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Motivation

Highly dynamic parallel applications
Adaptive mesh refinement
Crack propagation
Usually limited supercomputing platforms
availability

Cannot always get 2" PEs required by parallel
model

Cause load imbalance and programming
complexity
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Motivation

Little change to normal MPI program

Load balancing

System can automatically migrate virtual MPI
processors to achieve load balance

Virtual processors

+vp option allows execution on desired number
of virtual processors

MPI extensions:
More asynchronous calls
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MPI| Basics

Standardized message passing interface

10/9/2002

Passing messages between processes

Standard contains the technical features proposed
for the interface

Minimally, 6 basic routines:
int MPI_Init(int *argc, char ***argv)
int MPI1_Finalize(void)
int MPI_Comm_size(MPI_Comm comm, int *size)
int MP1I_Comm_rank(MPI_Comm comm, int *rank)

int MP1_Send(void* buf, int count, MPI|_Datatype datatype,
int dest, int tag, MPI_Comm comm)
int MP1_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPlI_Comm comm, MPI_Status *status)
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MPI| Basics

MPI-1.1 contains 128 functions in 6
categories:
Point-to-Point Communication
Collective Communication
Groups, Contexts, and Communicators
Process Topologies
MPI Environmental Management
Profiling Interface

Language bindings: for Fortran, C and C++
20+ different implementations reported.
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Example: Hello World!

#i ncl ude <stdi o. h>
#i ncl ude <npi . h>

int main( int argc, char *argv[] )

{
| nt si ze, nyr ank;
MPI Init(&argc, &argv);
MPI _Comm si ze( MPI _COVWM WORLD, &si ze);
MPI _Comm r ank( MPI _COMM WORLD, &mnyr ank) ;
printf( "[%] Hello, parallel world!'\n", nyrank );
MPI _Finalize();
return O;
}
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Example: Send/Recv

double a[2] = {0.3, O0.5};
double b[2] = {0.7, 0.9
MPI _Status sts;

| f (nyrank == 0){
MPI _Send(a, 2, MPl _DOUBLE, 1, 17, MPl _COVM WORLD) ;
}else if(nyrank == 1){
MPI _Recv(b, 2, MPl _DOUBLE, 0, 17, MPI _COVM WORLD,
&sts);
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Charm++

Object-based virtualization
Divide the computation into a large number of pieces: Chares
Let the system map objects to processors
User is concerned with interaction between objects
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Charm++

Features
Data driven objects
Asynchronous method invocation
Mapping multiple objects per processor
Load balancing, static and run time
Portability

TCharm

User level threads, do not block CPU

Language-neutral interface for run-time load balancing
via migration
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Charm++

Download and install

Please register

Build Charm++/AMPI

> ./build <target> <version> <options> [charmc-
options]
To build AMPI:

> ./build AMPI <version> [-g]
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AMPI: MPI with Virtualization

Each virtual process implemented as a user-
level thread associated with a message-driven
object

| mplemented
asvirtual
processes
(user-level

. AN /
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How to write AMPI program (1)

Write your normal MPI program, and then...

Link and run with Charm++
Build your charm with target AMPI

Compile and link with charmc
charm/bin/mpicc|mpiCC|mpif77|mpifo0
> charmc -o hello hello.c -language ampi
Run with charmrun
> charmrun +p3 hello
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How to write AMPI program (1)

Now we can run MPI program with
Charm++

Demo - Hello World!
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How to write AMPI program (2)

Do not use global variables

Global variables are dangerous in multithread
programs

Global variables are shared by all the threads on a
processor and can be changed by other thread

Thread 1 Thread?

count=1
block in MPI_Recv

count=2
block in MPI_Recv

b=count
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How to write AMPI program (2)

Now we can run multithread on one
processor

Running with many virtual processors
+vp command line option
> charmrun +p3 hello +vp8

Demo - Hello World!
Demo - 2D Jacobi Relaxation
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How to write AMPI program (3)

Load balancing with migration

MPI1_Migrate()

Collective call informing the load balancer that
the thread is ready to be migrated, if needed.

