Towards Dynamic Multi-Physics and Multi-Scale Modeling of the Coastal Ocean and Floodplain

Joannes Westerink¹, Dam Wirasaet¹, Rick Luettich², Clint Dawson³, Andrew Kennedy¹, William Pringle¹, Maria Teresa Contreras-Vargas¹, Guoming Ling¹, Mindo Choi¹, Coleman Blakely¹, Dylan Wood¹, Brian Joyce^{1,4}, Steven Brus^{1,5}, Aaron Donahue^{1,6}, Casey Dietrich^{1,7}, Ethan Kubatko^{1,8}, Keith Roberts^{1,9}, Eric Bohm⁹, Laxmikant Kale¹⁰, Eric Bohm¹⁰, Justin Szaday¹⁰, Sam White¹⁰ Eirik Valseth³, Younghun Kang⁸

¹University of Notre Dame, ²University of North Carolina at Chapel Hill, ³University of Texas at Austin, ⁴Berkshire Hathaway, ⁵LANL, ⁶LLNL, ⁷North Carolina State University, ⁸Ohio State University, ⁹University of San Paolo, ¹⁰University of Illinois at Urbana-Champaign

> Charm ++ Workshop October 20, 2020

The hydrodynamics of the coastal ocean and floodplain

Understanding coastal sustainability and risk means understanding water levels, currents, and wind waves from the shelf to the inland floodplain

Marine larval transport

Wetland degradation

Coastal dead zones

Evolution of coastal ocean hydrodynamics models – the recent past

Evolution of coastal ocean hydrodynamics models – the recent past

- ADCIRC solves the shallow water equations in 2D and 3D
- ADCIRC applies Galerkin FEM using highly unstructured linear finite element grids over large ocean domains
- ADCIRC usage highlights in U.S.
 - USACE: Design Metropolitan New Orleans levees post Katrina; Post Sandy flood risk study along East and Texas coasts
 - NOAA: Extra-tropical real time forecasting models (ESTOFS and new global G-ESTOFS)
 - FEMA: Flood Insurance Studies for U.S. Gulf, East and Great Lakes coasts
 - NRC: Nuclear power station risk evaluation

- SWAN solves the wave action density and is a non-phase resolving wave model with wave energy represented by a spectrum
- SWAN has been implemented as an unstructured grid model with the degrees of freedom at triangle vertices
- ADCIRC and SWAN interact
 - Water levels and currents affect waves
 - Wave breaking forces water level setup and currents

HPC: MPI Based Domain Decomposition – Overlapping Element Layer Node to Node Communication

HPC: Parallel Performance

SL16v18 model bathymetry and topography and unstructured mesh

Dietrich et al., *Monthly Weather Review*, **139**, 2488-2522, 2011. Kennedy et al., *Geophysical Research Letters*, **38**, L08608, 2011. Kerr et al., *Journal of Waterway, Port, Coastal, and Ocean Engineering*, **139**, 326-335, 2013. Martyr et al., *Journal of Hydraulic Engineering*, **139**, 5, 492-501, 2013. Hope et al., *Journal of Geophysical Research: Oceans*, **118**, 4424-4460, 2013. Kerr et al., *Journal of Geophysical Research: Oceans*, **118**, 5129–5172, 2013.

SL16v18 model bathymetry & topography in SE Louisiana

Models: SL16v18 mesh size in SE Louisiana

Hurricane Gustav: 2008 / 09 / 01 / 0200 UTC

Hurricane Gustav: 2008 / 09 / 01 / 0800 UTC

Hurricane Gustav: 2008 / 09 / 01 / 1100 UTC

Hurricane Gustav: 2008 / 09 / 01 / 1400 UTC

Hurricane Gustav: 2008 / 09 / 01 / 1700 UTC

Dietrich et al., Monthly Weather Review, 139, 2488-2522, 2011.

Hurricane Gustav: 2008 / 09 / 02 / 0200 UTC

Winds (m/s)

Waves (m)

Water Elevations (m)

Evolution of coastal ocean hydrodynamic models – the future

Vision

- Fully dynamic computations that during the simulation select
 - Physics
 - Load balance
 - Grid resolution
 - Order of interpolants

Focus areas

- Develop frameworks that allow dynamic and coupled physics
- Advance engines for load balancing
- Dynamic grid optimization for multi-physics
- High order methods

Advance coupling of multi-physics models

ADCIRC Circulation 2D/3D SWE WAVEWATCH III Wave Energy

CFSv2 Global Atmospheric Model

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics interfacing heterogeneous models over a unified domain

Dynamic coupling of *ADCIRC, WAVEWATCH III, HYCOM* and CICE Interleafing over a unified domain on heterogeneous grids communicating through ESMF/NUOPC

and boundary based two-way coupling to WRF-Hydro through ESMF/NUOPC

GOFS3.1 forcing of the ADCIRC global model: sea surface elevation

GOFS3.1 forcing of the ADCIRC global model: sea surface elevation

GOFS3.1 forcing of the ADCIRC global model: currents

GOFS3.1 forcing of the ADCIRC global model: currents

Sample comparison of 30 day averaged water levels – Atlantic Basin

Develop dynamic hydrodynamic equation selection frameworks

CFSv2 Global Atmospheric Model

ADCIRC-DG Circulation

2D/3D SWE 2D/3D SWE + PPS 3D SWE 2D Kinematic wave model 2D Dynamic wave model

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

Dynamic equation selection within ADCIRC-DG to accommodate Boussinesq type solutions as well as the Kinematic and Dynamic Wave Equations solution

WWIII, HYCOM, CICE interleafing WRF-Hydro interfacing

Develop dynamic hydrodynamic equation selection frameworks

WAVEWATCH III Wave Energy

HYCOM 3D Global Circulation Model

CICE Global Sea Ice Model

WRF Hydro National Water Model

Multi-physics within a single algorithmic framework dynamically selecting physics

Dynamic load balancing

Eliminating dry element from the computation through loop clipping will reduce total cycle costs

Dynamic rebalancing of the sub-domain loads will reduce total wall clock time

MPI/Zoltan AMPI

Dynamic load balancing: MPI/Zoltan

Dynamically redistributing dry elements improves parallel efficiency 45% for 50% average dry nodes Mesh with high resolution along the southeastern U.S.

Stal I we William Kittery,

Water side of meshes under development for the U.S. East and Gulf Coasts

South Carolina inlets

Water side of meshes under development for the U.S. East and Gulf Coasts

South Carolina inlets - detail

120 m mesh water and land sides

120 m mesh water and land sides

120 m mesh water and land sides

Evolution of coastal ocean hydrodynamic models – the past

Evolution of coastal ocean hydrodynamic models – the future

