Advanced Charm++ Tutorial

Presented by:
Isaac Dooley & Chao Mei

4/20/2007

7 PROGRAMMING LAB

Topics For This Talk

= Building Charm++

= Advanced messaging

= Interface file (.ci)

= Advanced load balancing

= Groups

® Threads

= Delegation

= Array multicast
= SDAG

GCharm-++ on Parallel Machines

® Runs on:

" Any machine with MPI, including
e IBM Blue Gene/L, SP
e Cray XT3
e SGI Altix

= PSC’s Lemieux (Quadrics Elan)

= Clusters with Ethernet (UDP/TCP)
" Clusters with Myrinet (GM or MX)
= Apple clusters

" Even Windows!

= SMP-Aware (pthreads)

Converse

Communication
API

Net/l\

use charmrun MPI Elan BG/L

AN

Myrinet

(machine-gm.c)

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<target>: converse charm++ LIBS AMPI FEM bigemulator pose jade msa
doc ps-doc pdf-doc html-doc

charm++ compile Charm++ core only

AMPI compile Adaptive MPI on top of Charm++

FEM compile FEM framework

LIBS compile additional parallel libraries with Charm++ core
bigemulator build additional BigSim libraries

pose build POSE parallel discrete event simulator

jade build Jade compiler (auto-builds charm++, msa)

msa build Multiphase Shared Arrays(MSA) library

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<version>: Basic configurations

bluegenel
elan-axp
elan-11inux-1a64
exemplar
mp1-axp
mpi-bluegenel
mpi-crayxl
mpi-crayxt3
mpi-exemplar
mpi-hp-ia64
mpi-1linux
mp1i-linux-amd64
mpi-linux-axp
mpi-linux-1a64
mpi-origin
mpi-ppc-darwin
mpi-sol
mp1i-sol-amd64

mpi-sp

ncube?

net-axp
net-cygwin
net-darwin-x86
net-hp
net-hp-ia64
net-irix
net-1linux
net-linux-amd64
net-linux-axp
net-linux-cell
net-1linux-ia64
net-1linux-ppc
net-ppc-darwin
net-rsok
net-sol
net-sol-amdo4

net-sol-x86
net-sun
net-win32
net-win64
origin-pthreads
origin2000
portals-crayxt3
shmem-axp
sim-1linux

sp3

t3e

uth-11inux
uth-win32
vmi-1linux
vmi-linux-amd64
vmi-linux-i1a64

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<version>: Basic configurations
bluegenel

mpi-bluegenel

net-1linux
net-1inux-amdo4
mpi-1linux

mp1i-linux-amd64
mpi-1linux-ia64 net-linux-ppc

mpi-ppc-darwin

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<options>: compiler and platform specific options

Platform specific options (choose multiple if they apply):
lam Use LAM MPI

smp support for SMP, multithreaded charm on each node

mpt use SGI Message Passing Toolkit (only for mpi version)
gm use Myrinet for communication

tcp use TCP sockets for communication (ony for net version)
vmi use NCSA's VMI for communication (only for mpi version)
scyld compile for Scyld Beowulf cluster based on bproc
clustermatic compile for Clustermatic (support version 3 and 4)
pthreads compile with pthreads Converse threads

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<options>: compiler and platform specific options

Advanced options:
bigemulator compile for BigSim simulator
00cC compile with out of core support
syncft compile with Charm++ fault tolerance support

papi compile with PAPI performance counter support (if any)

Charm++ dynamic libraries:
--build-shared build Charm++ dynamic libraries (.so) (default)
--no-build-shared don't build Charm++'s shared libraries

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<options>: compiler and platform specific options

Choose a C++ compiler (only one option is allowed from this section):

cc, cco4
CXX

kcc

pgcc

acc

1cc

ecc

gcc3
gcc4
mpcc
pathscale

For Sun WorkShop C++ 32/64 bit compilers
DIGITAL C++ compiler (DEC Alpha)

KAI C++ compiler

Portland Group's C++ compiler

HP aCC compiler

Intel C/C++ compiler for Linux IA32
Intel C/C++ compiler for Linux IAo4

use gcc3 - GNU GCC/G++ version 3

use gcc4 - GNU GCC/G++ version 4 (only mpi-crayxt3)
SUN Solaris C++ compiler for MPI

use pathscale compiler suite

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<options>: compiler and platform specific options

Choose a fortran compiler (only one option is allowed from this section):
g95 G95 at http://ww.g95.0rg

absoft Absoft fortran compiler

pgf90 Portland Group's Fortran compiler
1fc Intel Fortran compiler (older versions)
ifort Intel Fortran compiler (newer versions)

http://ww.g95.org
http://ww.g95.org

Gompiling Charm++

./build
Usage: build <target> <version> <options> [charmc-options ...]

