
1Charm++ 2007 Kathy Yelick

Compilation Techniques for
Partitioned Global Address Space

Languages

Katherine Yelick

U.C. Berkeley and Lawrence Berkeley National Lab

http://titanium.cs.berkeley.edu
http://upc.lbl.gov

Kathy Yelick, 2Charm++ 2007

HPC Programming: Where are We?

• IBM SP at NERSC/LBNL has as 6K processors
• There were 6K transistors in the Intel 8080a implementation

• BG/L at LLNL has 64K processor cores
• There were 68K transistors in the MC68000

• A BG/Q system with 1.5M processors may have more
processors than there are logic gates per processor

• HPC Applications developers today write programs that
are as complex as describing where every single bit must
move between the 6,000 transistors of the 8080a

• We need to at least get to “assembly language” level

Slide source: Horst Simon and John Shalf, LBNL/NERS C

Kathy Yelick, 3Charm++ 2007

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM

#1

#500

Petaflop with ~1M Cores By 2008
1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common
by 2015?

Kathy Yelick, 4Charm++ 2007

Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common

in HPC by 2015 (all top 500 machines will have this)

• Performance will become a software problem
• Parallelism and locality are key will be concerns for

many programmers – not just an HPC problem

• A new programming model will emerge for
multicore programming
• Can one language cover laptop to top500 space?

5Charm++ 2007 Kathy Yelick

PGAS Languages:
What, Why, and How

Kathy Yelick, 6Charm++ 2007

Partitioned Global Address Space
• Global address space: any thread/process may directly

read/write data allocated by another
• Partitioned: data is designated as local or global

G
lo

ba
l a

dd
re

ss
 s

pa
ce x: 1

y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0 p1 pn

By default:
• Object heaps

are shared
• Program

stacks are
private

• SPMD languages: UPC, CAF, and Titanium
• All three use an SPMD execution model
• Emphasis in this talk on UPC and Titanium (based on Java)

• Dynamic languages: X10, Fortress, Chapel and Charm++

Kathy Yelick, 7Charm++ 2007

PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10]; and shared int y[10];

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.

Kathy Yelick, 8Charm++ 2007

PGAS Language for Multicore
• PGAS languages are a good fit to shared

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when

we get to >100 cores per chip
• Also may be exploited for processor with explicit local

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an

advantage (for performance) and constraining

Kathy Yelick, 9Charm++ 2007

PGAS Languages on Clusters:
One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly by a network
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a rec eive to
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea

Kathy Yelick, 10Charm++ 2007

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

B
an

dw
id

th
 (M

B
/s

)

GASNet put (nonblock)"

MPI Flood

Re lative B W (GASNet/MPI)

1.0
1.2

1.4
1.6

1.8
2.0

2.2
2.4

10 1000 100000 10000000

Size (bytes)

• InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9 .5
• Half power point (N ½) differs by one order of magnitude
• This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron
processors

Kathy Yelick, 11Charm++ 2007

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (

us
ec

)

MPI ping-pong

GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bon achea

Kathy Yelick, 12Charm++ 2007

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
er

ce
nt

 H
W

 p
ea

k
(B

W
 in

 M
B

)

MPI
GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bon achea

Kathy Yelick, 13Charm++ 2007

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714
231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

P
er

ce
nt

 H
W

 p
ea

k

MPI
GASNet

Joint work with UPC Group; GASNet design by Dan Bon achea

Kathy Yelick, 14Charm++ 2007

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bo nachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with

same destination

Kathy Yelick, 15Charm++ 2007

NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too high
• Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

M yrinet 64

Infin iBand 256
E lan3 256

E lan3 512
E lan4 256

E lan4 512

M
F
lo
ps
 p
er
 T
hr
ea
d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
ps

 p
er

 T
hr

ea
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

.5 Tflops

Myrinet Infiniband Elan3 Elan3 Elan 4 Elan4
#procs 64 256 256 512 256 512

M
F

lo
ps

pe
r

T
hr

ea
d

Chunk (NAS FT with FFTW)
Best MPI (always slabs)
Best UPC (always pencils)

