
L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Efforts to Bridge Theory and Practice on
Distributed Scheduling Algorithms

Initial research results

Laércio Lima Pilla, Johanne Cohen
pilla@lri.fr

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Agenda

Motivation
Approach
Evaluation
Conclusion

2

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Increase in scale of HPC application and platforms → more
potential for issues with load imbalance (dynamic behavior,
performance variations, failures ...)

3

© Cyril FRESILLON / IDRIS / CNRS Photothèque

Motivation

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation
Increase in scale of HPC application and platforms → more
potential for issues with load imbalance (dynamic behavior,
performance variations, failures ...)

Solution for load imbalance at
run-time: dynamic load balancing

Problem with usual dynamic load
balancing: overhead of centralizing
information, sequential decisions

4

© Cyril FRESILLON / IDRIS / CNRS Photothèque

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation
How to avoid centralizing information? Distributed load balancing.

Examples:

- RTSs with work stealing (e.g., PaRSEC)
- Lifflander et al. Work Stealing and Persistence-based Load Balancers for Iterative

Overdecomposed Applications (HPDC 2012)
- Menon, Kale. A Distributed Dynamic Load Balancer for Iterative Applications (SC 2013)
- Freitas et al. A Batch Task Migration Approach for Decentralized Global Rescheduling

(SBAC-PAD 2018)
- Pebay, Lifflander. Distributed Load Balancing Utilizing the Communication Graph

(Charm++ Workshop 2019)
- Freitas et al. PackStealLB: A Scalable Distributed Load Balancer based on Work Stealing

and Workload Discretization (Pre-print)

5

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation
How to avoid centralizing information? Distributed load balancing.

Examples:

- RTSs with work stealing (e.g., PaRSEC)
- Lifflander et al. Work Stealing and Persistence-based Load Balancers for Iterative

Overdecomposed Applications (HPDC 2012)
- Menon, Kale. A Distributed Dynamic Load Balancer for Iterative Applications (SC 2013)
- Freitas et al. A Batch Task Migration Approach for Decentralized Global Rescheduling

(SBAC-PAD 2018)
- Pebay, Lifflander. Distributed Load Balancing Utilizing the Communication Graph

(Charm++ Workshop 2019)
- Freitas et al. PackStealLB: A Scalable Distributed Load Balancer based on Work Stealing

and Workload Discretization (Pre-print)

… not many distributed algorithms used in practice

6

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation
What about searching in the field of distributed algorithms?

• Balls into bins problems
• Game theory (e.g., no-regret learning)
• Average consensus
• ...

7

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation
What about searching in the field of distributed algorithms?

• Balls into bins problems
• Game theory (e.g., no-regret learning)
• Average consensus
• ...

8

Abstract models, little to no
information

Search for bounds, convergence, Nash
equilibria ...

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Motivation

Objective: bridge the gap between theory and
practice on distributed scheduling algorithms

Approach: search for ways to adapt and improve
distributed scheduling algorithms from the literature

to be used in HPC scenarios

9

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Approach
Take an algorithm from the literature and expand on it.

Berenbrink et al. Distributed Selfish Load Balancing (SIAM Journal on Computing, 2007).

• m atomic, unitary tasks

• n identical resources

• ε-Nash equilibrium in O(loglog m)

• Perfect balance expected in O(loglog m+n4)

10

Structure of a round:

For each task b do in parallel:

Let ib be the current resource of task b

Choose resource jb uniformly at random

Let Xib(t) be the current load of resource i

Let Xjb(t) be the current load of resource j

If Xib(t) > Xjb(t) then:

Move task b from ib to jb with
probability 1 - Xjb(t)/Xib(t)

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Approach
Information to add: average resource load (x̄ = m/n)

Organize the resources in three categories:

• Underloaded: X
{i,j}

(t) < x̄

• Average-loaded: x̄ <= X
{i,j}

(t) <= x̄ + ε
• Overloaded: x̄ + ε < X

{i,j}
(t)

Use this information to define which resources can send tasks
(sources) and receive tasks (destinations)

11

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Approach
Variations over Selfish + average load

12

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)

Sup_Inf
(most

restrictive)
Sup_Avg Sup_Sup

Avg
(average-load

or above)
Avg_Inf Avg_Avg Avg_Sup

Inf
(all resources)

Inf_Inf Inf_Avg Inf_Sup
(original)

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Approach
Variations over Selfish + average load

13

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)

Sup_Inf
(most

restrictive)
Sup_Avg Sup_Sup

Avg
(average-load

or above)
Avg_Inf Avg_Avg Avg_Sup

Inf
(all resources)

Inf_Inf Inf_Avg Inf_Sup
(original)

Structure of a round for SelfishAL_Sup_Inf:

For each task b in an overloaded resource do
in parallel:

Let ib be the current resource of task b

Choose resource jb uniformly at random

Let Xib(t) be the current load of resource i

Let Xjb(t) be the current load of resource j

If jb is underloaded (Xjb(t) < x̄) then:

Move task b from ib to jb with
probability 1 - Xjb(t)/Xib(t)

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Based on a simple simulator @ https://github.com/llpilla

Why simulation?