<charmc-options>: normal compiler options
-g -0 -save -verbose

To see the latest versions of these lists or to get more detailed help, run
./build --help

® Build script does:

./build <target> <version> <options> [charmc-options ...
®m Creates directories <version> and <version>/tmp
m (Copies src/scripts/Makefile into <version>/tmp

= Does a
"make <target> <version> OPTS=<charmc-options>'

IN <version>/tmp

® That's all build does. The rest is
handled by the Makefile.

build AMPI net-linux gm kcc

= Mkdir net-linux-gm-kcc

= Cat conv-mach-[kcc|gm|smp].h to conv-
mach-opt.h

= Cat conv-mach-[kcc|gm].sh to conv-
mach-opt.sh

= Gather files from net, etc (Makefile)

= Make charm++ under
e net-linux-gm/tmp

" Use latest version from CVS

® Check the nightly auto-build tests:
charm.cs.uiuc.edu/autobuild/cur

htt

8066
@

PPL

Charm++ Automated-Build Status

/I‘ PP, hetp: /feharm. cs.uiuc.edujautobuild feur/

(G * Google

ECE 498 AL - Progra...

¢ M
Private PPLTMS lIsaac's RSS Feeds weather optionsXpress Slashdot

Charm++ Automated-Build Status

This page generated on Thu Apr 19 20:30:00 CDT 2007

Download the Charm++ source code used here.

The most recent nightly build charm++ source is also available at cvs server with module "charm-nightly-test”.
View the previous autobuild status, or all previous status pages.

Latest precompiled binaries (including source) can be found here.

photoSIG Photography by Isaac...

[Status
Good

Test on remote host
Good

Good

Good

Test skipped
Good

Good

Good

Good

'Version
net-linux
net-linux-amd64
net-linux-smp
net-linux-rcp
net-linux-ife-ice
elan-axp-cxx
net-sol
net-sol-cc
mpi-sol-gcc
mpi-sp-mpec32
mpi-sp-mpcc6d Good
net-rsok-xlc64 Good

Machine
passion.cs.uiuc.edu
insight.cs.uiuc.edu
flair.cs.uiuc.edu
prowess.cs.uiuc.edu
clarity.cs uiuc.edu
lemieux .psc.edu
copernicus.csar.uiuc edu

Description

Suse Linux 9.1 on IA32 with gnu compiler 3.3.3
Suse Linux 9.1 on Opteron with gnu compiler 3.3.3
Suse Linux 9.1 IA32 smp with gnu compiler 3.3.3
Suse Linux 9.1 IA32 and TCP with gnu compiler 3.3.3
Suse Linux 10.1 TA32 and Intel compiler 7.1

Dec Alpha with Quadrics Elan

Solaris with gnu compiler

Solaris with SUN compiler

Solaris with MPICH and gnu compiler

INCSA IBM SP with MPI

INCSA IBM SP with MPI 64bits

INCSA IBM 5P with Ethernet and xlc compiler 64bit

copernicus.csar.uiuc.edu
copernicus.csar uiuc.edu
cu.ncsa.uiuc.edu
cu.ncsa.uiuc.edu
cu.ncsa.uiuc.edu
«co.ncsa.uiuc.edu

mpi-linux-ia64-ifort-mpt-icc Good

INCSA SGI Altix with MPI and Intel compiler

mpi-linux-ia64-gm Good

INCSA Teragrid IA64 with MPICH/GM

tg-login.nesa teragrid .org

net-linux-ia64-gm Test skipped

INCSA Teragrid IA64 with native GM 2.0.6

tg-login.ncsa.teragrid.org

net-linux-gm

Bad: Test on remote host failed (1)