Kathy Yelick, 16Charm++ 2007

Top Ten PGAS Problems
1. Pointer localization
2. Automatic aggregation of communication
3. Synchronization strength reduction
4. Automatic overlap of communication
5. Collective communication scheduling
6. Data race detection
7. Deadlock detection
8. Memory consistency
9. Global view ���� local view
10.Mixed Task and Data Parallelism

op
tim

iz
at

io
n

an
al

ys
is

la
ng

ua
ge

Kathy Yelick, 17Charm++ 2007

Optimizations in Titanium
• Communication optimizations are done
• Analysis in Titanium is easier than in UPC:

• Strong typing helps with alias analysis
• Single analysis identifies global execution points that all

threads will reach “together” (in same synch phase)
• I.e., a barrier would be legal here

• Allows global optimizations
• Convert remote reads to remote writes by other side
• Perform global runtime analysis (inspector-executor)
• Especially useful for sparse matrix code with indirection:

y [i] = … a[b[i]]

Joint work with Jimmy Su

Kathy Yelick, 18Charm++ 2007

Global Communication Optimizations
Itanium/Myrinet Speedup Comparison

1

1.1

1.2

1.3

1.4

1.5

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

matrix number

sp
ee

du
p

average speedup maximum speedup

Sparse Matrix-Vector Multiply on Itanium/Myrinet
Speedup of Titanium over Aztec Library

• Titanium code is written with fine-grained remote accesses
• Compile identifies legal “inspector” points

• Runtime selects (pack, bounding box) per machine / matrix / thread pair
Joint work with Jimmy Su

Kathy Yelick, 19Charm++ 2007

Parallel Program Analysis
• To perform optimizations, new analyses are

needed for parallel languages
• In a data parallel or serial (auto-parallelized)

language, the semantics are serial
• Analysis is “easier” but more critical to performance

• Parallel semantics requires
• Concurrency analysis: which code sequences may run

concurrently
• Parallel alias analysis: which accesses could conflict

between threads

• Analysis is used to detect races, identify
localizable pointers, and ensure memory
consistency semantics (if desired)

Kathy Yelick, 20Charm++ 2007

• Relies on Titanium’s textual barriers and single-
valued expressions

• Titanium has textual barriers : all threads must
execute the same textual sequence of barriers
(this is illegal)

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

• Single-valued expressions used to enforce
textual barriers while permitting useful programs

single boolean allGo = broadcast go from 0;
if (allGo) Ti.barrier();

• May also be used in loops to ensure same
number of iterations

Concurrency Analysis in Titanium

Joint work with Amir Kamil and Jimmy Su

Kathy Yelick, 21Charm++ 2007

Concurrency Analysis
• Graph generated from program as follows:

• Node for each code segment between barriers and single
conditionals

• Edges added to represent control flow between segments
• Barrier edges removed

• Two accesses can run concurrently if:
• They are in the same node, or
• One access’s node is reachable from the other access’s node

// segment 1

if ([single])

// segment 2

else

// segment 3

// segment 4

Ti.barrier()

// segment 5

1

2 3

4

5

barrier

Joint work with Amir Kamil and Jimmy Su

Kathy Yelick, 22Charm++ 2007

Alias Analysis
• Allocation sites correspond to abstract

locations (a-locs)
• Abstract locations (a-locs) are typed

• All explicit and implicit program variables
have points-to sets
• Each field of an object has a separate set
• Arrays have a single points-to set for all elements

• Thread aware: Two kinds of abstract
locations: local and remote
• Local locations reside in local thread’s memory
• Remote locations reside on another thread
• Generalizes to multiple levels (thread, node, cluster)

