Adaptive MPI Tutorial

Chao Huang
chuanglO@uiuc.edu
Parallel Programming Laboratory

University of lllinois

Motivation

Highly dynamic parallel applications
Adaptive mesh refinement
Crack propagation
Usually limited supercomputing platforms
availability

Cannot always get 2" PEs required by parallel
model

Cause load imbalance and programming
complexity

10/9/2002 Parallel Programming Laboratory @ UIUC

Motivation

Little change to normal MPI program

Load balancing

System can automatically migrate virtual MPI
processors to achieve load balance

Virtual processors

+vp option allows execution on desired number
of virtual processors

MPI extensions:
More asynchronous calls

10/9/2002 Parallel Programming Laboratory @ UIUC

MPI| Basics

Standardized message passing interface

10/9/2002

Passing messages between processes

Standard contains the technical features proposed
for the interface

Minimally, 6 basic routines:
int MPI_Init(int *argc, char ***argv)
int MPI1_Finalize(void)
int MPI_Comm_size(MPI_Comm comm, int *size)
int MP1I_Comm_rank(MPI_Comm comm, int *rank)

int MP1_Send(void* buf, int count, MPI|_Datatype datatype,
int dest, int tag, MPI_Comm comm)
int MP1_Recv(void* buf, int count, MPI_Datatype datatype,
int source, int tag, MPlI_Comm comm, MPI_Status *status)

Parallel Programming Laboratory @ UIUC 4

MPI| Basics

MPI-1.1 contains 128 functions in 6
categories:
Point-to-Point Communication
Collective Communication
Groups, Contexts, and Communicators
Process Topologies
MPI Environmental Management
Profiling Interface

Language bindings: for Fortran, C and C++
20+ different implementations reported.

10/9/2002 Parallel Programming Laboratory @ UIUC

Example: Hello World!

#i ncl ude <stdi o. h>
#i ncl ude <npi . h>

int main(int argc, char *argv[])

{
| nt si ze, nyr ank;
MPI Init(&argc, &argv);
MPI _Comm si ze(MPI _COVWM WORLD, &si ze);
MPI _Comm r ank(MPI _COMM WORLD, &mnyr ank) ;
printf("[%] Hello, parallel world!'\n", nyrank);
MPI _Finalize();
return O;
}

10/9/2002 Parallel Programming Laboratory @ UIUC

Example: Send/Recv

double a[2] = {0.3, O0.5};
double b[2] = {0.7, 0.9
MPI _Status sts;

| f (nyrank == 0){
MPI _Send(a, 2, MPl _DOUBLE, 1, 17, MPl _COVM WORLD) ;
}else if(nyrank == 1){
MPI _Recv(b, 2, MPl _DOUBLE, 0, 17, MPI _COVM WORLD,
&sts);

10/9/2002 Parallel Programming Laboratory @ UIUC

Charm++

Object-based virtualization
Divide the computation into a large number of pieces: Chares
Let the system map objects to processors
User is concerned with interaction between objects

T
-y @\
f T

/

S

e R

™~

—

10/9/2002 Parallel Programming Laboratory @ UIUC

Charm++

Features
Data driven objects
Asynchronous method invocation
Mapping multiple objects per processor
Load balancing, static and run time
Portability

TCharm

User level threads, do not block CPU

Language-neutral interface for run-time load balancing
via migration

10/9/2002 Parallel Programming Laboratory @ UIUC

Charm++

Download and install

Please register

Build Charm++/AMPI

> ./build <target> <version> <options> [charmc-
options]
To build AMPI:

> ./build AMPI <version> [-g]

10/9/2002 Parallel Programming Laboratory @ UIUC

10

AMPI: MPI with Virtualization

Each virtual process implemented as a user-
level thread associated with a message-driven
object

| mplemented
asvirtual
processes
(user-level

. AN /
\) /

101812002 ‘ Real Processors ‘

How to write AMPI program (1)

Write your normal MPI program, and then...

Link and run with Charm++
Build your charm with target AMPI

Compile and link with charmc
charm/bin/mpicc|mpiCC|mpif77|mpifo0
> charmc -o hello hello.c -language ampi
Run with charmrun
> charmrun +p3 hello

10/9/2002 Parallel Programming Laboratory @ UIUC

12

How to write AMPI program (1)

Now we can run MPI program with
Charm++

Demo - Hello World!

10/9/2002 Parallel Programming Laboratory @ UIUC

13

How to write AMPI program (2)

Do not use global variables

Global variables are dangerous in multithread
programs

Global variables are shared by all the threads on a
processor and can be changed by other thread

Thread 1 Thread?

count=1
block in MPI_Recv

count=2
block in MPI_Recv

b=count

10/9/2002 Parallel Programming Laboratory @ UIUC 14

How to write AMPI program (2)

Now we can run multithread on one
processor

Running with many virtual processors
+vp command line option
> charmrun +p3 hello +vp8

Demo - Hello World!
Demo - 2D Jacobi Relaxation

10/9/2002 Parallel Programming Laboratory @ UIUC

15

How to write AMPI program (3)

Load balancing with migration

MPI1_Migrate()

Collective call informing the load balancer that
the thread is ready to be migrated, if needed.