• The number of resources needed to obtain results can be large
• Easier debugging
• Easier to reproduce results

Metrics

• Number of rounds for convergence
• Number of task migrations
• Number of load checks

14

https://github.com/llpilla

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hypotheses

1. When compared to the original Selfish algorithm, the addition of the average

resource load information decreases the number of rounds necessary for convergence.

2. Limiting the set of source resources decreases the total number of task migrations.

3. Limiting the set of source resources decreases the total number of load checks.

4. Limiting the set of destination resources decreases the total number of task migrations.

5. Limiting the set of destination resources decreases the total number of load checks.

6. The original task distribution in a scheduling scenario affects the number of rounds an

algorithm takes to converge.

7. The higher the number of resources in a scheduling scenario, the higher the number of

rounds it takes to balance the load.
15

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Additional details about the simulation

• All tasks make decisions based on the information

available at the start of the round
• No worries about ordering messages

• The simulation is stopped if an algorithm does not

converge in 1000 rounds

• Convergence = no resource has a load 5% over the

average resource load

16

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Simulation parameters

248 scenarios x 9 schedulers x 10 samples = 22320 samples

Evaluation

17

Parameter Values Total number

Number of resources 10, 50, 100, 500 4

Average number of tasks per
resource

50, 100 2

Type of tasks Unitary 1

Initial task distribution

1 with all tasks in resource 0

31
10 normal

10 exponential

10 exponential CDF

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Examples of initial load distributions (100 resources, 10000 tasks)

248 scenarios x 9 schedulers x 10 samples = 22320 samples

Evaluation

18

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

19

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)
12.956 4.281 4.732

Avg
(average-load

or above)
21.606 4.191 4.541

Inf
(all resources)

11.896 33.761 41.677

Mean number of rounds for convergence

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

20

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)
12.956 4.281 4.732

Avg
(average-load

or above)
21.606 4.191 4.541

Inf
(all resources)

11.896 33.761 41.677

Mean number of rounds for convergence

Number of cases that did not
converge in 1000 rounds

Inf_Sup: 9 times
Inf_Avg: 7 times

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

21

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)
12.956 4.281 4.732

Avg
(average-load

or above)
21.606 4.191 4.541

Inf
(all resources)

11.896
33.761
31.023

41.677
38.182

Mean number of rounds when converged

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

22

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)
12.956 4.281 4.732

Avg
(average-load

or above)
21.606 4.191 4.541

Inf
(all resources)

11.896 31.023 38.182

Mean number of rounds when converged

Source \ Dest
Inf

(only
underloaded)

Avg
(average-load

and below)

Sup
(all resources)

Sup
(only

overloaded)
9 4 5

Avg
(average-load

or above)
13 3 4

Inf
(all resources)

7 3 4

Median number of rounds for convergence

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

23

Comparison between variations
and the original Selfish

Value of a scenario =
avg. rounds for variation
- avg. rounds for Selfish

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

24

Zoom

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 1: When compared to the original Selfish algorithm, the addition of the average
resource load information decreases the number of rounds necessary for convergence.

25

Extra lessons

Using only underloaded
destinations -> bad idea

Using overloaded and
average-loaded as sources -> it

can be a good idea

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 6: The original task distribution in a scheduling scenario affects the number of

rounds an algorithm takes to converge.

26

Inf_Sup (original) Avg_Avg Sup_Inf (most restrictive)
90.12

44.83

34.82

4.543.59 5.88

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Evaluation
Hyp. 6: The original task distribution in a scheduling scenario affects the number of

rounds an algorithm takes to converge.

27

Inf_Sup (original) Avg_Avg Sup_Inf (most restrictive)

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Hyp. 7: The higher the number of resources in a scheduling scenario, the higher the

number of rounds it takes to balance the load.

Inf_Sup (original) Avg_Avg - 50 tasks per resource Sup_Inf (most restrictive)

Evaluation

28

304.26

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Hyp. 7: The higher the number of resources in a scheduling scenario, the higher the

number of rounds it takes to balance the load.

Evaluation

29

Avg_Avg - 50 tasks per resource Avg_Avg - 100 tasks per resource

5000 tasks

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Conclusion

First steps to bridge the gap between theory and practice.

Hypotheses hold so far.

Next steps

• Run experiments in larger scale
• Run experiments with non-unitary tasks
• Add more information and techniques
• Test in real HPC systems after filtering variations

30

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Conclusion
Final remarks

We need standard load balancing simulators. Do you know of any?

• Cannot always count on a supercomputer reservation
• Make it easier to compare algorithms and results

We need standard load balancing benchmarks with
well-documented parameters.

• Task Bench is a nice step in the right direction but it is not focused in
load balancing

31

L.L.Pilla & J. Cohen - Charm++ Workshop 2020

Efforts to Bridge Theory and Practice on
Distributed Scheduling Algorithms

Initial research results

Thank you.

Laércio Lima Pilla, Johanne Cohen
pilla@lri.fr

