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\Introduction Ccont. I

What is our problem?

In scientific and engineering applications, we often need to slove
e A partial Differential Equation (PDE)

e Discretize to get a matrix A, here A is a n x n matrix and
— Sparse: Very few nonzero elements

— Large: Millions of unknowns

e Solve the large sparse linear system

Ax = b
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A small sparse matrix (5point)'
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\Introduction Ccont. I

How to solve this sparse linear system Ax = b?

e When A is a small matrix, Gaussian Eliminations are enough.
e However when A is very large, Gaussian Eliminations are not
applicable, since their
— O(n®) computational cost
— O(n?) memory cost
— Difficult to implement on parallel computers

n = 10%, computational cost = O(10'®) and memory cost
= 0(1012).
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\Introduction Ccont. I

Research interest:

Solve this linear system
e Low memory and computational cost (efficiency)
e Robustness (effectiveness)
e On parallel platforms (Parallelism)

Solution: Iterative methods
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Iterative Methods.

Basic iterative methods

e Jacobi, Gauss-Seidel, and SOR

They all have the form

Tpr1 = G + f

e Advantage

— Good parallelism (Matrix Vector Product)

e Disadvantages
— Not robust

— Slow convergence
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Iterative Methods Cont..

Krylov subspace methods

e GMRES, BCG ...
— Good parallelism

— More robust
These methods may still
e [ail to converge
e Slow convergence

for ill-conditioned matrices.

Solution: Change to a good-conditioned matrix
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Iterative Methods Cont..

Preconditioned Krylov subspace methods

e Setup phase: Find a matrix IN and transform the linear
system into an equivalent one

NAx = Nb

— N should be computed cheaply (<< the cost of A—1)

— NNAx = Nb is easier to solve than Ax = b
(better-conditioned)

Here NN is called the preconditioner for A.

e Solve phase: Solve the transformed system by Krylov
subspace methods (GMRES algorithm, BCG algorithm)
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Current Status'

Two typical preconditioning techniques to compute N

o ILU
— Form: N = (LU)™ ', LU = A

— Transformed equation:
(LU) Az = (LU)™'b

e Sparse approximate inverse (SAI)
— Form: N=M, M ~ A1

— Transformed equation:

MAx = Mb

N /
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SAI Preconditioners'

Goal: M~ A 1, AM~1

e Frobenius norm minimization:

IAM — 1|3 = > [[(AM — I)exl|3
k=1

n
= > llAmy — e}
k=1

e \We have n independent minimization problems

min ||[Amg — erll2, E=1,2,...,n
my,

kGOOd parallelism

~

11



Kai Wang Parallel Preconditioning

SAI Preconditioners Cont..

Exact or Approximate Inverse

e Without any constraint on myg, solving each minimization
problem
T@in |Amy — egll2, E=1,2,...,n
k

will equal to solving the original problem Ax = b

— this would be impractical (CPU & memory)

Solution: Guess a sparsity pattern (nonzero positions) for M

N /
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SAI Preconditioners Cont..

e Suppose we are given a sparsity pattern for M

— Only limited nonzeros in each column myg
e For each k, construct Ay, corresponding to my

e [ he individual minimization becomes

min || Apg, — éx|2
meg

e A, is rectangular, and has full rank (if A is nonsingular)
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\ QR Factorization I

e \We can perform a QR factorization on Ak, (small)

Al = Qy

— Qg is orthogonal, QfQr =1

— Ry is nonsingular upper triangular
e Compute
~ T ~
Cr = Qy €k

e and solve

- —1~
mi = R, “cg

N /
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\An Algorithim of SAII

Algorithm 0.1 Construct a static pattern sparse approximate

inverse preconditioner.
1. Given a drop tolerance €

2. Sparsify A with respect to €

3. Compute a sparse approximate inverse M according to
the sparsity pattern of A

4. Drop small entries of M with respect to €

5. M is the preconditioner for Ax = b

e Matrix A is partitioned and distributed row by row

\\ of A2, or A3 as the sparsity pattern

e The nonzero position of A (sparsified) is the sparsity pattern.

e If preconditioner is not good enough, use the nonzero pattern

~

/

15



Kai Wang Parallel Preconditioning

\ Processor Virtualization I

Standard MPI programming model

e TO run on P processors
e Divide the computation into P processes

e Each for one physical processors
— The division is not natural

— Significant effort is required for load balance
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\ Processor Virtualization I

Virtualization

e TO run on P processors

e Divide the computation into any number of processes
independent of P

e Runtime system maps those processes to physical processors
— Automatic load balancing
— Cache performance

— Adaptive overlapping of communication and computation

N /
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\An example'
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SAI based on Processor Virtualization'

e |oad balancing is not a serious problem

— G@Give each physical processor roughly the same number of
rows

e Cache performance is important for the implementation

e Adaptive overlapping of communication and computation
makes efficient implementation. Save CPU time.

~
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SAI based on Processor Virtualization'

Can the computation and communication be overlapped?

e Matrix vector product is the main computation
e Each virtual processor need the vector store in other processors

e If dense matrix, this is an all to all communication. No
overlapping

e Sparse matrix has limited nonzeros
— Communication happens in a subset

— Can overlap

N /
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Numerical Results I

Implementation is based ParaSails of Edmond. Chow
— It uses static sparsity pattern

— Use Lapack and Blas to deal with cache performance
Use AMPI

Run on Tungsten

Solving 3D convection-diffusion equations.

1000 iterations.

~
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CPU Time(Seconds)

Virtualization Overhead.

One physical processor. Number of unknowns=40000.
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CPU Time(Seconds)

\Cache Performance.

One physical processor. Number of unknowns=160000.
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CPU Time(Seconds)

Adaptive Overlapping I

16 physical processor. Number of unknowns=640000.

~

60 T T T T T T
‘\v\‘— /_/7
50+= _ — —
- - _ ~ ~#~+~~ﬂ~—_
N T T+ - - = - = + - - - - — + - - - - — + - -
40 |
Hooe * Setup Time
30 +— - -+ Solve Time ]
v Total Time
20 _
10 _|
.............. S
T * ............... * ............... * ............... * ............ *
O 1 1 1 1 1 1
1 2 3 4 5 6 7

Degree of Virtualization

25



Kai Wang

Parallel Preconditioning

-

Virtualization Overhead.

32 physical processor. Number of unknowns=5120000.
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\Conclusion.

e Show the performance of SAI preconditioning when using
processor virtualization.

e Speedup in solving phase
— Benefits from cache performance

— Benefits from adaptive overlapping

e NO speedup in setup phase

— Setup phase has good cache management and few
communications.

— Speedup may be expected in setup phase of multilevel or
multistep preconditioning.
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