If there Is a load balancer present:
First sizing, then packing on source processor
Sending stack and pupped data to the destination
Unpacking data on destination processor

10/9/2002 Parallel Programming Laboratory @ UIUC 16

How to write AMPI program (3)

Link-time flag -memory isomalloc makes
migration transparent

Special memory allocation mode, giving
allocated memory the same virtual address on

all processors
ldeal on 64-bit machines
No need for PUPer routines: trouble-free

Should fit in most cases and we highly
recommend it

10/9/2002 Parallel Programming Laboratory @ UIUC 17

How to write AMPI program (3)

Limitation with isomalloc:

Memory waste
4KB minimum granularity
Avoid small allocations

Limited space on 32-bit machine
Alternative: write PUP routines

10/9/2002 Parallel Programming Laboratory @ UIUC

18

How to write AMPI program (3)

Pack/UnPack routine

(aka PUPer)

Heap data —(Pack)—>
network message
—(Unpack)—> heap data

A typical PUPer looks like
this:

USE pupnod
USE chunknod
| MPLI CI T NONE

| NTEGER : :
TYPE(chunk) ::
call pup(p,
call pup(p,
cal | pup(p,
cal | pup(p,
call pup(p,
call pup(p,
cal | pup(p,

P

end subrouti ne

SUBROUTI NE chunkpup(p,

C

c%)

cUxi dx)
c%i dx)
c%boxm
cY%xp)
c%bym
comyp)

c)

10/9/2002 Parallel Programming Laboratory @ UIUC

19

How to write AMPI program (3)

Demo — Migrating Jacobi Relaxation

10/9/2002 Parallel Programming Laboratory @ UIUC

20

How to convert an MPI program

Remove global variables

Pack them into struct/TYPE or class
Allocated in heap or stack

Oigi nal Code AMPI Code
MODULE shar eddat a MODULE shar eddat a
| NTEGER :: nyrank TYPE chunk
DOUBLE PRECI SION :: xyz(100) | NTEGER :: myrank
END MODULE DOUBLE PRECI SI ON :: xyz(100)
END TYPE
END MODULE

10/9/2002 Parallel Programming Laboratory @ UIUC 21

How to convert an MPI program

Oigi nal Code

AMPI Code

PROGRAM MAI N
USE shar eddat a
i ncl ude 'npif.h'
| NTEGER :: i, ierr
CALL MPI _Init(ierr)
CALL MPI _Comm r ank(
MPI _ COMM WORLD,
myrank, ierr)
DOi =1, 100
xyz(i) =1 + nyrank
END DO
CALL subA
CALL MPI _Finalize(ierr)
END PROGRAM

SUBRQOUTI NE MPI _Mai n
USE shar eddat a
USE AMPI
| NTEGER :: i, ierr
TYPE(chunk), pointer :: c
CALL MPI Init(ierr)
ALLOCATE(c)
CALL MPI _Comm r ank(
MPI _COVM _WORLD,
c%myrank, ierr)
DOi =1, 100
cxyz(i) =1 + c%yrank
END DO
CALL subA(c)
CALL MPI _Finalize(ierr)
END SUBROUTI NE

10/9/2002 Parallel Programming Laboratory @ UIUC

22

How to convert an MPI program

Oigi nal Code

AMPI Code

SUBROUTI NE subA
USE shar eddat a
| NTEGER :: |
DO =1, 100
xyz(i) = xyz(i) + 1.0
END DO
END SUBROUTI NE

SUBROUTI NE subA(c)
USE shar eddat a

TYPE(chunk) :: c
| NTEGER :: i
DOi =1, 100

cxyz(i) = c%&yz(i) + 1.0
END DO
END SUBROUTI NE

10/9/2002 Parallel Programming Laboratory @ UIUC

23

How to run an AMPI program

Use virtual processors
Run with +vp option

Specify stacksize with +tcharm_stacksize
option
Demo — large stack

10/9/2002 Parallel Programming Laboratory @ UIUC

24

Communication Optimization

Collective communications in MPI are
complex and time consuming!

May involve a lot of data movement

Implemented as blocking calls in MPI
MP1_Alltoall
MPI_Reduce

10/9/2002 Parallel Programming Laboratory @ UIUC

25

Communication Optimization

Alltoall tinme on 1K processors

18z4 T | | | |
MFI All to ALl —s— T‘Hﬁ
Charm All +o all - e

ale

236

128

g4 |

All to ALl Time (ms2

16

=] | | | | | |

&4 128 256 512 1824 Za4s
Message Size (hytesl

10/9/2002 Parallel Programming Laboratory @ UIUC

Communication Optimization

Alltoall Software Overhead on 1K processors

1az4

T T
MPI All +o All —+—
Charm All to all - I

Sz

298 -

128

tms

g4

a2

All to ALl Time

1e -

1 1 1
&4 12z 25 =R le24 zZe4e

Message Size (huytes?
10/9/2002 Parallel Programming Laboratory @ UIUC

Communication Optimization

Our implementation is asynchronous
Collective operation is first scheduled
Each process the polls for its completion

Implemented through the Charm++ message
scheduler

AMPI_Alltoall_Start(....................);

AMPI_Alltoall _Poll();

Each processor in the mean time can do useful
computation

10/9/2002 Parallel Programming Laboratory @ UIUC 28

Future work

Projector/Projections support

Read-only data

10/9/2002 Parallel Programming Laboratory @ UIUC

29

Future work

Projections: parallel visualization tool for
Charm++

Projector: enables programs written in
language other than Charm++ to output
visualization data for Projection

10/9/2002 Parallel Programming Laboratory @ UIUC

30

