (S

r = hs, V=deth, g=2mth™1g, § € integer

* Core: localized, written in terms of fixed core projectors, {Ap, p(S) }*:

Ap(r—R)) =0,|r—R;| > R,

z=<p Y > = f dri3p®(r—R) Y@, pO(r—R)=0,|r—Rj|> Ry

* 1 ion type, 1 channel for simplicity



PAW Basics: Example KS state

Localized ion core states, 1p,(]°°re) (r) embedded

in the smooth part of the state, th(S) (r), that fills D(h).



PAW Basics: KS-DFT within LDA under
The whole enchilada: periodic boundary conditions at I’

En(r)] = Enikg + Eext + Eg + Exc

2

Enike = > dr V2 |4r) Eyc = dr exc(n(r) )
Me Jp (k) D(h)
2 !
e n(r)n(r eQ,n(r)
D(h) D(h) poy D(h) 7 J
Non-interacting electron kinetic energy: Smooth and core terms
_ =S (corel) (core2)

Enike = ENIKE t Eyike ~ + Enike

S _ ) S (corel) (s) ,(725,4) (core2) h'_z (5,2)
Enike = Zme D(h)er ¥ |\72|¢ >’ Exike ~ = ~2m, zZ Zy  Enike ~ = Zmezj:zj (Ap|V?|Ap)

Exchange Correlation energy: Smooth and core terms

core
Exc = E)Ei) + Ejggore) (h)dr exc(n(s) (T) ) + Z@ [‘gxc(n](r) ) Exc ( (5 )(T))]
D

n® (r) = 2 w}(S) (1‘)|2, n](r) =n® (T R ) 4+ n(corel) (T R ) + p(core2) (1‘
Vrin D(h)

n® )(r) =n®(r—R))

VI|r—R;| <Ry,




PAW Basics: KS-DFT long/short-range decomposition

Due to the mixed localized and delocalized basis, there is no natural truncation scale
for the long-range interactions of E,and E,,, in g-space or r-space alone.

n(r)n@") ey
E == drj z , E =—J drn(r)z:z
H by o) |r — ' + mh| ext D(h) — L |r — R; + mh|

Using Poisson summation and Ewald’s decomposition of 1/r:

EH _ E}({short)_l_ E}({long) _ EISShOFt)+ E}({long)

Eext

Elgshort)zij dr dr ,n(r)n(r')erfc(alr r'|) Ee(fclgort) j drn(r)zerfc(a|r—R]|)
2oy o [r—7r'| D(h)

r = R)|
, 1912<Ge IgI2< Ge g2
S D |2exp< ')| P BTy )T |2exp(—m)n<g>s<g>
g+*0 g#0
_me 211(0)|? +neﬁ(O)S (0)
2V a? Va?

S(g) = z Qyexp(—ig - R))

J
Choose a, such that the g-space cutoff = G.= pw density cutoff.
Ensure r-space cutoff, R, = (3.5 / a) > R, confines the m-sum to the 1 image.
Decompose short-range into smooth, corel and core2 type terms, (not shown).




Accuracy of long/short decomposition

2 4
To approximately match long/short range accuracy: % ~ )/_2 , Y = aR,
C
R. = 4 bohr
PW cutoff:
(h®2G?2 /2me) Ryd
3.0 2.21e-05
94 3.5 7.43e-07
4.0 1.54e-08
R, = 2 bohr

PW cutoff:

(h*G?2/2me) Ryd
3.0 2.21e-05

3.5 7.43e-07
4.0 1.54e-08

High accuracy can be obtained with both R, and G, small !




PAW Basics: Multi-Resolution, Grids, EES and N? log N scaling

How do we reduce scaling by one order in N and maintain accuracy?

1. Discrete real-space: Fourier Coefficients and FFTs

* Given a discrete, g =2mh™1g, finite g-space, |g|< G, , the Fourier coefficients, f(g) of f(r),

can be converted to f_m(g) from f ™(r) exactly using an equally spaced s-space grid, r=hs, of side N,
> 2MJmax, s AsB =1/Ngrp. YVMEZ >0

* Using FFTs, the f™(g), can be computed exactly in N log N as:
f(s) = L FFT™D[f(9), 6], F™(g) = 5= FFT™2f™(s),mGc], V= det &
FFT

2. Euler Exponential Spline Interpolation and FFTs

 To compute the Z-matrices, structure factors, S(g), and core functions, fast, it is useful develop a
differentiable controlled approximation to exp(ig - 1) on a discrete g-space for all r=hs in D(h) via
interpolation from an equally spaced s-space grid, enabling the use of FFTs.

