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Project goals

I Large-scale Computational Fluid Dynamics (CFD) capability
I Simulation use cases

I shocked flow over surrogate reentry bodies
I blast loading on vehicles or other complex structures
I weapons effects calculations in urban environments

I Distinguishing characteristics
I external flows over complex 3D geometries
I high-speed compressible flow

I Capability requirements compared to internal flow calculations
I complex domain must be explicitly meshed (rather than modeled)
I multiple orders of magnitude larger computational meshes
I larger demand for HPC: O(109) cells, O(104) CPUs must be routine calculations



Quinoa::Inciter: Built on Charm++

I Compressible hydro (single or multiple materials)

I Unstructured 3D (tetrahedra only) grids

I Continuous and discontinuous Galerkin finite elements

I Adaptive: mesh refinement (WIP), polynomial-degree refinement

I Native Charm++ code interoperating with MPI libs

I Overdecomposition

I Parallel I/O

I SMP, non-SMP

I Automatic load balancing

I Open source: quinoacomputing.org

https://quinoacomputing.org


Quinoa::Inciter: ALECG hydro scheme, numerical method
I Edge-based finite element (or node-centered finite volume) method
I Compressible single-material (Euler, ideal gas) flow
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Quinoa::Inciter: ALECG hydro scheme, References I
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Solution verification: Vortical flow
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Figure: Left: initial (first column) and final (second column) velocity, pressure (third column), and total
energy distributions (fourth column). Right: L2 errors as a function of mesh resolution.



Solution verification: Sedov
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Solution validation: square cavity, domain and initial conditions
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Figure: Domain and initial conditions for square cavity problem. Dimensions are in cm.



Solution validation: square cavity, solution with experimental data

Figure: Solutions with increasingly finer meshes for the square cavity problem. Lines S1, Sr1, and Sr2
denote experimental shock positions.



Solution validation: Onera M6 wing, mesh and numerical solution

Figure: Top – upper and lower surface mesh used for the ONERA M6 wing configuration. Bottom –
computed pressure contours on the upper and lower surface.



Solution validation: Onera M6 wing, simulation & experiments
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Figure: Comparison beween the computed and experimental surface pressure coefficient for the ONERA
wing section at 20%, 44%, 65%, 80%, 90%, and 95% semispans.



Quinoa::Inciter: ALECG, on-node performance
Time step profile:

µs %

rhs 8482724 91
bgrad 34333 0.4

diag 48549 0.5
solve 40355 0.4

total 27830000 100

RHS profile:

µs %

grad 1109746 51
domain 677741 30

bnd 2565
src 413999 19

total 2183459 100



Quinoa::Inciter: ALECG, on-node performance improvements

1. Remove unnecessary code for generating unused derived data structures: 1.6x.

2. Replace a tree-based data structure with a flat one, enabling a streaming-style
(contiguous) access to normals associated to edges: 1.3x.

3. Re-write domain-integral from a nested loop (over mesh points and over edges connected
to a point) as a single loop over unique edges: 1.3x.

4. Optimize data access in the source term: 1.4x.

5. Re-write the loop computing primitive-variable gradients from a gather-scatter loop over
elements to a nested loop over mesh points with an inner loop over edges connected to a
point: 1.5x.

Altogether: 6.2x speedup



Quinoa::Inciter: 3 hydro schemes, strong scaling
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Quinoa::Inciter: Parallel load imbalance triggered by physics

Figure: Spatial distributions of extra load in each cell whose fluid density exceeds the value of 1.5,
during time evolution of the Sedov problem: (left) shortly after the onset of load imbalance, (right) at a
later time of the simulation.



Quinoa::Inciter: Automatic load balancing yields 10x speedup

0 100 200 300 400 500
time step

0

5000

10000

15000

20000

g
ri

n
d
-t

im
e,

 m
s/

ti
m

es
te

p

no extra load, virt=0, noLB

no extra load, virt=100x, noLB

extra load, virt=0, noLB

extra load, virt=10x, GreedyCommLB

extra load, virt=100x, GreedyCommLB

extra load, virt=100x, DistributedLB

extra load, virt=100x, NeighborLB

Figure: Grind-time during time stepping computing a Sedov problem with load imbalance, using various
built-in load balancers in Charm++. Run on 10 compute nodes with 36CPUs/node.



Current and future work

1. Multi-material FV/DG at large scales

2. P-adaptation

3. Productization (SBIR, PI:Charmworks)

4. 3D mesh-to-mesh solution transfer toward large-scale fluid-structure interaction
(see next talk by Eric Mikida)