Joint work with Amir Kamil

Kathy Yelick, 23Charm++ 2007

Benchmarks

AMR Poisson (elliptic) solver 4700amr-poisson

Hyperbolic AMR solver for gas dynamics8841amr-gas

Sparse matrix-vector multiply1493spmv

Computational fluid dynamics kernel1090gsrb

Fourier transform6143d-fft

Dense linear algebra420lu-fact

Parallel sort321sample-sort

Dense matrix-vector multiply122demv

Monte Carlo integration56pi

DescriptionLines 1Benchmark

1 Line counts do not include the reachable portion of the
37,000 line Titanium/Java 1.0 libraries

Joint work with Amir Kamil

Kathy Yelick, 24Charm++ 2007

• Analyses of varying levels of precision
Analysis Levels

Concurrency analysis + hierarchical (on
and off node) thread-aware alias analysis

concur-multi-
level-pointer

Previous constraint-based type analysis
by Aiken, Gay, and Liblit (different
versions for each client)

old
LQI/SQI/Sharing

All heap accessesnaïve

DescriptionAnalysis

Joint work with Amir Kamil

Kathy Yelick, 25Charm++ 2007

Local Qualification Inference

0

10

20

30

40

50

60

70

80

90

100

3d-fft amr-
poisson

amr-gas gsrb lu-fact pi pps sample-
sort

demv spmv

Benchmark

%
 o

f D
ec

la
ra

tio
ns

Old Constraint-Based (LQI)
Thread-Aware Pointer Analysis
Hierarchical Pointer Analysis

Declarations Identified as “Local”

Local pointers are both faster and smaller

Joint work with Amir Kamil

Kathy Yelick, 26Charm++ 2007

Private Qualification Inference

0

10

20

30

40

50

60

70

80

90

100

3d-fft amr-
poisson

amr-gas gsrb lu-fact pi pps sample-
sort

demv spmv

Benchmark

%
 o

f D
ec

la
ra

tio
ns

Old Type-Based SQI

Thread-Aware Pointer Analysis

Declarations Identified as Private

Private data may be cached and is known not to be in a race

Joint work with Amir Kamil

27Charm++ 2007 Kathy Yelick

Making PGAS Real:
Applications and Portability

Kathy Yelick, 28Charm++ 2007

Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement

(AMR) is challenging
• Irregular data accesses and

control from boundaries
• Mixed global/local view is useful

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available

Kathy Yelick, 29Charm++ 2007

Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs
• All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

• General approach
• Language allow programmer

optimizations
• Compiler/runtime does some

automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI
(Chombo)

Li
ne

s
of

 C
od

e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Kathy Yelick, 30Charm++ 2007

Performance of Titanium AMR
Speedup

0

10

20

30

40

50

60

70

80

16 28 36 56 112

#procs

sp
ee

du
p

Ti Chombo

• Serial: Titanium is within a few % of C++/F; someti mes faster!
• Parallel: Titanium scaling is comparable with gener ic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable
parallel
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella

Kathy Yelick, 31Charm++ 2007

Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …

• Complicated parallelization
• Particle/Mesh method, but “Particles” connected

into materials (1D or 2D structures)
• Communication patterns irregular between particles

(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000

Fortran

4000

Titanium

Note: Fortran code is not parallel

Kathy Yelick, 32Charm++ 2007

Immersed Boundary Method Performance

Hand-Optimized
(planes, 2004)

0

10

20

30

40

50

1 2 4 8 16 32 64 128
procs

tim
e

(s
ec

s)

256^3 on Power3/Colony

512^3 on Power3/Colony

512^2x256 on Pent4/Myrinet

Automatically Optimized
(sphere, 2006)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

procs

tim
e

(s
ec

s)

128 3̂ on Power4/Federation

256 3̂ on Power4/Federation

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen

Kathy Yelick, 33Charm++ 2007

Kathy Yelick, 34Charm++ 2007

Beyond the SPMD Model: Mixed Parallelism

• UPC and Titanium uses a static threads (SPMD)
programming model
• General, performance-transparent
• Criticized as “local view” rather than “global view”

• “for all my array elements”, or “for all my blocks”

• Adding extension for data parallelism
• Based on collective model:

• Threads gang together to do data parallel operations
• Or (from a different perspective) single data-parallel thread can

split into P threads when needed

• Compiler proves that threads are aligned at barriers,
reductions and other collective points

