Projector Augmented Wave-based Kohn-Sham Density Functional Theory in *OpenAtom* with *N*² *log N* scaling

Qi Li², Eric Bohm², Raghavendra Kanakagiri³ & Glenn J. Martyna¹

- 1. Pimpernel Science, Software and Information Technology, USA
- 2. Computer Science, University of Illinois, Champaign-Urbana, USA
- 3. Computer Science, IIT Tirupati, Tirupati, India

Funding: NSF SI²

Goal: The study of complex heterogeneous systems to discern emergent and new physics and create impact

OpenAtom Concept: Statistical Sampling of Complex Environments is Key to Understanding many Physical Systems.

Biological function : enabled by fluctuations in both the environment and the biomolecules.

Pollutant detection: requires sampling complex aqueous systems and then exporting the results to a GW/GW-BSE app for computation of spectra.

Understanding chemical reactions in dense arrays: requires non-trivial sampling of the full system due to complex many-body reaction paths.

OpenAtom: Pimpernel (Martyna), UIUC (Kale) and Yale (Ismail-Beigi) collaborate to build the Electronic Ground and Excited State parallel software and methods including classical and quantum nuclear motion capabilities to realize this vision.

Key Project Accomplishments thus Far:

Electronic Ground State (charm++ parallelization):

1. High Parallel Scaling allows study of hydrogen storage in MOF's via Path Integral CPAIMD.

2. Exact Exchange N² N^{1/3} log N (for metals & insulators): 10x speed 32 waters! (SIAM in prep).

Number of nodes (up to 16 cores and 64 threads per node)

3. Projector Augmented Wave method in N² log N (new results!).

Electronic Excited States (charm++ parallelization)

- **1.** High Parallel Scaling for $O(N^4)$ GW
- **2.** O(N³) GW method based on a shredded propagator, complex time formalism

Kohn-Sham Density Functional Theory (KS-DFT): A workhorse of computational science.

KS-DFT: Ground state electronic energy expressed exactly as the minimum of a functional of the zero temperature, 1-body density written in terms of

 $\rho(\mathbf{r},\mathbf{r}') = \sum_{I=1}^{N_{KS}} \psi_I(\mathbf{r})\psi_I^*(\mathbf{r}'), \qquad n(\mathbf{r}) = \rho(\mathbf{r},\mathbf{r}), \qquad N_{KS} = (\# \text{ electrons})/2$

an orthonormal set of KS states, $\langle \psi_I | \psi_I \rangle = 2\delta_{II}$.

Walter Kohn, Nobel Chemistry 1998

KS Density Functional: *Sum of* the *kinetic energy* of non-interacting electrons, Hartree energy, electron-ion/external energy and an unknown correction term, exchange correlation energy functional,

$$E[n(\mathbf{r})] = -\frac{\hbar^2}{2m_e} \int d\mathbf{r} \left(\nabla^2 \rho(\mathbf{r}, \mathbf{r}') \right) |_{\mathbf{r}' = \mathbf{r}} + \frac{e^2}{2} \int d\mathbf{r} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} + e \int d\mathbf{r} n(\mathbf{r}) V_{ext}(\mathbf{r}; N) + E_{xc}[n(\mathbf{r})], \qquad N = \# \text{ ions, } N_{KS} \sim N.$$

Generalized Gradient Approximation (GGA): Tractable approx. to E_{xc} $E_{xc}[n(\mathbf{r})] \approx \int d\mathbf{r} \, \varepsilon_{xc}(n(\mathbf{r}), \nabla n(\mathbf{r}))$

KS-DFT in OpenAtom

- OpenAtom: *Plane-wave* (PW) based KS-DFT within the GGA expand KS states in the delocalized PW basis.
- PW-KS-DFT in OpenAtom Advantages:
 - N² log N or better scaling of interactions & derivatives -Euler Exponential Spline (EES) Interpolation.
 - $_{\circ}$ Only orthogonalization is $^{\sim}N^3$.
 - *High parallelism under charm++*.
 - k-points, path integrals, LSDA & tempering implemented.

 $\psi_I(\mathbf{r})$

in D(**h**)

- **PW-KS-DFT** in **OpenAtom Disadvantages**:
 - Large basis set required millions and millions (c.f. Carl Sagan).
 - Large memory required need large machines.
 - *Heavy atoms (impossibly) computationally intensive.*

Projector Augmented Wave Method (PAW)

P. E. Blöchl, Phys. Rev. B **50**, 17953 (1994)

• **Projector-Augmented Wave (PAW) :** *accurate* treatment of

heavy atoms in KS-DFT with low computational cost.