INCSA Xeon cluster with native GM

tund nesa.uiuc.edu

mpi-linux-cmpi Good

INCSA Xeon cluster with ChaMPlon/Pro on Myrinet

tunc.ncsa.uiuc.edu

vmi-linux Good

INCSA Xeon cluster with VMI

tund .nesa.uinc.edu

net-ppe-darwin Good

Mac G5 Darwin

turing-3.cse.uiuc.edu

net-ppe-darwin-gm Good

Mac G5 Darwin with native GM 2.0.15

turing-2 cse.niuc.edu

mpi-ppe-darwin-gm-gee Bad: Final tar-up failed (1)

Mac G5 Darwin with MPICH/GM

turing-3 .cse.uiuc.edu

net-ppe-darwin-mx-cc64 | |[Test skipped

Mac G5 Tiger with native MX 1.1.0

turing-4 cse.uiuc.edu

lapi Test skipped

[1BM SP with LAPT

login hpex.ac.uk

net-linux-syncft Good

Suse Linux 9.1 on IA32 (compiled with fault tolerance
support)

skill.cs.uiuc.edu

net-linux-bigsim Good

[BigSim simulator on Suse Linux 9.1

courage.cs.uiuc.edu

uth-linux Good

|singlc-ptoccssar version

spirit.cs.uiuc.edu

Maintained by Gengbin Zheng.
Rewm to Charm++ Home Page

http://charm.cs.uiuc.edu/autobuild/cur/
http://charm.cs.uiuc.edu/autobuild/cur/
mailto:ppl@cs.uiuc.edu
mailto:ppl@cs.uiuc.edu

Charmrun

charmrun +p4 ./pgm

Charmrun

charmrun +p4 ./pgm

Charmrun

charmrun +p4 ./pgm

Acknowledg

Charmrun

charmrun +p4 ./pgm

Charmrun - charmrun +p4 ++batch 2

Charmrun - charmrun +p4 ++batch 2

connect

Charmrun - charmrun +p4 ++batch 2

connect

—

Charmrun - charmrun +p4 ++batch 2

Charmrun - charmrun +p4 ++batch 2

Acknowledg

Charmrun - charmrun +p4 ++batch 2

Dehugging Charm++ Applications

= Sequentially
(standalone mode) .

e gdb ./pgm +vpl1l6 T — T

GHU adb 6.3.50_2004-12-28-cvs (cugwin-special)

Copuright 2004 Free Softuare Foundation, Inc.

CDB 13 free softuare, covered by the GHI General Public License, and you are

welcone to change it and/or distribute copies of it under certain conditions.

. Tupe "shou copying' to see the conditions, MRIEN
There is sbsolutely no warranty for GDB. Tupe "show warrantu” for details. b

This GB uas configured as "1685-pe-cyguin',.,

{adt) run > . PE——
HONE] Starting prograns o teste/d inp learraghel loshel Lo,exe + -] Yhat's new?
+debug

- R GG reming Hello on 2 procsssors for 5 clenents
. Hello O created 3 has been awarded a 2005
Hello 2 oreated]
PAPDlene & created

Hi[17] from element O

Hi[19] fron elewent 2
Tﬁ[)h Hi[21] from element 4
A1l done

AN
b 6.3.50_2004-12-28-cvs (cugwin-special)

I I g E’Em’ J L q i Copyright 2004 Free Software Foundation. Inc,
b GIB is free softusre, covered bu the GMJ General Public License, and you are
HELP uelcone to change it and/or distribute copies of it under certain conditions,
e u g Tupe "show copying” to see the conditions,

r There is absolubely no warranty for BIB. Type "show uarranty’ for details.
PRIUATE HH This CIE was configured as "1686-pe-cuguin’,..

e charmrun + p4 pgm = ! ; Cra— R

+debug
Hello 1 created

: 1BLAPTO] fiello 3 orsated
{Hi[18) fron slenent 1
++debug-no-pause

fault tolerance

Progran exited uith code 01,

b
To ensure relevance and long-term impact, we work in the od 0

-
[} A R T e i
emory paranoi e e i i
Our software is available for download. with mamals, We invite vou to browse our
-
e -memory paranoid

Read charm.cs.uiuc.edu

/ PROGRAMMING LAB

19

® Charm++ scheduler
=" Default - FIFO (oldest message)

= Prioritized execution
= If several messages available,

Charm will process the messages in
the order of their priorities

= Very useful for speculative work,
ordering timestamps, etc...