* The Euler exponential spline (EES) delivers where M, are the cardinal B-splines and p the spline order,
NgfrT D

. 2migs 24 \F M, has compact supp
2migs — ~ _a N . . p ’
e Dp(g, NFFT) E E Mp(u S)e FFT 65,1_] + 0 (NFFT> ’ U= SNFFT [ =intu

Nipr> 20max = 2.80max

$=0 j=1

Using 3 FFT grids, (1) Psi EES, (2) Density, (3) Density EES, and
1 discrete spherical polar grid around each ion, |r|<R,., all PAW
energy terms & their derivatives can be accurately computed in N?> log N .




PAW Basics: g-space to s-space and back

PP (g) = 9 (g)D®) (g)
FFT W.+.EES) [l/;I(S,D) (g)’ %

FFT (W+EES) [T_l(S’D) (g)’ GC ]

l

VFFT OO [R9)(s), 6 |

N (T,EE:S)

FFT.a ) enables B-spline interpolation



PAW Basics: r-space interpolation
EES provides an accurate, differentiable interpolation between

FFT grid points,
{N](O,n/ll)) ’ N](f:n/lp) }’

§ € nearionJ
N](a»ﬁ),v 1
for EES interpolation.

the different resolutions and leng

—

N-Partition

B-Spline
Interpolation

th scales of PAW

All grid spacings
are independent of
system size.

N-ion cores in D(h): N¢~ 1

2Rpe Ry~ 1

Fine
spherical polar
grid (Ny)

not to scale



Creating the r-space representation of the e-density

In the following, the multi-length scale PAW method is used to
construct the electron density in N? log N as a demonstration:

" (ry) =y D) + 0 P () + 0P () J = 1N
nS) (1) : outside of cores

(1) Create the smooth KS states in real space, 1/)1(5) (s): N* log N.
(2) Create the smooth density in real space, n®)(s): N2
(3) *Create the smooth density in the ion cores, n\™(r,): N log N.

(4) Create the smooth Z-matrix, Z,(f) : N? log N.
(5) *Create the core-2 densities, i (ry): N2,
(6) *Create the core-1 densities, i (r,): N2log N.

* New terms.

Formulae for all other components of PAW-DFT have been derived
including ionic and pw expansion coefficient derivatives.



3. Creating the smooth density, n](S) (rf)
around each ion J, on the fine grid, f € N¢

EES weighted EES weighted EES weighted EES interpolated
smooth density smooth density smooth density smooth density
in g-space on discrete s-space around each J around each J

Eh
i -
B-Spline interpolation
-
4
.

FFT (n,+,EES) [T_l(S'D) (g), GC ] R

) (g) = n(S0)(s),
D™(g) n(g), s € NCEES)
9] < G, r= hs /4
—
: .
) n(ry).
N](f’n): S € nearJ f € Ng

N =number ofions, J=1..N, N # Nk
N¢ = number points on spherical-polar grid around each ion.

N¢ and N](f’n) (s € near J) independent system size .



Creating the Zl(}gc)

matrix for all ions of type j,, and channel c

D@ (g) ﬁj('i,)pc(g) EES x smooth projector Smooth Z-matrix Nj,,,—Partition,
weighted KS states welg.hted KS states for ions of type j,, thyp B-Spline Interps
in g-space in s-space and channel, c per KS state