- PAW-KS-DFT Advantages
 - KS states split into localized and delocalized/smooth parts small basis possible even for heavy atoms.
 - NMR and some other linear response methods require the core PAW makes it *easy*.
 - Small memory requirement.
 - PAW-KS-DFT Disadvantages

- $_{\circ}$ Implemented with inefficient N^3 methods for interactions.
- *Parallel performance* of standard implementations *poor*.
- Accuracy control poor.

Goal: Implement N² log N EES-based PAW with high parallel efficiency in OpenAtom.

PAW Basics: KS states

• KS states: delocalized/smooth part, (S), + localized/core part, (core). Core localized within a sphere of radius R_{pc} around each ion:

$$\psi_I(\mathbf{r}) = \psi_I^{(S)}(\mathbf{r}) + \sum_{J=1}^N \psi_{IJ}^{(\text{core})}(\mathbf{r}), \qquad \psi_{IJ}^{(\text{core})}(\mathbf{r}) = 0, |\mathbf{r} - \mathbf{R}_J| > R_{pc}$$

• **Smooth:** fills all spaces & varies, *expanded in plane-waves:*

$$\psi_{I}^{(S)}(s) = \frac{1}{\sqrt{V}} \sum_{g}^{|g| < G_{c}/2} \overline{\psi}_{I}^{(S)}(g) \exp(i\widehat{g}s)$$
$$\psi_{I}^{(S)}(s)$$
$$r = hs, V = \det h, \ g = 2\pi h^{-1}\widehat{g}, \ \widehat{g} \in \text{integer}$$

• **Core:** localized, written in *terms of fixed core projectors*, $\{\Delta p, p^{(S)}\}^*$:

 $2R_{nc}$

* 1 ion type, 1 channel for simplicity

PAW Basics: Example KS state

PAW Basics: KS-DFT within LDA under

Non-interacting electron kinetic energy: Smooth and core terms

$$\begin{split} E_{NIKE} &= E_{NIKE}^{(S)} + E_{NIKE}^{(\text{core1})} + E_{NIKE}^{(\text{core2})} \\ E_{NIKE}^{(S)} &= -\frac{\hbar^2}{2m_e} \int_{D(\hbar)} dr \sum_{I} \left\langle \psi_{I}^{(S)} \middle| \nabla^2 | \psi_{I}^{(S)} \right\rangle, \ E_{NIKE}^{(\text{core1})} &= -\frac{\hbar^2}{2m_e} \sum_{IJ} Z_{IJ}^{(S)} Z_{IJ}^{(\nabla^2 S, \Delta)}, \ E_{NIKE}^{(\text{core2})} &= -\frac{\hbar^2}{2m_e} \sum_{J} Z_{J}^{(S,2)} \langle \Delta p | \nabla^2 | \Delta p \rangle \end{split}$$

Exchange Correlation energy: Smooth and core terms

$$E_{xc} = E_{xc}^{(S)} + E_{xc}^{(\text{core})} = \int_{D(h)} dr \, \varepsilon_{xc} \left(n^{(S)}(r) \right) + \sum_{J} \int_{D(R_{pc})}^{\text{core}} dr \left[\varepsilon_{xc} \left(n_{J}(r) \right) - \varepsilon_{xc} \left(n_{J}^{(S)}(r) \right) \right]$$

$$n^{(S)}(r) = \sum_{I} |\psi_{I}^{(S)}(r)|^{2}, \quad n_{J}(r) = n^{(S)}(r - R_{J}) + n^{(\text{core1})}(r - R_{J}) + n^{(\text{core2})}(r - R_{J}), \quad n_{J}^{(S)}(r) = n^{(S)}(r - R_{J})$$

$$\forall r \text{ in } D(h) \qquad \forall |r - R_{J}| < R_{pc} \qquad \forall |r - R_{J}| < R_{pc}$$

PAW Basics: KS-DFT long/short-range decomposition

Due to the mixed localized and delocalized basis, there is no natural truncation scale for the long-range interactions of E_H and E_{ext} in **g**-space or **r**-space alone.

$$E_{H} = \frac{e^{2}}{2} \int_{D(h)} dr \int_{D(h)} dr' \sum_{m} \frac{n(r)n(r')}{|r - r' + mh|} \quad , \quad E_{ext} = -\int_{D(h)} dr n(r) \sum_{J} \sum_{m} \frac{eQ_{J}}{|r - R_{J} + mh|}$$

