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HPC Programming: Where are We?

• IBM SP at NERSC/LBNL has as 6K processors
• There were 6K transistors in the Intel 8080a implementation 

• BG/L at LLNL has 64K processor cores
• There were 68K transistors in the MC68000 

• A BG/Q system with 1.5M processors may have more 
processors than there are logic gates per processor

• HPC Applications developers today write programs that 
are as complex as describing where every single bit must 
move between the 6,000 transistors of the 8080a

• We need to at least get to “assembly language” level

Slide source: Horst Simon and John Shalf, LBNL/NERS C



Kathy Yelick,  3Charm++ 2007                       

100

1000

10000

100000

1E+06

1E+07

1E+08

1E+09

1E+10

1E+11

1E+12

1993 1996 1999 2002 2005 2008 2011 2014

SUM

#1

#500

Petaflop with ~1M Cores By 2008 
1Eflop/s

100 Pflop/s

10 Pflop/s

1 Pflop/s

100 Tflop/s

10 Tflops/s

1 Tflop/s

100 Gflop/s

10 Gflop/s

1 Gflop/s

10 MFlop/s

1 PFlop system in 2008

Slide source Horst Simon, LBNL

Data from top500.org

6-8 years

Common 
by 2015?



Kathy Yelick,  4Charm++ 2007                       

Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common 

in HPC by 2015 (all top 500 machines will have this)

• Performance will become a software problem
• Parallelism and locality are key will be concerns for 

many programmers – not just an HPC problem

• A new programming model will emerge for 
multicore programming
• Can one language cover laptop to top500 space?
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PGAS Languages: 
What, Why, and How
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Partitioned Global Address Space
• Global address space: any thread/process may directly 

read/write data allocated by another
• Partitioned: data is designated as local or global
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• SPMD languages: UPC, CAF, and Titanium 
• All three use an SPMD execution model 
• Emphasis in this talk on UPC and Titanium (based on Java)

• Dynamic languages: X10, Fortress, Chapel and Charm++
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PGAS Language Overview

• Many common concepts, although specifics differ
• Consistent with base language, e.g., Titanium is strongly typed

• Both private and shared data
• int x[10];      and shared int y[10]; 

• Support for distributed data structures
• Distributed arrays; local and global pointers/references

• One-sided shared-memory communication 
• Simple assignment statements: x[i] = y[i]; or t = *p;
• Bulk operations: memcpy in UPC, array ops in Titanium and CAF

• Synchronization
• Global barriers, locks, memory fences

• Collective Communication, IO libraries, etc.
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PGAS Language for Multicore
• PGAS languages are a good fit to shared 

memory machines
• Global address space implemented as reads/writes
• Current UPC and Titanium implementation uses threads
• Working on System V shared memory for UPC

• “Competition” on shared memory is OpenMP
• PGAS has locality information that may be important when 

we get to >100 cores per chip
• Also may be exploited for processor with explicit local 

store rather than cache, e.g., Cell processor
• SPMD model in current PGAS languages is both an 

advantage (for performance) and constraining
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PGAS Languages on Clusters: 
One-Sided vs Two-Sided Communication

• A one-sided put/get message can be handled directly  by a network 
interface with RDMA support
• Avoid interrupting the CPU or storing data from CPU (preposts)

• A two-sided messages needs to be matched with a rec eive to 
identify memory address to put data
• Offloaded to Network Interface in networks like Quadrics
• Need to download match tables to interface (from host)

address

message id

data payload

data payload

one-sided put message

two-sided message

network
interface

memory

host
CPU

Joint work with Dan Bonachea
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One-Sided vs. Two-Sided: Practice
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GASNet: Portability and High-Performance
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GASNet at least as high (comparable) for large messages
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Joint work with UPC Group; GASNet design by Dan Bon achea
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GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance
Flood Bandwidth for 4KB messages
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Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bo nachea

chunk = all rows with same destination

pencil = 1 row

• Three approaches:
• Chunk:

• Wait for 2nd dim FFTs to finish
• Minimize # messages

• Slab:
• Wait for chunk of rows destined 

for 1 proc to finish
• Overlap with computation

• Pencil:
• Send each row as it completes
• Maximize overlap and
• Match natural layout slab = all rows in a single plane with 

same destination
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NAS FT Variants Performance Summary

• Slab is always best for MPI; small message cost too  high
• Pencil is always best for UPC; more overlap
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Top Ten PGAS Problems
1. Pointer localization
2. Automatic aggregation of communication
3. Synchronization strength reduction
4. Automatic overlap of communication
5. Collective communication scheduling
6. Data race detection
7. Deadlock detection
8. Memory consistency
9. Global view ���� local view
10.Mixed Task and Data Parallelism
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Optimizations in Titanium
• Communication optimizations are done 
• Analysis in Titanium is easier than in UPC:

• Strong typing helps with alias analysis
• Single analysis identifies global execution points that all 

threads will reach “together” (in same synch phase)
• I.e., a barrier would be legal here

• Allows global optimizations
• Convert remote reads to remote writes by other side
• Perform global runtime analysis (inspector-executor)
• Especially useful for sparse matrix code with indirection:

y [i] = … a[b[i]] 

Joint work with Jimmy Su
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Global Communication Optimizations
Itanium/Myrinet Speedup Comparison
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• Titanium code is written with fine-grained remote accesses
• Compile identifies legal “inspector” points

• Runtime selects (pack, bounding box) per machine / matrix / thread pair
Joint work with Jimmy Su
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Parallel Program Analysis
• To perform optimizations, new analyses are 

needed for parallel languages
• In a data parallel or serial (auto-parallelized) 

language, the semantics are serial
• Analysis is “easier” but more critical to performance

• Parallel semantics requires
• Concurrency analysis: which code sequences may run 

concurrently
• Parallel alias analysis: which accesses could conflict 

between threads

• Analysis is used to detect races, identify 
localizable pointers, and ensure memory 
consistency semantics (if desired)
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• Relies on Titanium’s textual barriers and single-
valued expressions

• Titanium has textual barriers : all threads must 
execute the same textual sequence of barriers 
(this is illegal)

if (Ti.thisProc() % 2 == 0)
Ti.barrier(); // even ID threads

else
Ti.barrier(); // odd ID threads

• Single-valued expressions used to enforce 
textual barriers while permitting useful programs

single boolean allGo = broadcast go from 0; 
if (allGo) Ti.barrier();

• May also be used in loops to ensure same 
number of iterations

Concurrency Analysis in Titanium

Joint work with Amir Kamil and Jimmy Su
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Concurrency Analysis
• Graph generated from program as follows:

• Node for each code segment between barriers and single 
conditionals

• Edges added to represent control flow between segments
• Barrier edges removed

• Two accesses can run concurrently if:
• They are in the same node, or
• One access’s node is reachable from the other access’s node

// segment 1

if ([single])

// segment 2

else

// segment 3

// segment 4

Ti.barrier()

// segment 5

1

2 3

4

5

barrier

Joint work with Amir Kamil and Jimmy Su
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Alias Analysis
• Allocation sites correspond to abstract 

locations (a-locs)
• Abstract locations (a-locs) are typed

• All explicit and implicit program variables 
have points-to sets
• Each field of an object has a separate set
• Arrays have a single points-to set for all elements

• Thread aware: Two kinds of abstract 
locations: local and remote
• Local locations reside in local thread’s memory
• Remote locations reside on another thread
• Generalizes to multiple levels (thread, node, cluster)

Joint work with Amir Kamil
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Benchmarks

