
Recent Progress on
Adaptive MPI

Sam White & Evan Ramos

Charm++ Workshop 2020

Overview

● Introduction to AMPI
● Recent Work

○ Collective Communication Optimizations (Sam)
○ Automatic Global Variable Privatization (Evan)

2

3

Introduction

Motivation

● Variability in various forms (SW and HW) is a challenge for
applications moving toward exascale
○ Task-based programming models address these issues

● How to adopt task-based programming models?
○ Develop new codes from scratch
○ Rewrite existing codes, libraries, or modules (and interoperate)
○ Implement other programming APIs on top of tasking runtimes

4

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes

5

Background
● AMPI virtualizes the ranks of MPI_COMM_WORLD

○ AMPI ranks are user-level threads (ULTs), not OS processes
○ Cost: virtual ranks in each process share global/static variables
○ Benefits:

■ Overdecomposition: run with more ranks than cores
■ Asynchrony: overlap one rank’s communication with another

rank’s computation
■ Migratability: ULTs are migratable at runtime across address

spaces

6

AMPI Benefits
● Communication Optimizations

○ Overlap of computation and communication
○ Communication locality of virtual ranks in shared address space

● Dynamic Load Balancing
○ Balance achieved by migrating AMPI virtual ranks
○ Many different strategies built-in, customizable
○ Isomalloc memory allocator serializes all of a rank’s state

● Fault Tolerance
○ Automatic checkpoint-restart within the same job

7

AMPI Benefits: LULESH-v2.0

8

No overdecomposition or load balancing (8 VPs on 8 PEs):

With 8x overdecomposition, after load balancing (7 VPs on 1 PE shown):

Migratability

● Isomalloc memory allocator reserves a
globally unique slice of virtual memory
space in each process for each virtual rank

● Benefit: no user-specific serialization code
○ Handles the user-level thread stack and

all user heap allocations
○ Works everywhere except BGQ and

Windows
○ Enables dynamic load balancing and

fault tolerance
9

Communication Optimizations

10

Communication Optimizations

● AMPI exposes opportunities to optimize for communication locality:
○ Multiple ranks on the same PE
○ Many ranks in the same OS process

11

Point-to-Point Communication

● Past work: optimize for point-to-point messaging within a process
○ No need for kernel-assisted interprocess copy mechanism
○ Motivated generic Charm++ Zero Copy APIs

12

Point-to-Point Communication

● Application study: XPACC’s PlasCom2 code
○ AMPI outperforms MPI (+ OpenMP), even without LB

13

Collective Communication

● Virtualization-aware collective implementations avoid O(VP)
message creation and copies
○ [nokeep] optimized to avoid msg copies on recv-side of bcasts
○ Zero Copy APIs to match MPI’s buffer ownership semantics
○ For reductions, avoid CkReductionMsg creation & copy
○ Revamping Sections/CkMulticast for subcommunicator

collectives

14

Collective Communication

● Node-aware reductions: small msg optimizations
● Sender-side streaming: no intermediate CkReductionMsg creation & copy
● Dedicated shared buffer per node per comm

15

Version CrayMPI VP=1
(usec)

AMPI VP=1
(usec)

AMPI VP=16
(usec)

Original 1.24 5.32 9.81

Sender-side
streaming

--- 5.35 5.71

… + dedicated
shared buffer

--- 1.77 3.18

Collective Communication

● Node aware reductions: large msg optimizations

16

Memory Usage

● Recent study of memory usage by AMPI applications
○ User-space zero copy communication b/w ranks in shared

address space -> lower rendezvous threshold
○ Avoid overheads of kernel-assisted IPC

○ Led to hoisting AMPI’s read-only memory storage to node-level
○ Predefined datatype objects, reduction ops, groups, etc.