If there Is a load balancer present:
First sizing, then packing on source processor
Sending stack and pupped data to the destination
Unpacking data on destination processor
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How to write AMPI program (3)

Link-time flag -memory isomalloc makes
migration transparent

Special memory allocation mode, giving
allocated memory the same virtual address on

all processors
ldeal on 64-bit machines
No need for PUPer routines: trouble-free

Should fit in most cases and we highly
recommend it
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How to write AMPI program (3)

Limitation with isomalloc:

Memory waste
4KB minimum granularity
Avoid small allocations

Limited space on 32-bit machine
Alternative: write PUP routines
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How to write AMPI program (3)

Pack/UnPack routine

(aka PUPer)

Heap data —(Pack)—>
network message
—(Unpack)—> heap data

A typical PUPer looks like
this:

USE pupnod
USE chunknod
| MPLI CI T NONE

| NTEGER : :
TYPE(chunk) ::
call pup(p,
call pup(p,
cal | pup(p,
cal | pup(p,
call pup(p,
call pup(p,
cal | pup(p,

P

end subrouti ne

SUBROUTI NE chunkpup(p,

C

c%)

cUxi dx)
c%i dx)
c%boxm
cY%xp)
c%bym
comyp)

c)
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How to write AMPI program (3)

Demo — Migrating Jacobi Relaxation
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How to convert an MPI program

Remove global variables

Pack them into struct/TYPE or class
Allocated in heap or stack

Oigi nal Code AMPI  Code
MODULE shar eddat a MODULE shar eddat a
| NTEGER :: nyrank TYPE chunk
DOUBLE PRECI SION :: xyz(100) | NTEGER :: myrank
END MODULE DOUBLE PRECI SI ON :: xyz(100)
END TYPE
END MODULE
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How to convert an MPI program

Oigi nal Code

AMPI Code

PROGRAM MAI N
USE shar eddat a
i ncl ude 'npif.h'
| NTEGER :: i, ierr
CALL MPI _Init(ierr)
CALL MPI _Comm r ank(
MPI _ COMM WORLD,
myrank, ierr)
DOi =1, 100
xyz(i) =1 + nyrank
END DO
CALL subA
CALL MPI _Finalize(ierr)
END PROGRAM

SUBRQOUTI NE MPI _Mai n
USE shar eddat a
USE AMPI
| NTEGER :: i, ierr
TYPE(chunk), pointer :: c
CALL MPI Init(ierr)
ALLOCATE( c)
CALL MPI _Comm r ank(
MPI _COVM _WORLD,
c%myrank, ierr)
DOi =1, 100
cxyz(i) =1 + c%yrank
END DO
CALL subA(c)
CALL MPI _Finalize(ierr)
END SUBROUTI NE
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How to convert an MPI program

Oigi nal Code

AMPI  Code

SUBROUTI NE subA
USE shar eddat a
| NTEGER :: |
DO =1, 100
xyz(i) = xyz(i) + 1.0
END DO
END SUBROUTI NE

SUBROUTI NE subA(c)
USE shar eddat a

TYPE(chunk) :: c
| NTEGER :: i
DOi =1, 100

cxyz(i) = c%&yz(i) + 1.0
END DO
END SUBROUTI NE
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How to run an AMPI program

Use virtual processors
Run with +vp option

Specify stacksize with +tcharm_stacksize
option
Demo — large stack
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Communication Optimization

Collective communications in MPI are
complex and time consuming!

May involve a lot of data movement

Implemented as blocking calls in MPI
MP1_Alltoall
MPI_Reduce
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Communication Optimization

Alltoall tinme on 1K processors
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Communication Optimization

Alltoall Software Overhead on 1K processors

1az4

T T
MPI All +o All —+—
Charm All to all - I

Sz

298 -

128

tms

g4

a2

All to ALl Time

1e -

1 1 1
&4 12z 25 =R le24 zZe4e

Message Size (huytes?
10/9/2002 Parallel Programming Laboratory @ UIUC



Communication Optimization

Our implementation is asynchronous
Collective operation is first scheduled
Each process the polls for its completion

Implemented through the Charm++ message
scheduler

AMPI_Alltoall_Start(.................... );

AMPI_Alltoall _Poll();

Each processor in the mean time can do useful
computation
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Future work

Projector/Projections support

Read-only data
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Future work

Projections: parallel visualization tool for
Charm++

Projector: enables programs written in
language other than Charm++ to output
visualization data for Projection
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