AMR Poisson (elliptic) solver 4700amr-poisson

Hyperbolic AMR solver for gas dynamics8841amr-gas

Sparse matrix-vector multiply1493spmv

Computational fluid dynamics kernel1090gsrb

Fourier transform6143d-fft

Dense linear algebra420lu-fact

Parallel sort321sample-sort

Dense matrix-vector multiply122demv

Monte Carlo integration56pi

DescriptionLines 1Benchmark

1 Line counts do not include the reachable portion of the 
37,000 line Titanium/Java 1.0 libraries

Joint work with Amir Kamil
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• Analyses of varying levels of precision
Analysis Levels

Concurrency analysis + hierarchical (on 
and off node) thread-aware alias analysis

concur-multi-
level-pointer

Previous constraint-based type analysis 
by Aiken, Gay, and Liblit (different 
versions for each client)

old 
LQI/SQI/Sharing

All heap accessesnaïve

DescriptionAnalysis

Joint work with Amir Kamil
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Local Qualification Inference
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Private Qualification Inference
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Making PGAS Real:
Applications and Portability



Kathy Yelick,  28Charm++ 2007                       

Coding Challenges: Block-Structured AMR
• Adaptive Mesh Refinement 

(AMR) is challenging
• Irregular data accesses and 

control from boundaries
• Mixed global/local view is useful 

AMR Titanium work by Tong Wen and Philip Colella

Titanium AMR benchmark available
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Languages Support Helps Productivity

C++/Fortran/MPI AMR
• Chombo package from LBNL
• Bulk-synchronous comm:

• Pack boundary data between procs
• All optimizations done by programmer

Titanium AMR
• Entirely in Titanium
• Finer-grained communication

• No explicit pack/unpack code
• Automated in runtime system

• General approach
• Language allow programmer 

optimizations
• Compiler/runtime does some 

automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su
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Performance of Titanium AMR
Speedup
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• Serial: Titanium is within a few % of C++/F; someti mes faster!
• Parallel: Titanium scaling is comparable with gener ic optimizations

- optimizations (SMP-aware) that are not in MPI code
- additional optimizations (namely overlap) not yet implemented

Comparable 
parallel 
performance

Joint work with Tong Wen, Jimmy Su, Phil Colella
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Particle/Mesh Method: Heart Simulation
• Elastic structures in an incompressible fluid.

• Blood flow, clotting, inner ear, embryo growth, …

• Complicated parallelization
• Particle/Mesh method, but  “Particles” connected 

into materials (1D or 2D structures)
• Communication patterns irregular between particles 

(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama,  Charlie Peskin, Dave McQueen

2D Dirac Delta Function

Code Size in Lines

8000

Fortran

4000

Titanium

Note: Fortran code is not parallel
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Immersed Boundary Method Performance

Hand-Optimized 
(planes, 2004)

0

10

20

30

40

50

1 2 4 8 16 32 64 128
procs

tim
e 

(s
ec

s)

256^3 on Power3/Colony

512^3 on Power3/Colony

512^2x256 on Pent4/Myrinet

Automatically Optimized 
(sphere, 2006)

0

0.5

1

1.5

2

1 2 4 8 16 32 64 128

procs

tim
e 

(s
ec

s)

128 3̂ on Power4/Federation

256 3̂ on Power4/Federation

Joint work with Ed Givelberg, Armando Solar-Lezama,  Charlie Peskin, Dave McQueen
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Beyond the SPMD Model: Mixed Parallelism

• UPC and Titanium uses a static threads (SPMD) 
programming model
• General, performance-transparent 
• Criticized as “local view” rather than “global view”

• “for all my array elements”, or “for all my blocks”

• Adding extension for data parallelism
• Based on collective model:

• Threads gang together to do data parallel operations
• Or (from a different perspective) single data-parallel thread can 

split into P threads when needed

• Compiler proves that threads are aligned at barriers, 
reductions and other collective points

• Already used for global optimizations: read � writes transform
• Adding support for other data parallel operations

Joint work with Parry Husbands
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Beyond the SPMD Model: Dynamic Threads
• UPC uses a static threads (SPMD) programming model

• No dynamic load balancing built-in, although some examples 
(Delaunay mesh generation) of building it on top

• Berkeley UPC model extends basic memory semantics (remote 
read/write) with active messages

• AM have limited functionality (no messages except acks) to avoid 
deadlock in the network

• A more dynamic runtime would have many uses
• Application load imbalance, OS noise, fault tolerance

• Two extremes are well-studied
• Dynamic load balancing (e.g., random stealing) without locality
• Static parallelism (with threads = processors) with locality

• Charm++ has virtualized processes with locality
• How much “unnecessary” parallelism can it support?