Priority Classes

® Charm++ scheduler has three
queues: high, default, and low

= As sighed integer priorities:
= High -MAXINT to -1

= Default O
ELow 1 to +MAXINT

= As unsigned bitvector priorities:
" 0x0000 Highest priority -- OX7FFF
= 0x8000 Default priority
" O0x8001 -- OXFFFF Lowest priority

= Number of priority bits passed during
message allocation

FooMsg * msg = new (size, nbits) FooMsg;

= Priorities stored at the end of messages

= Signed integer priorities
*CkPriorityPtr(msg)=-1;
CkSetQueueing(msg, CK_QUEUEING_IFIFO);

= Unsigned bitvector priorities
CkPriorityPtr(msg)[@]=0x7fffffff;

CkSetQueueing(msg, CK_QUEUEING_BFIFO);

= Pass "CKEntryOptions” as last
parameter

® For sighed integer priorities:
CkEntryOptions opts;
opts.setPriority(-1);
fooProxy.bar(x,y,opts);

= For bitvector priorities:
CkEntryOptions opts;
unsigned int prio[2]={0x7FFFFFFF,OxFFFFFFFF};
opts.setPriority(64,prio);

fooProxy.bar(x,y,opts);

= Read-only messages
= Entry method agrees not to modify or delete

the message
= Avoids message copy for broadcasts, saving

time

= Inline messages
= Direct method invocation if on local

processor

= Expedited messages

= Message do not go through the charm++
scheduler (ignore any Charm++ priorities)

" Immediate messages
= Entries are executed in an interrupt or the
communication thread

= Very fast, but tough to get right

= Immediate messages only currently work for
NodeGroups and Group (non-smp) ”

Read-Only, Expedited, Inmediate

® All declared in the .ci file

{

entry
entry
entry
entry

nokeep] void foo_readonly(Msg *);
inline] void foo_inl(Msg *);
expedited] void foo_exp(Msg *);
immediate] void foo_imm(Msg *);

26

mainmodule hello {
include “myType.h”

initnode wvoid myNodeInit () ;
initproc void myInit();

mainchare mymain {
entry mymain (CkArgMsg *m) ;
}i

array[1D] foo {

entry foo(int problemNo) ;
entry void barl (int x);
entry void bar2 (myType x);
}i
}i

® Include
" Include an external header files

® Initcall

= User plugging code to be invoked in
Charm++’'s startup phase

= Inithode
e Called once on every node
= Initproc
e Called once on every processor

® Tnithode calls are called before
Initproc calls

Entry Attributes

Threaded
® Function is invoked in a CthThread
Sync

= Blocking methods, can return values as a
message

= Caller must be a thread

Exclusive

= For Node Group

= Do not execute while other exclusive entry
methods of its node group are executing in the
same node

Notrace

= Invisible to trace projections
® entry [notrace] void recvMsg(multicastGrpMsg *m);

Groupns/Node Groups

/ PROGRAMMING LAB

30

" Groups
= Similar to arrays:
e Broadcasts, reductions, indexing

= But not completely like arrays:
e Non-migratable; one per processor

= Exactly one representative on each

processor
e Ideally suited for system libraries

= Historically called branch office chares
(BOC)

= Node Groups
= One per SMP node

m _cifile
group mygroup {
entry mygroup(); //Constructor
entry void foo(foomsg *); //Entry method
}i
nodegroup mynodegroup {
entry mynodegroup(); //Constructor
entry void foo(foomsg *); //Entry method

}i
m C++ file
class mygroup : public Group {

mygroup() {}
void foo(foomsg *m) { CkPrintf(*Do Nothing”);}
3
class mynodegroup : public NodeGroup {

mynodegroup() {}
void foo(foomsg *m) { CkPrintf(“Do Nothing”);}

b

" Creation
p = CProxy mygroup: :ckNew() ;

= Remote invocation
p.foo (msqg) ; //broadcast
pl[l] .foo(msg); //asynchronous
p.foo(msg, npes, pes); // list send

® Direct local access
mygroup *g=p.ckLocalBranch() ;

g->foo(...); //local invocation

= Danger: if you migrate, the group
stays behind!