Using Poisson summation and Ewald's decomposition of 1/r:

$$E_{H} = E_{H}^{(\text{short})} + E_{H}^{(\text{long})} \qquad E_{ext} = E_{H}^{(\text{short})} + E_{H}^{(\text{long})}$$

$$E_{H}^{(\text{short})} = \frac{e^{2}}{2} \int_{D(h)} d\mathbf{r} \int_{D(h)} d\mathbf{r}' \frac{n(\mathbf{r})n(\mathbf{r}') \operatorname{erfc}(\alpha | \mathbf{r} - \mathbf{r}'|)}{|\mathbf{r} - \mathbf{r}'|} \qquad E_{ext}^{(\text{short})} = -e \int_{D(h)} d\mathbf{r} n(\mathbf{r}) \sum_{J} \frac{\operatorname{erfc}(\alpha | \mathbf{r} - \mathbf{R}_{J}|)}{|\mathbf{r} - \mathbf{R}_{J}|}$$

$$E_{H}^{(\text{long})} = \frac{e^{2}}{2V} \sum_{g \neq 0}^{|\mathbf{g}|^{2} < G_{c}} \frac{4\pi}{|\mathbf{g}|^{2}} \exp\left(-\frac{|\mathbf{g}|^{2}}{4\alpha^{2}}\right) |\bar{n}(\mathbf{g})|^{2} \qquad E_{ext}^{(\text{long})} = -\frac{e}{V} \sum_{g \neq 0}^{|\mathbf{g}|^{2} < G_{c}} \frac{4\pi}{|\mathbf{g}|^{2}} \exp\left(-\frac{|\mathbf{g}|^{2}}{4\alpha^{2}}\right) \bar{n}(\mathbf{g}) \bar{S}(\mathbf{g}) + \frac{\pi e \bar{n}(0) \bar{S}(0)}{V \alpha^{2}} + \frac{\pi e \bar{n}(0) \bar{S}(0)}{V \alpha^{2}} + \frac{S(\mathbf{g}) = \sum_{I} Q_{I} \exp(-i\mathbf{g} \cdot \mathbf{R}_{J})$$

Choose α , such that the *g-s* pace cutoff = $G_c = pw$ density cutoff. Ensure *r*-space cutoff, $R_c = (3.5 / \alpha) > R_{pc}$, confines the *m*-sum to the 1st image. Decompose short-range into smooth, core1 and core2 type terms, (not shown).

Accuracy of long/short decomposition

To approximately match long/short range accuracy: $\frac{G_c^2}{4} \approx \frac{\gamma^4}{R_c^2}$, $\gamma = \alpha R_c$

	$R_c = 4 \text{ bohr}$	
PW cutoff:	$\gamma = \alpha R_c$	erfc(γ)
$(\hbar^2 G_c^2/2\text{me})$ Ryd		
5.1	3.0	2.21e-05
9.4	3.5	7.43e-07
16	4.0	1.54e-08
	$R_c = 2 \text{ bohr}$]
PW cutoff:	$R_c = 2 \text{ bohr}$ $\gamma = \alpha R_c$	erfc(γ)
PW cutoff: $(\hbar^2 G_c^2/2me)$ Ryd	$R_c = 2 \text{ bohr}$ $\gamma = \alpha R_c$	erfc(γ)
PW cutoff: $(\hbar^2 G_c^2/2me)$ Ryd 20.3	$R_c = 2 \text{ bohr}$ $\gamma = \alpha R_c$ 3.0	erfc(γ) 2.21e-05
PW cutoff: $(\hbar^2 G_c^2 / 2me)$ Ryd 20.3 37.5	$R_c = 2 \text{ bohr}$ $\gamma = \alpha R_c$ 3.0 3.5	erfc(γ) 2.21e-05 7.43e-07

High accuracy can be obtained with both R_c and G_c small !

PAW Basics: Multi-Resolution, Grids, EES and N² log N scaling How do we reduce scaling by one order in N and maintain accuracy?

1. Discrete real-space: Fourier Coefficients and FFTs

- Given a discrete, $g = 2\pi h^{-1} \hat{g}$, finite g-space, $|g| < G_c$, the Fourier coefficients, $\bar{f}(g)$ of f(r), can be converted to $\overline{f^m}(g)$ from $f^m(r)$ exactly using an equally spaced *s*-space grid, *r=hs*, of side N_{FFT,β} > $2m\hat{g}_{\max,r,\beta} \Delta s_{\beta} = 1/N_{FFT,\beta}$. $\forall m \in Z > 0$
- Using FFTs, the $\overline{f^m}(\boldsymbol{g})$, can be computed *exactly* in $N \log N$ as: $f(\boldsymbol{s}) = \frac{1}{V} FFT^{(m,+)}[\bar{f}(\boldsymbol{g}), G_c], \quad \overline{f^m}(\boldsymbol{g}) = \frac{V}{N_{\text{FFT}}} FFT^{(m,-)}[f^m(\boldsymbol{s}), mG_c], \quad V = \det \boldsymbol{h}$