Joint work with Parry Husbands
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• How important is locality and what is locality relationship?
• Some tasks must run with dependent tasks to re-use state
• If data is small or compute:communicate ratio large, locality less important
• Can we build runtimes that work for the hardest case: general dag with large 

data and small compute

Task Scheduling Problem Spectrum
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Dense and Sparse Matrix Factorization
Blocks 2D
block-cyclic
distributed

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

C
om

pleted part of L

A(i,j) A(i,k)

A(j,i) A(j,k)

Trailing matrix
to be updated

Panel being factored

Joint work with Parry Husbands

Completed part of U
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Parallel Tasks in LU

• Theoretical and practical problem: Memory deadlock
• Not enough memory for all tasks at once.  (Each update needs two

temporary blocks, a green and blue, to run.)
• If updates are scheduled too soon, you will run out of memory
• If updates are scheduled too late, critical path will be delayed.

some edges omitted
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LU in UPC + Multithreading
• UPC uses a static threads (SPMD) programming model

• Used to mask latency and to mask dependence delays
• Three levels of threads: 

• UPC threads (data layout, each runs an event scheduling loop)
• Multithreaded BLAS (boost efficiency)
• User level (non-preemptive) threads with explicit yield

• No dynamic load balancing, but lots of remote invocation
• Layout is fixed (blocked/cyclic) and tuned for block size

• Same framework being used for sparse Cholesky
• Hard problems

• Block size tuning (tedious) for both locality and granularity
• Task prioritization (ensure critical path performance) 
• Resource management can deadlock memory allocator if not careful
• Collectives (asynchronous reductions for pivoting) need high priority

Joint work with Parry Husbands



Kathy Yelick,  40Charm++ 2007                       

UPC HP Linpack Performance

X1 UPC vs. MPI/HPL
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•Faster than ScaLAPACK due to less synchronization
•Comparable to MPI HPL (numbers from HPCC database)
•Large scaling of UPC code on Itanium/Quadrics (Thun der) 

• 2.2 TFlops on 512p  and 4.4 TFlops on 1024p

Joint work with Parry Husbands

UPC vs. 
ScaLAPACK

0

20

40

60

80

2x4 pr oc  gr id 4x4 pr oc  gr i d

G
F

lo
ps

ScaLAPACK

UPC



Kathy Yelick,  41Charm++ 2007                       

HPCS Languages
• DARPA HPCS languages

• X10 from IBM, Chapel from Cray, Fortress from Sun

• Many interesting differences
• Atomics vs. transactions
• Remote read/write vs. remote invocation
• Base language: Java vs. a new language
• Hierarchical vs. flat space of virtual processors

• Many interesting commonalities
• Mixed task and data parallelism

• Data parallel operations are “one-sided” not collective: one 
thread can invoke a reduction without any help from others

• Distributed arrays with user-defined distributions
• Dynamic load balancing built in
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Conclusions and Open Questions
• Best time ever for a new parallel language

• Community is looking for parallel programming solutions
• Not just an HPC problem

• Current PGAS Languages
• Good fit for shared and distributed memory
• Control over locality and (for better or worse) SPMD

• Need to break out of strict SPMD model 
• Load imbalance, OS noise, faults tolerance, etc.
• Managed runtimes like Charm++ add generality

• Some open language questions
• Can we get the best of global view (data-parallel) and local 

view in one efficient parallel language
• Will non-SPMD languages have sufficient resource control for 

applications with complex task graph structures?