Advanced Load-balancers

/ PROGRAMMING LAB

34

Advanced load balancing: Writing a new strategy

= Inherit from CentrallLB and
implement the work(...) function

class foolb : public CentralLB {
public:

void work (CentralLLB::LDStats* stats, int count);

LB Database

struct LDStats {
ProcStats *procs;
LDObjData* objData;
LDCommData* commData;
int *to_proc;
//..

}

//Dummy Work function which assigns all objects to

//processor 0

//Don’t implement it!

void foolLB::work(CentralLB::LDStats* stats,int count){
for (int count=0;count < nobjs; count++)

stats.to_proc[count] = 0;

® Edit and run Makefile_Ib.sh

= Creates Make.lb which is included
by the main Makefile

® Run make depends to correct
dependencies

® Rebuild charm++ and is now
available in —balancer foolB

Threads in Charm++

38

Why use Threads?

® They provide one key feature:
blocking

= Suspend execution (e.g., at message
receive)

= Do something else
= Resume later (e.g., after message

arrives)

= Example: MPI_Recv, MPI_Wait
semantics

® Function call interface more
convenient than message-passing

= Regular call/return structure (no
CkCallbacks) with complete control flow

= Allows blocking in middle of deeply

Why not use Threads?

® Slower

= Around 1us context-switching overhead
unavoidable

= Creation/deletion perhaps 10us

= Migration more difficult
= State of thread is scattered through

stack, which is maintained by compiler

= By contrast, state of object is maintained
by users

® Thread disadvantages form the
motivation to use SDAG (later)

— Process
= CthThreads
Pthreads

500 1000 5000 15000

What are (Converse) Threads?

= One flow of control (instruction
stream)

= Machine Registers & program counter
= Execution stack

= Like pthreads (kernel threads)

= Only different:
= Implemented at user level (in Converse)
= Scheduled at user level; non-preemptive
= Migratable between nodes

How do | use Threads?

= Many options:
= AMPI
e Always uses threads via TCharm library

= Charm++
e [threaded] entry methods run in a thread
e [sync] methods

= Converse
e C routines CthCreate/CthSuspend/CthAwaken
e Everything else is built on these

e Implemented using
e SYSV makecontext/setcontext
* POSIX setjmp/alloca/longjmp
o Assembly code

How do | use Threads [example)

= Blocking API routine: find array element

int requestFoo (int src) {
myObject *obj=...;
return obj->fooRequest (src)
}

= Send request and suspend
int myObject: : fooRequest (int src) {

proxy [dest] . fooNetworkRequest (thisIndex) ;
stashed thread=CthSelf() ;

CthSuspend() ; // -- blocks until awaken call --
return stashed return;

}

= Awaken thread when data arrives
void myObject: : fooNetworkResponse (int ret) {
stashed return=ret;
CthAwaken (stashed thread);
}

How do | use Threads [example)

= Send request, suspend, recv, awaken, return
int myObject: : fooRequest (int src) {
proxy|[dest] . fooNetworkRequest (thisIndex) ;
stashed thread=CthSelf() ;

CthSuspend() ;
void myObject: : fooNetworkResponse (int ret) {

stashed return=ret;

CthAwaken (stashed thread);

return stashed;return;

Thread Migration

46

® The stack is used by the compiler to
track function calls and provide
temporary storage

® Local Variables
= Subroutine Parameters

= C "alloca” storage

= Most of the variables in a typical
application are stack data

® Stack is allocated by Charm run-time
as heap memory (+stacksize)

= Without compiler support, cannot
change stack’s address
= Because we can’t change stack’s interior

pointers (return frame pointer, function
arguments, etc.)

= Existing pointers to addresses in
original stack become invalid

® Solution: “isomalloc” addresses

= Reserve address space on every processor
for every thread stack

= Use mmap to scatter stacks in virtual
memory efficiently

= Jdea comes from PM2

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 1 stack

Thread 3

Heap

Heap

Globals Globals
Code Code

0x00000000 0x00000000

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 1 stack

Thread 2 stack

Thread 4 stack

Thread 3 stack

Heap Heap

Globals Globals
Code Code

0x00000000 0x00000000

Isomalloc is a completely automatic
solution

= No changes needed in application or
compilers

= Just like a software shared-memory
system, but with proactive paging

But has a few limitations

= Depends on having large quantities of
virtual address space (best on 64-bit)

e 32-bit machines can only have a few gigs of
isomalloc stacks across the whole machine

= Depends on unportable mmap
e Which addresses are safe? (We must guess!)
e What about Windows? Or Blue Gene?