2. Euler Exponential Spline Interpolation and FFTs

- To compute the Z-matrices, structure factors, \$\overline{S}(\mathbf{g})\$, and core functions, fast, it is useful develop a differentiable controlled approximation to exp(\$i\mathbf{g} \cdot \mathbf{r})\$ on a discrete \$\mathbf{g}\$-space for all \$\mathbf{r}\$=\mathbf{hs}\$ in D(\$\mathbf{h}\$) via interpolation from an equally spaced \$\mathbf{s}\$-space grid, enabling the use of \$FFTs\$.
- The Euler exponential spline (EES) delivers where M_p are the cardinal B-splines and p the spline order, $e^{2\pi i \hat{g}s} = D_p(\hat{g}, N_{\text{FFT}}) \sum_{\hat{s}=0}^{N_{\text{FFT}}} \sum_{i=1}^{p} M_p(u-\hat{s}) e^{\frac{2\pi i \hat{g}\hat{s}}{N_{FFT}}} \delta_{\hat{s},l-j} + O\left(\frac{2\hat{g}}{N_{\text{FFT}}}\right)^p, \quad M_p \text{ has compact supp.}$ $u = s N_{\text{FFT}} \quad l = \text{int } u$

 $N_{\rm FFT} > 2\hat{g}_{\rm max} \approx 2.8\hat{g}_{\rm max}$

Using **3 FFT grids**, (1) Psi EES, (2) Density, (3) Density EES, and **1 discrete spherical polar grid** around each ion, $|\mathbf{r}| < R_{pc}$, all PAW energy terms & their derivatives can be accurately computed in $N^2 \log N$.

PAW Basics: g-space to s-space and back

PAW Basics: *r*-space interpolation EES provides an accurate, differentiable interpolation between the different resolutions and length scales of PAW

Creating the *r*-space representation of the e-density

In the following, the multi-length scale PAW method is used to construct the electron density in $N^2 \log N$ as a demonstration:

 $n_J^{(\text{core})}(\mathbf{r}_f) = n_J^{(\text{core 1})}(\mathbf{r}_f) + n_J^{(\text{core 2})}(\mathbf{r}_f) + n_J^{(S)}(\mathbf{r}_f) J = 1..N$ $n^{(S)}(\mathbf{r})$: outside of cores

- (1) Create the smooth KS states in real space, $\psi_I^{(S)}(s)$: N² log N.
- (2) Create the smooth density in real space, $n^{(S)}(s)$: N^2 .
- (3) *Create the smooth density in the ion cores, $n_I^{(S)}(r_f)$: $N \log N$.

 $Z_{II}^{(S)}$: $N^2 \log N$.

 $n_{I}^{(\text{core2})}(r_{f}): N^{2}.$

 $n_I^{(\text{core1})}(\boldsymbol{r}_f)$: $N^2 \log N$.

- (4) Create the smooth Z-matrix,
- (5) *Create the core-2 densities,
- (6) *Create the core-1 densities,

* New terms.

Formulae for all other components of PAW-DFT have been derived including ionic and pw expansion coefficient derivatives.

3. Creating the smooth density, $n_J^{(S)}(\mathbf{r}_f)$ around each ion *J*, on the fine grid, $f \in N_f$

 N_f = number points on spherical-polar grid around each ion.

 N_f and $N_I^{(f,n)}$ ($s \in \text{near } J$) independent system size.

5. Creating the core density component, $n_J^{(\text{core2})}(\mathbf{r}_f)$, around each ion *J*, on the fine grid, $f \in N_f$

6. Creating the core density component, $n_J^{(\text{core1})}(\mathbf{r}_f)$, around each ion *J*, on the fine grid, $f \in N_f$

PAW Charm++ Implementation Progress:

- Chare arrays defined and communication patterns established in PowerPoint form.
- Full PAW-KS-DFT flow chart for energies. Forces in progress.
- Model Charm++ software outside of OpenAtom to test fine grid spacing, Coulomb cusp smoothing, convergence with realspace cutoff, ... Complete.
- N-partition and N-consolidation operations added to charmFFT. Periodic boundary conditions need to be added.
- Ready to begin integration into OpenAtom. Maybe with new funding.

Grand Challenge Application: Perovskite solar cells

Conclusions

- PAW-KS-DFT is an important method in computational science that allows computations beyond PW-KS-DFT heavy atoms.
- Using EES Interpolation, we have derived a multi-length scale PAW technique that scales as N² log N (all energy terms and all derivatives) – an important advance and 100 pages of latex.
- Charm++ parallel framework developed; communication scaling analysis complete. Currently implementing. New funding?

HYM