• Already used for global optimizations: read � writes transform
• Adding support for other data parallel operations

Joint work with Parry Husbands

Kathy Yelick, 35Charm++ 2007

Beyond the SPMD Model: Dynamic Threads
• UPC uses a static threads (SPMD) programming model

• No dynamic load balancing built-in, although some examples
(Delaunay mesh generation) of building it on top

• Berkeley UPC model extends basic memory semantics (remote
read/write) with active messages

• AM have limited functionality (no messages except acks) to avoid
deadlock in the network

• A more dynamic runtime would have many uses
• Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied
• Dynamic load balancing (e.g., random stealing) without locality
• Static parallelism (with threads = processors) with locality

• Charm++ has virtualized processes with locality
• How much “unnecessary” parallelism can it support?

Joint work with Parry Husbands

Kathy Yelick, 36Charm++ 2007

• How important is locality and what is locality relationship?
• Some tasks must run with dependent tasks to re-use state
• If data is small or compute:communicate ratio large, locality less important
• Can we build runtimes that work for the hardest case: general dag with large

data and small compute

Task Scheduling Problem Spectrum

Kathy Yelick, 37Charm++ 2007

Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands

Completed part of U

Kathy Yelick, 38Charm++ 2007

Parallel Tasks in LU

• Theoretical and practical problem: Memory deadlock
• Not enough memory for all tasks at once. (Each update needs two

temporary blocks, a green and blue, to run.)
• If updates are scheduled too soon, you will run out of memory
• If updates are scheduled too late, critical path will be delayed.

some edges omitted

Kathy Yelick, 39Charm++ 2007

LU in UPC + Multithreading
• UPC uses a static threads (SPMD) programming model

• Used to mask latency and to mask dependence delays
• Three levels of threads:

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Hard problems

• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance)
• Resource management can deadlock memory allocator if not careful
• Collectives (asynchronous reductions for pivoting) need high priority

Joint work with Parry Husbands

Kathy Yelick, 40Charm++ 2007

UPC HP Linpack Performance

X1 UPC vs. MPI/HPL

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron
cluster
UPC vs.
MPI/HPL

0

50

100

150

200

Opt/64

G
F

lo
p

/s

MPI/HPL

UPC

Altix UPC.
Vs.

MPI/HPL

0

20

40

60

80

100

120

140

160

Alt/32
G

F
lo

p
/s

MPI/HPL

UPC

•Faster than ScaLAPACK due to less synchronization
•Comparable to MPI HPL (numbers from HPCC database)
•Large scaling of UPC code on Itanium/Quadrics (Thun der)

• 2.2 TFlops on 512p and 4.4 TFlops on 1024p

Joint work with Parry Husbands

UPC vs.
ScaLAPACK

0

20

40

60

80

2x4 pr oc gr id 4x4 pr oc gr i d

G
F

lo
ps

ScaLAPACK

UPC

Kathy Yelick, 41Charm++ 2007

HPCS Languages
• DARPA HPCS languages

• X10 from IBM, Chapel from Cray, Fortress from Sun

• Many interesting differences
• Atomics vs. transactions
• Remote read/write vs. remote invocation
• Base language: Java vs. a new language
• Hierarchical vs. flat space of virtual processors

• Many interesting commonalities
• Mixed task and data parallelism

• Data parallel operations are “one-sided” not collective: one
thread can invoke a reduction without any help from others

• Distributed arrays with user-defined distributions
• Dynamic load balancing built in

Kathy Yelick, 42Charm++ 2007

Conclusions and Open Questions
• Best time ever for a new parallel language

• Community is looking for parallel programming solutions
• Not just an HPC problem

• Current PGAS Languages
• Good fit for shared and distributed memory
• Control over locality and (for better or worse) SPMD

• Need to break out of strict SPMD model
• Load imbalance, OS noise, faults tolerance, etc.
• Managed runtimes like Charm++ add generality

• Some open language questions
• Can we get the best of global view (data-parallel) and local

view in one efficient parallel language
• Will non-SPMD languages have sufficient resource control for

applications with complex task graph structures?