4 0,
e ) > ©) : i Ny
N; __-Partition Z1je J € Jup s Enearion 1
(Y,+,EES) |,7,(5.D.p) (g9) E Jtyp ’ 0)
FET Vijeyee (@) <4 Nj,,, B-SplineInterps. o _ el N
@ > W) > Zyjc J € iy s € near ion 2
/4 A N(O"I’)
[ ] S . [ =] B
@ > > Zé]z J € Jiyp 3 s € near ion 3
of type ji,
L i — ) . - NiOW
-ﬁ?s > Nis > ZNKs]C J € Jiyp /¥ s € nearion thyp
of type ji,
T (S'D'ﬁ) _ (Svaﬁ) S .
l'bljtypc (g) - l/)Ijtpr (S)l Z](](? ] Ejtyp
DW)(g) lpf(S) (g)ﬁj('tsy)pc s € ngllf’TEES) A set of points, s € near ion J*, of type ji , interpolated
lg|l < G./2 to obtain Zl(fc) forall L] € Jiyp (NE(,O"I’)~1),

*Note, index J need not be
contiguous in list of all atoms

N(Oﬂll)
B
S) _ (5,D,p) (3)
Z]]c - Z l/}Ijtpr (S)M],p (S)
S EnearJ

s independent of I,c as are B splines, M](;)

(s)




5. Creating the core density component, n

T (),

around each ion J, on the fine grid, f € N¢

Reduction of Zl(f)

ZP]=1..N

/
/ NKS]-
/
(S) _
2= 1N

Reduction of Zl(f,)

Each KS state contributes to N unique reductions

752 = z 282

I

2
(5.2) Ap“(ry) (core2)
Zy > (r7)
S,2 (core2)
Zé ) > Ny ( Ty )
S,2 (core2)
Z 3(, ) > Ny (r7)
Ap?(ry)
7652 ! ny " (ry)

n " () = 27 Mp?(ry) V f €N

In this example we have 1 projector




6. Creating the core density component, nj(corel) (rf),
around each ion J, on the fine grid, f € N¢

EES weighted EES weighted EES weighted EES interpolated
KS states KS states KS states PAW 1 density
In g-space in s-space around J around eachJ
/4 N reductions of s around J=1
a " -

FFT W +EES) [l/jl(S’D) (g),il B-Spline interpolation
/4 2
o . >
2 ]
9 > g/ > > |
/
Ap(ry)
/4 2
N > ! a ’ﬁ
N reductions of s around J=N
T S,D ) (S,D,Z)
PP (g) = PP(s), Y (s), ncred(r),
- EES :
D(w)(g)lliz(s) (9), s E ngfTEE ) N](f V.se near J f € N;
lgl < G./2

Each KS state contributes to N unique reductions
S,D,Z S,D :
1/)1( )(s)zleut/J,( )(s) VsEnear]:ngflp)
Zy; = weight for points s € near J from KS state, /.




PAW Charm++ Implementation Progress:
* Chare arrays defined and communication patterns established
in PowerPoint form.

* Full PAW-KS-DFT flow chart for energies. Forces in progress.

* Model Charm++ software outside of OpenAtom to test fine
grid spacing, Coulomb cusp smoothing, convergence with real-
space cutoff, ... Complete.

* N-partition and N-consolidation operations added to
charmFFT. Periodic boundary conditions need to be added.

* Ready to begin integration into OpenAtom. Maybe with new
funding.



Grand Challenge Application: Perovskite solar cells

LBy, o 1 Perovskite solar High eff., low cost
N 20) - ) :» ............... ’ ’
%‘%i ; ) ) i cells reach Si eff. tunable band gap (ABX,)
| o / '. % K. o Cons:
ms ‘-'O— WX 5 Instability: water, air,
© 5 light, interface ... &

toxic compounds.

CH NH

PAW in

0 T T T T T T T
2006 2008 2010 2012 2014 2016 OpenAtom

Pbl,-defect.
T B A A Understand: mechanism of
instability/degradation.

. * Search: non-toxic B%* (Fe, Co, Ni,...)
for new high perf. materials.

7% ¢ Design: new interface/encapsulation
; for novel devices with long lifetime.

. System size: 512 atoms (4x4x2
MAPbI; +128 water), 1264 states




Conclusions

* PAW-KS-DFT is an important method in computational science
that allows computations beyond PW-KS-DFT — heavy atomes.

* Using EES Interpolation, we have derived a multi-length scale
PAW technique that scales as N? log N (all energy terms and all
derivatives) — an important advance and 100 pages of latex.

 Charm++ parallel framework developed; communication scaling
analysis complete. Currently implementing. New funding?
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