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 3 stack

Heap

Thread 2 stack Heap

Globals Globals
Code Code

0x00000000 0x00000000

Aliasing Stack Data: Run Thread 2

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 2 stack j Execution Copy

Thread 3 stack

Heap

Thread 2 stack - Heap

Globals Globals
Code Code

0x00000000 0x00000000

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 3 stack

Heap

Thread 2 stack Heap

Globals Globals
Code Code

0x00000000 0x00000000

Aliasing Stack Data: Run Thread 3

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Thread 3 stack g Execution Copy

Thread 3 stack 1

Heap

Thread 2 stack Heap

Globals Globals
Code Code

0x00000000 0x00000000

Processor A's Memory Processor B's Memory

OXFFFFFFFF

OXFFFFFFFF

Migrate

Thread 3 stack

Thread 3

Heap

\ Thread 3 stack

Heap

Thread 2 stack

Globals
Code

0x00000000

Globals
Code

0x00000000

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Heap Thread 3 stack

Heap

Thread 2 stack

Globals Globals
Code Code

0x00000000 0x00000000

Processor A's Memory Processor B's Memory
OXFFFFFFFF OXFFFFFFFF

Execution Copy Thread 3 stack

Heap Thread 3 stack

Heap
Thread 2 stack

Globals Globals
Code Code

0x00000000 0x00000000

= Does not de?end on having large
quantities of virtual address space

® Works well on 32-bit machines

" Requires only one mmap’d region at
a time
= Works even on Blue Gene!

® Downsides:

= Thread context switch requires munmap/
mmap (3us)

= Can only have one thread running at a
time (so no SMP’s!)
" "-thread memoryalias” link time
option

= Heap data is any dynamically
allocated data
= C "malloc” and “free”
" C++ "new” and “delete”
=" FOO “"ALLOCATE"” and

“DEALLOCATE"

= Arrays and linked data structures

are almost always heap data

= Automatic solution: isomalloc all heap
data just like stacks!

= “-memory isomalloc” link option
= Overrides malloc/free
= No new application code needed

= Same limitations as isomalloc; page
allocation granularity (huge!)

= Manual solution: application moves its
heap data

= Need to be able to size message buffer,
pack data into message, and unpack on
other side

= “"pup” abstraction does all three

62

= Customized implementation of
messaging
= Enables Charm++ proxy messages to be
forwarded to a delegation manager group

Delegation manager

= trap calls to proxy sends and apply
optimizations

= Delegation manager must inherit
from CkDelegateMgr class

= User program must to call
= proxy.ckDelegate(mgrID);

.Ci file
group MyDelegateMgr {

entry MyDelegateMgr(); //Constructor
};

.h file

class MyDelegateMgr : public CkDelegateMgr ({
MyDelegateMgr () ;

void ArraySend(...,int ep,void *m,const
CkArrayIndexMax &idx,CkArrayID a);

void ArrayBroadcast(..);

void ArraySectionSend(.., CkSectionID &s);

Array Multicast

65

Array Multicast/reduction library

= Array section - a subset of chare array

= Array section creation
= Enumerate array indices

CkVec<CkArraylndex3D> elems; // add array indices
for (int i=0; 1<10; 1++)
for (int j=0; j<20; j+=2)
for (int k=0; k<30; k+=2)
elems. push back(CkArrayIndex3D(1 1, K));
CProxySection_Hello proxy = CProxySection_Hello::ckNew(helloArrayID, elems.getVec(),

elems.size());

= Alternatively, one can do the same thing by providing
(Ibound:ubound:stride) for each dimension:

CProxySection Hello proxy = CProxySection Hello::ckNew(helloArraylD, 0, 9, 1, 0, 19, 2, 0,
29, 2);

e The above code creates a section proxy that contains array

elements of [0:9, 0:19:2, 0:29:2].

