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Introduction Cont.

What is our problem?

In scientific and engineering applications, we often need to slove

• A partial Differential Equation (PDE)

• Discretize to get a matrix A, here A is a n ∗ n matrix and

– Sparse: Very few nonzero elements

– Large: Millions of unknowns

• Solve the large sparse linear system

Ax = b
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A small sparse matrix (5point)
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Figure 1: The structure of a small sparse matrix, 50 ∗ 50.
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Introduction Cont.

How to solve this sparse linear system Ax = b?

• When A is a small matrix, Gaussian Eliminations are enough.

• However when A is very large, Gaussian Eliminations are not

applicable, since their

– O(n3) computational cost

– O(n2) memory cost

– Difficult to implement on parallel computers

n = 106, computational cost = O(1018) and memory cost

= O(1012).
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Introduction Cont.

Research interest:

Solve this linear system

• Low memory and computational cost (efficiency)

• Robustness (effectiveness)

• On parallel platforms (Parallelism)

Solution: Iterative methods
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Iterative Methods

Basic iterative methods

• Jacobi, Gauss-Seidel, and SOR

They all have the form

xk+1 = Gxk + f

• Advantage

– Good parallelism (Matrix Vector Product)

• Disadvantages

– Not robust

– Slow convergence
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Iterative Methods Cont.

Krylov subspace methods

• GMRES, BCG ...

– Good parallelism

– More robust

These methods may still

• Fail to converge

• Slow convergence

for ill-conditioned matrices.

Solution: Change to a good-conditioned matrix
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Iterative Methods Cont.

Preconditioned Krylov subspace methods

• Setup phase: Find a matrix N and transform the linear

system into an equivalent one

NAx = Nb

– N should be computed cheaply (<< the cost of A−1)

– NAx = Nb is easier to solve than Ax = b

(better-conditioned)

Here N is called the preconditioner for A.

• Solve phase: Solve the transformed system by Krylov

subspace methods (GMRES algorithm, BCG algorithm)
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Current Status

Two typical preconditioning techniques to compute N

• ILU

– Form: N = (LU)−1, LU ≈ A

– Transformed equation:

(LU)−1Ax = (LU)−1b

• Sparse approximate inverse (SAI)

– Form: N = M , M ≈ A−1

– Transformed equation:

MAx = Mb
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SAI Preconditioners

Goal: M ≈ A−1, AM ≈ I

• Frobenius norm minimization:

‖AM − I‖2
F

=

n
∑

k=1

‖(AM − I)ek‖2
2

=
n

∑

k=1

‖Amk − ek‖2
2

M = (m1, m2, ......, mn)

• We have n independent minimization problems

min
mk

‖Amk − ek‖2, k = 1, 2, . . . , n

Good parallelism
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SAI Preconditioners Cont.

Exact or Approximate Inverse

• Without any constraint on mk, solving each minimization

problem

min
mk

‖Amk − ek‖2, k = 1, 2, . . . , n

will equal to solving the original problem Ax = b

– this would be impractical (CPU & memory)

Solution: Guess a sparsity pattern (nonzero positions) for M
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SAI Preconditioners Cont.

• Suppose we are given a sparsity pattern for M

– Only limited nonzeros in each column m̃k

• For each k, construct Ãk, corresponding to m̃k

• The individual minimization becomes

min
m̃k

‖Ãkm̃k − ẽk‖2

• Ãk is rectangular, and has full rank (if A is nonsingular)
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QR Factorization

• We can perform a QR factorization on Ãk (small)

Ãk = Qk





Rk

0





– Qk is orthogonal, QT

k
Qk = I

– Rk is nonsingular upper triangular

• Compute

c̃k = QT

k
ẽk

• and solve

m̃k = R
−1

k
c̃k
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An Algorithm of SAI

Algorithm 0.1 Construct a static pattern sparse approximate

inverse preconditioner.

1. Given a drop tolerance ε

2. Sparsify A with respect to ε

3. Compute a sparse approximate inverse M according to

the sparsity pattern of A

4. Drop small entries of M with respect to ε

5. M is the preconditioner for Ax = b

• Matrix A is partitioned and distributed row by row

• The nonzero position of A (sparsified) is the sparsity pattern.

• If preconditioner is not good enough, use the nonzero pattern

of A2, or A3 as the sparsity pattern
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Processor Virtualization

Standard MPI programming model

• To run on P processors

• Divide the computation into P processes

• Each for one physical processors

– The division is not natural

– Significant effort is required for load balance
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Processor Virtualization

Virtualization

• To run on P processors

• Divide the computation into any number of processes

independent of P

• Runtime system maps those processes to physical processors

– Automatic load balancing

– Cache performance

– Adaptive overlapping of communication and computation
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An example

Idle time
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Processor A

Idle time

Message

Due to load imblancing Due to message communication

Processor B
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An example

M
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SAI based on Processor Virtualization

• Load balancing is not a serious problem

– Give each physical processor roughly the same number of

rows

• Cache performance is important for the implementation

• Adaptive overlapping of communication and computation

makes efficient implementation. Save CPU time.
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SAI based on Processor Virtualization

Can the computation and communication be overlapped?

• Matrix vector product is the main computation

• Each virtual processor need the vector store in other processors

• If dense matrix, this is an all to all communication. No

overlapping

• Sparse matrix has limited nonzeros

– Communication happens in a subset

– Can overlap
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Numerical Results

• Implementation is based ParaSails of Edmond. Chow

– It uses static sparsity pattern

– Use Lapack and Blas to deal with cache performance

• Use AMPI

• Run on Tungsten

• Solving 3D convection-diffusion equations.

• 1000 iterations.
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Virtualization Overhead

One physical processor. Number of unknowns=40000.
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Cache Performance

One physical processor. Number of unknowns=160000.
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Adaptive Overlapping

16 physical processor. Number of unknowns=640000.
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Virtualization Overhead

32 physical processor. Number of unknowns=5120000.
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Conclusion

• Show the performance of SAI preconditioning when using

processor virtualization.

• Speedup in solving phase

– Benefits from cache performance

– Benefits from adaptive overlapping

• No speedup in setup phase

– Setup phase has good cache management and few

communications.

– Speedup may be expected in setup phase of multilevel or

multistep preconditioning.
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