○ Developed in-place rank migration support via RDMA
○ Zero copy PUP API for large buffer migration (Isomalloc)

17

Memory Usage

18

16

32

64

0 50 100 150 200 250 300 350 400

M
em
or
y
(M
B)

Time (us)

Total Memory Usage on PE 0 of Jacobi-3D on Stampede2 (TACC)

AMPI
AMPI-new

19

Automatic Privatization

Privatization Problem
Illustration of unsafe global/static variable accesses:

20

int rank_global;

void print_ranks(void)
{

MPI_Comm_rank(MPI_COMM_WORLD, &rank_global);

MPI_Barrier(MPI_COMM_WORLD);

printf("rank: %d\n", rank_global);
}

Privatization Solutions
● Manual refactoring

○ Developer encapsulates mutable global state into struct
○ Allocate struct on stack or heap, pass pointer as part of control flow
○ Most portable strategy
○ Can require extensive developer effort and invasive changes

21

Privatization Method Goals
● Ease of use: Method should be as automated as possible
● Portability

○ Portable across OSes, compilers
○ Require few/no changes to OS, compiler, or system libraries

● Feature support
○ Handle both extern and static global variables
○ Support for static and shared linking
○ Support for runtime migration of virtual ranks (using Isomalloc)

● Optimizable: Can share read-only state across virtual ranks in node

22

Privatization Methods
● First-generation automated methods

○ Swapglobals: GOT (global offset table) swapping
■ No changes to code: AMPI runtime walks ELF table, updating pointers for each variable
■ Does not handle static variables
■ Requires obsolete GNU ld linker version (< 2.24 w/o patch, < ~2.29 w/ patch)
■ O(n) context switching cost
■ Deprecated

○ TLSglobals: Thread-local storage segment pointer swapping
■ Add thread_local tag to global variable declarations and definitions (but not accesses)
■ Supported with migration on Linux (GCC, Clang 10+), macOS (Apple Clang, GCC)
■ O(1) context switching cost
■ Good balance of ease of use, portability, and performance

23

Privatization Solutions
● Source-to-source transformation tools

○ Camfort, Photran, ROSE tools explored in the past
○ Clang/Libtooling-based tools are promising

■ Prototype C/C++ TLSglobals transformer created at Charmworks
■ Interested in building encapsulation transformer (more complex)
■ Flang/F18 merged into LLVM 11, hope to see Fortran Libtooling support

○ Some bespoke scripting efforts

24

Privatization Methods
● Second-generation automated methods

○ PiPglobals: Process-in-Process Runtime Linking (thanks RIKEN R-CCS)
○ FSglobals: Filesystem-Based Runtime Linking

● How they work
○ ampicc builds the MPI program as a PIE shared object (process-

independent executable)
○ PIE binaries store and access globals relative to instruction pointer
○ AMPI runtime uses dynamic loader to instantiate a copy for each rank

■ PiPglobals: Call glibc extension dlmopen with unique Lmid_t namespace index per-rank
■ FSglobals: Make copies of .so on disk for each rank, call dlopen on them normally

● Integrated into Charm’s nightly unit testing on production machines

25

Privatization Methods
● PiPglobals and FSglobals have drawbacks

○ PiPglobals requires patched PiP-glibc for >11 virtual ranks per process
○ FSglobals slams the filesystem making copies
○ FSglobals does not support programs with their own shared objects
○ Neither supports migration: Cannot Isomalloc code/data segments

● How to resolve drawbacks?
○ Patch ld-linux.so to intercept mmap allocations of segments?
○ Get hands dirty at runtime... new method: PIEglobals

26

Privatization Methods: PIEglobals
● PIEglobals: Position-Independent Executable Runtime Relocation

○ Leverage existing .so loading infrastructure from PiP/FSglobals
○ AMPI processes the shared object at program start

■ dlopen: dynamically load shared object once per node
■ dl_iterate_phdr: get list of program segments in memory
■ duplicate code & data segments for each virtualized rank w/ Isomalloc
■ scan for and update PIC (position-independent code) relocations in data segments and

global constructor heap allocations to point to new privatized addresses
■ calculate privatized location of entry point for each rank and call it

○ Global variables become privatized and migratable

27

Privatization Methods: PIEglobals
● Pitfalls

○ Program startup overhead (ex. miniGhost: ~2 seconds)
○ Debugging is difficult: debug symbols don’t apply to copied segments

■ Debug without PIEglobals (no virtualization) as much as possible
■ Helpful GDB commands: call pieglobalsfind($rip) or call pieglobalsfind((void *)0x...)