= For user-defined array index other than CkArrayIndex1D to
CkArraK ndex6D one needs to use the generic array index

type: C

ArrayIn exMax.

CkArraylndexMax *elems; // add array indices

int numElems;

CProxySection_Hello proxy = CProxySection Hello::ckNew(helloArrayID, elems,
numElems);

Array Section Multicast

® Once have the array section
proxy

® do multicast to all the section

members:
* CProxySection Hello proxy;
proxy.foo(msg) // multicast

" send messages to one member

using its local index
 proxy[0].foo(msg)

Array Section Multicast

® Multicast via delegation
= CkMulticast communication library

®m CProxySection Hello sectProxy = CProxySection Hello::ckNew();
CkGroupID mCastGrpld = CProxy CkMulticastMgr::ckNew();
CkMulticastMgr *mcastGrp = CProxy CkMulticastMgr
(mCastGrpld).ckLocalBranch();

sectProxy.ckSectionDelegate(mCastGrpld); // initialize proxy

sectProxy.foo(...); //multicast via delegation

" Note, to use CkMulticast library, all multicast
messages must inherit from CkMcastBaseMsg, as
following:

class HiMsg : public CkMcastBaseMsg, public CMessage HiMsg

{ .
public:

int *data;

55

Array Section Reduction

= Section reduction with
delegation

® Use default reduction
callback

CProxySection_Hello sectProxy;

CkMulticastMgr *mcastGrp = CProxy CkMulticastMgr
(mCastGrpld).ckLocalBranch();

mcastGrp->setReductionClient(sectProxy, new CkCallback(...));

® Reduction

CkGetSectionInfo(sid, msg);
CkCallback cb(CkIndex myArray::foo(NULL),thisProxy);
mcastGrp->contribute(sizeof(int), &data, CkReduction::sum int, sid,

cb);

= Works with migration

" When intermediate nodes migrate

e When migrates, multicast tree will be
automatically rebuilt

= Root processor

e Application needs to initiate the rebuild
e Will change to automatic in future

/1

= What is it?
= A coordination language built on top of
Charm++

= Express control flow in interface file

® Motivation

= Charm++’s asynchrony is efficient and
reliable, but tough to program
e Split phase - Flags, buffering, out-of-order
receives, etc.
" Threads are easy to program, but less
efficient and less reliable
e Implementation complexity
e Porting headaches

= Want benefits of both!

" when <method list> {code}

= Do not continue until method is called
e Internally generates flags, checks, etc.
e Does not use threads
= atomic {code}
= Call ordinary sequential C++ code

" if/else/for/while
® C-like control flow

= overlap {codel code2 ...}
= Execute code segments in parallel

= forall
= “Parallel Do”
= Like a parameterized overlap

array[1D] myArray {

entry void GetMessages () {
when rightmsgEntry(), leftmsgEntry() {
atomic {
CkPrintf(“Got both left and right messages \n”);
doWork(right, left); }

+s

entry void rightmsgEntry();
entry void leftmsgEntry();

i$

Overiap for LeanMD Initialization

array[1D] myArray {

entry void waitForInit(void) {
overlap {
when recvNumCellPairs(myMsg* pMsg) {
atomic { setNumCellPairs(pMsg->intVal); delete
pMsg; }
ks
when recvNumCells(myMsg * cMsg) {
atomic { setNumCells(cMsg->intVal); delete cMsg; }

For for LeanMD timeloop

entry void doTimeloop(void) {
for (timeStep_=1; timeStep_<=SimParam.NumSteps; timeStep++) {
atomic {sendAtomPos(); }

overlap {
for (forceCount_=0; forceCount_<numForceMsg_; forceCount_++) {
when recvForces(ForcesMsg* msg) { atomic {procForces(msg); } }

}

for (pmeCount_=0; pmeCount_<nPME; pmeCount_++) {
when recvPME(PMEGridMsg* m) {atomic {procPME(m);}}
¥
hy

atomic { doIntegration(); }

if (timeForMigrate()) { ... }

Thank You!

Free source, binaries, manuals,
and more information at:
http:/ /charm.cs.uiuc.edu

Parallel Programming Lab
at University of Illinois

ROGRAMMING LAB

http://charm.cs.uiuc.edu/
http://charm.cs.uiuc.edu/