○ Relocation scanning can incur false positives
■ Solution in development: Open two copies using dlmopen, scan contents pairwise

○ Machine code duplication causes icache bloat and migration overhead
■ Solutions: posix_memfd mirroring within nodes; extend Isomalloc bookkeeping

○ Requires Linux and glibc v2.2.4 or newer (v2.3.4 for dlmopen)
● Successes: miniGhost, Nekbone
● Frontiers: OpenFOAM, mpi4py

28

Conclusion

● AMPI is increasingly valuable for a growing set of applications
○ Benefits apparent even in applications without load imbalance
○ Close to running complex legacy codes with virtualization easily

● Recent work spans the full stack of AMPI
○ Conformance to the MPI standard and conventions of other MPIs
○ Communication and memory improvements
○ More automation for privatization of legacy code
○ Working closely with more application developers

● Rebranding as Charm MPI to emphasize underlying technology

29

Questions?

white67@illinois.edu
evan@hpccharm.com

30

Privatization Methods
● Proposed Methods

○ MPC (Multi-Processor Computing) -fmpc-privatize: requires
compiler and linker support

31

AMPI + PiP: Implementation Details
1. Compile MPI user binary as PIE (Position Independent Executable)
2. For each rank, call dlmopen with a unique namespace index (lmid)

○ void *dlmopen (Lmid_t lmid, const char *filename, int flags);

3. Use dlsym to look up and call each namespaced handle’s entry point
4. Global variables will be privatized with no modification to user

program code
○ PIE binaries locate .data immediately following .text in memory
○ PIE global variables are accessed relative to the instruction pointer
○ dlmopen creates a separate copy of the binary in memory for each namespace

32

AMPI + PiP Details
Implementation Hurdles:

● Cannot simply compile AMPI
programs as PIE and call dlmopen

○ Depending on approach, would either
■ Privatize entire Charm++/AMPI

runtime system
● Runtime would not function
● Waste of memory

■ Prevent dlmopen’ed binary from
seeing launcher’s AMPI symbols

○ Instead, restructure headers and link
with a function pointer shim

○ Only user program needs to be PIE
33

ampi_functions.h:
AMPI_FUNC(int, MPI_Send, const void *msg, int count,

MPI_Datatype type, int dest, int tag, MPI_Comm comm)

mpi.h:
#ifdef AMPI_USE_FUNCPTR
#define AMPI_FUNC(return_type, function_name, ...) \
extern return_type (* function_name)(__VA_ARGS__);

#else
#define AMPI_FUNC(return_type, function_name, ...) \
extern return_type function_name(__VA_ARGS__);

#endif
#include "ampi_functions.h"

ampi_funcptr.h:
struct AMPI_FuncPtr_Transport {
#define AMPI_FUNC(return_type, function_name, ...) \
return_type (* function_name)(__VA_ARGS__);

#include "ampi_functions.h"
};

ampi_funcptr_loader.C (linked with AMPI runtime):
void AMPI_FuncPtr_Pack(struct AMPI_FuncPtr_Transport * x) {
#define AMPI_FUNC(return_type, function_name, ...) \
x->function_name = function_name;

#include "ampi_functions.h"
}

ampi_funcptr_shim.C (linked with MPI user program):
void AMPI_FuncPtr_Unpack(struct AMPI_FuncPtr_Transport * x) {
#define AMPI_FUNC(return_type, function_name, ...) \
function_name = x->function_name;

#include "ampi_functions.h"
}

